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Abstract
In this paper we discuss the conservation of wave action under numerical
discretization by variational and multisymplectic methods. Both the abstract
wave action conservation defined with respect to a smooth, periodic, one-
parameter ensemble of flow realizations and the specific wave action based
on an approximated and averaged Lagrangian are addressed in the numerical
context. It is found that the discrete variational formulation gives rise in a
natural way not only to the discrete wave action conservation law, but also
to a generalization of the numerical dispersion relation to the case of variable
coefficients. Indeed a fully discrete analogue of the modulation equations
arises. On the other hand, the multisymplectic framework gives easy access
to the conservation law for the general class of multisymplectic Runge–Kutta
methods. A numerical experiment confirms conservation of wave action to
machine precision and suggests that the solution of the discrete modulation
equations approximates the numerical solution to order O(ε) on intervals
of O(ε−1).

PACS numbers: 47.11.Bc, 47.35.−i, 47.10.Df, 47.11.−j
Mathematics Subject Classification: 65P10, 74S10, 74J30, 76B15

1. Introduction

The wave action conservation law was introduced in Whitham (1965) to study modulations of
wave trains in slowly varying media. The approach follows by substituting a wave train with
slowly varying amplitude, wave number and frequency into the variational principle, neglecting
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terms of higher order in a small perturbation parameter, and averaging the Lagrangian over
phase to arrive at a variational principle for the modulation equations. Whitham’s original
theory thus leads to an approximate conservation law. An abstract form of the conservation
law of wave action was introduced by Hayes (1970), who considered an arbitrary, periodic,
one-parameter family of solutions to the Euler–Lagrange equations. Conservation of wave
action then follows from Noether’s theorem, due to the trivial invariance of the action integral
under translations in the ensemble parameter. This in turn makes Hayes’s theory an exact one.
The identification of Hayes’s ensemble parameter with a phase shift relates the two theories
(see Hayes (1970) and Grimshaw (1984) for more discussion). The concept of wave action
conservation was further extended in Whitham (1970), and a full treatment is given in the
monograph (Whitham 1999).

The utility of the wave action conservation law is that it holds even when the action integral
is explicitly dependent on time and space, such that the energy–momentum tensor is not exactly
conserved. An important example is the case of waves defined on a slowly moving background
flow, such as shallow water gravity waves on a slowly evolving potential vorticity field. The
theory has therefore found application in wave–mean field interactions (Bretherton and Garrett
1969, Andrews and McIntyre 1978, Grimshaw 1984). Another important application is the
instability theory of travelling waves (see Bridges (1997a, 1997b) and the references therein).
The local conservation law for wave action is a space–time generalization of the concept of an
adiabatic invariant in a classical mechanical system with slow dependence of the Hamiltonian
on time (Arnold 1989).

In this paper we consider wave equations in one space and one time dimension with
a single wave action ensemble parameter. The results are easily generalized to higher
dimensional space–time, however (Frank 2006). In section 3 we will show that a number
of multisymplectic numerical discretizations as developed in Bridges and Reich (2001), Reich
(2000b) satisfy a discrete conservation law of wave action in the sense of Hayes (1970). This
result is a corollary to the fact that multisymplectic semi-discretizations satisfy a semi-discrete
energy–momentum conservation in each continuous (i.e., undiscretized) coordinate, which
follows from the Noether theory for multisymplectic PDEs (Bridges 1997b). The latter has
been shown for special cases in the literature (Reich 2000b), and a very general statement
for the class of multisymplectic Runge–Kutta box schemes is treated in Frank (2006). In
section 4 we prove wave action conservation for this class of methods in the current setting.
Additionally, we will consider in section 3.1.1 a discrete variational integrator (Marsden
et al 1998, Marsden and West 2001) applied to the linear Klein–Gordon equation with slowly
varying coefficients, for which a discrete averaged Lagrangian is obtained which yields discrete
versions of the modulation equations. It is curious that the wave action conservation law so
obtained is identical to the exact one obtained by ensemble averaging, i.e. no approximation
is necessary in the discrete case. In other words Whitham’s and Hayes’s wave action concepts
are equivalent in the discrete setting.

In section 2 wave action conservation in the continuous case is reviewed, both in
the Lagrangian and multisymplectic Hamiltonian settings. In section 5 we conclude
with a numerical computation of the linear Klein–Gordon equation with slowly varying
coefficients.

To the best of our knowledge this is the first paper to study discrete conservation of wave
action under numerical discretization. At this time, it is difficult to anticipate the significance
of this property. One can say, however, that conservation of wave action is a property of
certain solutions of continuous wave equations which is inherited under discretization by the
variational and multisymplectic methods considered here, and as such it further attests to the
realism of simulations by such methods.
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2. Review of wave action conservation for continuous systems

2.1. Wave action conservation over a continuous ensemble

The concept of wave action conservation was developed in a variational setting. Consider a
wave equation derivable from a variational principle with Lagrangian L (Marsden and Ratiu
1994):

L =
∫

L(ut , ux, u, t, x) dx dt. (1)

The Euler–Lagrange equations are

δL
δu

= ∂t

(
∂L

∂ut

)
+ ∂x

(
∂L

∂ux

)
− ∂L

∂u
= 0. (2)

Due to the explicit dependence of L on time t and space x, solutions of the Euler–Lagrange
equations will not conserve energy or momentum in general. Suppose, however, that (2)
possesses an ensemble of solutions u(t, x, θ0) that can be smoothly parameterized by a closed
loop in phase space, with loop parameter θ0. The derivative of the Lagrangian with respect to
this parameter is

dL

dθ0
= ∂L

∂ut

utθ0 +
∂L

∂ux

uxθ0 +
∂L

∂u
uθ0 .

Solving (2) for ∂L
∂u

and substituting into the above expression gives

dL

dθ0
= ∂t

(
∂L

∂ut

uθ0

)
+ ∂x

(
∂L

∂ux

uθ0

)
.

Integrating this relation around a loop in θ0 yields the conservation law of wave action:

∂tA + ∂xB = 0, A = 1

2π

∮
∂L

∂ut

uθ0 dθ0, B = 1

2π

∮
∂L

∂ux

uθ0 dθ0, (3)

where A is the wave action density and B is the wave action flux.

2.1.1. Example: Klein–Gordon equation, averaged Lagrangian. As a concrete example let
us take the linear dispersive Klein–Gordon equation in a slowly varying medium:

utt = (α(t, x)2ux)x − β(t, x)2u. (4)

This equation was used in Whitham (1970) to illustrate the above concepts. Equation (4) is
the Euler–Lagrange equation associated with the action integral

L =
∫

u2
t

2
− α(t, x)2 u2

x

2
− β(t, x)2 u2

2
dx dt. (5)

For this Lagrangian, the wave action density and flux (3) read

A = − 1

2π

∮
utuθ0 dθ0, B = 1

2π

∮
α2uxuθ0 dθ0. (6)

In application of the theory to slow modulations of nearly periodic wave trains, we assume
that α and β are slowly varying with respect to time and space, i.e. α = α(T ,X), β = β(T ,X),
where X = εx, T = εt for a small parameter ε. We are interested in a family of
nearly sinusoidal solutions with slowly varying amplitude, frequency and wave number,



5482 J Frank

parameterized by a phase shift. To that end we make the ansatz

u(t, x) = A(T ,X) sin(θ(t, x) + θ0), (7)

θ(t, x) = ε−1�(T ,X),

θt (t, x) = −ω(T ,X), (8)

θx(t, x) = κ(T ,X), (9)

where θ0 is a phase shift. For such a solution, the wave action density and flux (6) can be
integrated to yield

A = 1
2A2ω, B = 1

2α2A2κ. (10)

An alternative derivation proceeds by substituting (7) directly into the action integral (5)
and averaging over θ0. The averaged Lagrangian is

L̄ = 1

2π

∮
L(ut , ux, u, t, x) dθ0 (11)

= 1

2

[
A2θ2

t

2
+ ε2 A2

T

2

]
− 1

2
α2

[
A2θ2

x

2
+ ε2 A2

X

2

]
− 1

2
β2 A2

2
. (12)

Neglecting terms of order ε2 gives the action integral

L̄ =
∫

1

4

[
A2θ2

t − α2A2θ2
x − β2A2

]
dx dt

in terms of A and θ . The Euler–Lagrange equations for this action principle are
δL̄
δθ

= −∂t

(
1

2
A2θt

)
+ ∂x

(
1

2
α2A2θx

)
= 0,

δL̄
δA

= θ2
t − α2θ2

x − β2 = 0.

Using (8) and (9), one can express the above two equations in terms of the slowly varying
quantities ω, κ and A:

∂t

(
1
2A2ω

)
+ ∂x

(
1
2α2A2κ

) = 0, (13)

ω2 − α2κ2 − β2 = 0, (14)

κt + ωx = 0, (15)

where the last of these is the compatibility condition θxt = θtx .
Equations (13)–(15) are the modulation equations which (approximately) govern the

evolution of the envelope of the slowly varying wave train. The first of these is just the wave
action conservation law (3) for the specific case (10). Equation (14) is a generalization of the
dispersion relation to the case of variable coefficients.

It has been noted in Whitham (1970) that although (3), (10) were obtained directly through
an ensemble average over θ0, (13) was only obtained after neglecting terms of higher order
in ε, and is therefore an approximate conservation law. We will refer to the former, exact
conservation with respect to an exact, closed-loop ensemble of flow realizations as Hayes’s
wave action, and the latter, approximate conservation law as Whitham’s wave action. This
paper primarily deals with the former, although for specific examples we will always turn to
the latter.

Note that, while (13) is derived by considering a family of solutions, in its final form
it applies to the amplitude, frequency and wave number of an individual solution out of
that family (it is local in the ensemble variable). This conservation law holds even when
the Lagrangian (1) depends explicitly on t and x, i.e. when energy and momentum are not
conserved.
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2.2. Multisymplectic structure and wave action

By taking a complete Legendre transformation of (1) not only with respect to ut , but also with
respect to ux , one may derive a Hamiltonian wave equation in the abstract multisymplectic
form (Bridges 1997b)

Jut + Kux = ∇S(u, t, x), (16)

where u(t, x) ∈ RN, J T = −J and KT = −K are N × N skew-symmetric matrices, and
S : RN × R × R → R is a functional which may depend on t and x. The papers (Bridges
1997a, 1997b) provide a complete and accessible introduction to multisymplectic structure
and some of its applications.

Suppose S has no explicit dependence on t in (16). Then taking the vector inner product
of (16) with ut gives

uT
t Jut + uT

t Kux = uT
t ∇S(u, x). (17)

The first term is zero by skew-symmetry of J . Using the identity

uT
t Kux = ∂t

(
1
2uT Kux

)
+ ∂x

(
1
2uT

t Ku
)
, (18)

and the fact that the right-hand side of (17) is just the total derivative of S with respect to t, the
conservation law

et + fx = 0, e = 1
2uT Kux − S, f = 1

2uT
t Ku (19)

is obtained. In Bridges (1997b) it is observed that this is the energy conservation law associated
with the invariance of (16) to time translations. If S does not depend explicitly on x, the
associated momentum conservation law follows analogously by taking the inner product of
(16) with ux .

The wave action conservation principle of Hayes (1970) has been cast in multisymplectic
form in Bridges (1997a). The idea is to consider a one-parameter ensemble of solutions
u(t, x, θ0) to (16) smoothly parameterized by a closed loop in phase space θ0 ∈ S1. Taking
the vector inner product of (16) with uθ0 and using the same reasoning as above yields the
conservation law

∂θ0

(
1
2uT Jut + 1

2uT Kux − S
)

+ ∂t

(
1
2uT

θ0
Ju

)
+ ∂x

(
1
2uT

θ0
Ku

) = 0. (20)

The ensemble average gives Hayes’s conservation law of wave action

∂tA + ∂xB = 0, A = 1

4π

∮
uT

θ0
Ju dθ0, B = 1

4π

∮
uT

θ0
Ku dθ0. (21)

2.2.1. Example: multisymplectic description of the Klein–Gordon equation. The Klein–
Gordon equation can be cast in the form (16) by introducing the Legendre transformations
v := ∂L/∂ut = ut and w := ∂L/∂ux = −α2ux . Then one finds, with u = (u, v,w) that
S = 1

2 (v2 − α−2w2 + β2u2) and

J =

0 −1 0

1 0 0
0 0 0


 , K =


0 0 −1

0 0 0
1 0 0


 .

The conservation law (21) holds with

A = 1

4π

∮
vθ0u − uθ0v dθ0 = − 1

2π

∮
uθ0ut dθ0
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and

B = 1

4π

∮
wθ0u − uθ0w dθ0 = 1

2π

∮
α2uθ0ux dθ0,

which are precisely (6).
The extension of this theory to higher dimensional space–time is straightforward.

Additional dimensions may be included within the multisymplectic framework with an
additional term K(d)uxd

(K(d) skew-symmetric) for each additional coordinate xd . If S is
independent of xd , then a momentum equation analogous to (19) may be found by taking the
inner product of (16) with uxd

and applying the identity (18). Indeed, the wave action
conservation law (20) can also be derived in this way by considering x0 ≡ θ0 as an
additional spatial dimension with periodic boundary conditions, with the associated trivial
skew-symmetric matrix K0 = 0. Then it is the translation symmetry in θ0 which leads to
(20). For a general statement in the context of multisymplectic Runge–Kutta discretizations,
see Frank (2006).

In Bridges (1997a) it is shown that (21) is equivalent via Stokes theorem to a local
conservation law of symplecticity. The defining property of a multisymplectic numerical
discretization is that it satisfies a discrete version of the local conservation law of symplecticity.
However, since Stokes theorem does not in general hold after discretization, it is not immediate
that multisymplectic discretizations have an analogous wave action conservation law. In
the following section we identify such conservation laws for some discrete variational and
multisymplectic methods.

3. Discrete wave action conservation

3.1. Wave action conservation for a discrete variational integrator

Below we follow a derivation analogous to that of section 2.1 for a discrete variational
integrator, see Marsden et al (1998), Marsden and West (2001). Define a discrete Lagrangian
by

Ln
i := L

(
un+1

i − un
i

�t
,
un

i+1 − un
i

�x
, un

i , xi, tn

)
. (22)

The discrete action integral (up to boundary conditions) is

LD =
∑
i,n

Ln
i ,

and the discrete Euler–Lagrange equations are given by

0 = ∂LD

∂un
i

= 1

�t

(
L1

n
i − L1

n−1
i

)
+

1

�x

(
L2

n
i − L2

n
i−1

) − L3
n
i , (23)

where Lp
n
i

denotes the partial derivative of L with respect to its pth argument, evaluated at
the same indices as (22). The scheme (23) will be referred to as the discrete variational Euler
scheme.

Next we assume a family of discrete functions un
i (θ0), satisfying (23) and smooth and

periodic in θ0. We compute the derivative of Ln
i with respect to θ0:

∂Ln
i

∂θ0
= L1

n
i ∂θ0

un+1
i − un

i

�t
+ L2

n
i ∂θ0

un
i+1 − un

i

�x
+ L3

n
i ∂θ0u

n
i .

Substituting (23) into the last term on the right and rearranging gives
∂Ln

i

∂θ0
= 1

�t

(
L1

n
i ∂θ0u

n+1
i − L1

n−1
i ∂θ0u

n
i

)
+

1

�x

(
L2

n
i ∂θ0u

n
i+1 − L2

n
i−1∂θ0u

n
i

)
.

Finally, taking the ensemble average yields a discrete conservation law. That is,
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Proposition 1. The discrete variational Euler scheme (23) satisfies the discrete conservation
law of wave action

1

�t

(
An+1/2

i − An−1/2
i

)
+

1

�x

(
Bn

i+1/2 − Bn
i−1/2

) = 0, (24)

where

An+1/2
i = 1

2π

∮
L1

n
i ∂θ0u

n+1
i dθ0, Bn

i+1/2 = 1

2π

∮
L2

n
i ∂θ0u

n
i+1 dθ0. (25)

Equation (24) is the discrete analogue of (3).

3.1.1. Example: variational discretization of the Klein–Gordon equation. Now let us
consider a variational integrator for (4). The action principle (5) is approximated by the sum

L =
∑
i,n

1

2

(
un+1

i − un
i

�t

)2

− (
αn

i+1/2

)2 1

2

(
un

i+1 − un
i

�x

)2

− (
βn

i

)2 1

2

(
un

i

)2
. (26)

As in the continuous case, let us assume a family of discrete, slowly modulated waves of
the form

un
i = An

i sin
(
θn
i + θ0

)
. (27)

Substituting this family directly into (25) and taking the ensemble averages yields the discrete
wave action density

An+1/2
i = 1

2An
i A

n+1
i �t−1 sin

(
θn+1
i − θn

i

)
(28)

and discrete flux

Bn
i+1/2 = 1

2

(
αn

i+1/2

)2
An

i A
n
i+1�x−1 sin

(
θn
i+1 − θn

i

)
. (29)

These quantities are second-order approximations to (10).
It is also instructive to follow the averaged Lagrangian approach used in section 2.1.1.

Substituting (27) into (26) and averaging over θ0 gives the averaged variational principle

L̄ =
∑
i,n

1

4�t2

[(
An+1

i

)2 − 2An
i A

n+1
i cos

(
θn+1
i − θn

i

)
+

(
An

i

)2]

−
(
αn

i+1/2

)2

4�x2

[(
An

i+1

)2 − 2An
i A

n
i+1 cos

(
θn
i+1 − θn

i

)
+

(
An

i

)2] −
(
βn

i

)2

4

(
An

i

)2
. (30)

Taking the discrete variation with respect to θn
i produces precisely (24) with (28) and (29):

0 = − 1

2�t2

[
An+1

i An
i sin

(
θn+1
i − θn

i

) − An
i A

n−1
i sin

(
θn
i − θn−1

i

)]
+

1

2�x2

[(
αn

i+1/2

)2
An

i+1A
n
i sin

(
θn
i+1 − θn

i

) − (
αn

i−1/2

)2
An

i A
n
i−1 sin

(
θn
i − θn

i−1

)]
. (31)

In contrast to the continuous case, it is unnecessary to neglect any small terms in the Lagrangian
to obtain the identical formulation. Hayes’s ensemble average over phase shift and Whitham’s
averaged Lagrangian give formally identical wave action conservation laws, without neglecting
any higher order terms in the Lagrangian.
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The variation of (30) with respect to An
i gives a generalized numerical dispersion relation

for variable coefficients:

0 = 1

�t2

[
An

i − 1

2
An+1

i cos
(
θn+1
i − θn

i

) − 1

2
An−1

i cos
(
θn
i − θn−1

i

)]

− 1

�x2

[(
αn

i+1/2

)2
+

(
αn

i−1/2

)2

2
An

i − (
αn

i+1/2

)2 1

2
An

i+1 cos
(
θn
i+1 − θn

i

)

− (
αn

i−1/2

)2 1

2
An

i−1 cos
(
θn
i − θn

i−1

)] −
(
βn

i

)2

2
An

i . (32)

A discrete analogue of the modulation equations (13)–(15) can be obtained by eliminating
θn
i through the substitutions

θn+1
i − θn

i ≡ −ω
n+1/2
i �t, θn

i+1 − θn
i ≡ κn

i+1/2�x

in (31) and (32). We then need the compatibility condition

1

�t

(
κn+1

i+1/2 − κn
i+1/2

)
+

1

�x

(
ω

n+1/2
i+1 − ω

n+1/2
i

) = 0. (33)

Since the variables An
i , κ

n
i+1/2 and ω

n+1/2
i are all slowly varying, the discrete modulation

equations could conceivably be solved on a coarser grid.

3.2. Discrete multisymplectic integrators

The wave action conservation law (31) may also be derived directly from a multisymplectic
description. Consider a wave equation of the form (16).

Defining matrices J +, J−,K+,K−, to be the upper triangular and lower triangular parts
of J and K, respectively; the multisymplectic Euler discretization of (16) is given by Moore
and Reich (2003a)

J + un+1
i − un

i

�t
+ J− un

i − un−1
i

�t
+ K+ un

i+1 − un
i

�x
+ K− un

i − un
i−1

�x
= ∇S

(
un

i , xi, tn
)
. (34)

Next assume a family of numerical solutions, smoothly and periodically dependent on
the parameter θ0, and compute the vector inner product of (34) with ∂θ0u

n
i . Rearranging, and

using the fact that (J +)T = −J−, (K+)T = −K− gives the semi-discrete conservation law1

∂θ0

[(
un−1

i

)T
J +un

i − (
un

i

)T
J +un

i

�t
+

(
un

i−1

)T
K+un

i − (
un

i

)T
K+un

i

�x
− S

(
un

i , xi, tn
)]

+

(
∂θ0u

n
i

)T
J +un+1

i − (
∂θ0u

n−1
i

)T
J +un

i

�t
+

(
∂θ0u

n
i

)T
K+un

i+1 − (
∂θ0u

n
i−1

)T
K+un

i

�x
= 0.

Integrating around a closed loop in θ0, the first term disappears, leaving a discrete conservation
law of the form (24), i.e.

Proposition 2. The multisymplectic Euler scheme (34) satisfies the discrete wave action
conservation law (24) with

An+1/2
i =

∮ (
∂θ0u

n
i

)T
J +un+1

i dθ0, Bn
i+1/2 =

∮ (
∂θ0u

n
i

)T
K+un

i+1 dθ0. (35)

1 This expression also suggests the form of semi-discrete energy–momentum conservation laws for semi-
discretizations with the multisymplectic Euler scheme.
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Since the above discretization is equivalent to the discrete Euler–Lagrange equations (23),
these discrete density and flux functions are equal to (25). A larger class of multisymplectic
discretizations will be dealt with in the following section.

4. Wave action conservation for multisymplectic Runge–Kutta box schemes

In this section we derive discrete wave action conservation laws for a popular class of
multisymplectic methods, the Runge–Kutta box schemes (Reich 2000b). It is sufficient
to consider a single space–time grid cell [t0, t1] × [x0, x1].

The discretization is a composition of an s-stage Runge–Kutta method in time and an
s̃-stage method in space, and the method coefficients (Hairer et al 1993) are denoted
analogously

cm, bm, am�, m, � = 1, . . . , s (36)

c̃j , b̃j , ãjk, j, k = 1, . . . , s̃. (37)

The points (τm, ξj ), where τm = t0 + cm�t and ξj = x0 + c̃j�x, are collocation points.
With these definitions, the Runge–Kutta box scheme semi-discretization is defined by a

set of s × s̃ collocation equations

JT m
j + KXm

j = ∇S
(
Um

j , τm, ξj

)
,

j = 1, . . . , s̃,

m = 1, . . . , s,
(38)

where Um
j , T m

j and Xm
j are stage vectors approximating, respectively, u, ut and ux at (τm, ξj ).

Additionally, we have the relations

Um
j = u0

j + �t
∑s

�=1 am�T
�
j ,

Um
j = um

0 + �x
∑s̃

k=1 ãjkX
m
k ,

{
j = 1, . . . , s̃,

m = 1, . . . , s.
(39)

In (39) the quantities u0
j and um

0 approximate u on the cell faces at (t0, ξj ) and (τm, x0),
respectively. The values on the opposite faces are denoted by u1

j and um
1 and are obtained

from

u1
j = u0

j + �t
∑s

m=1 bmT m
j ,

um
1 = um

0 + �x
∑s̃

j=1 b̃jX
m
j ,

{
j = 1, . . . , s̃,

m = 1, . . . , s.
(40)

Additional formulae are necessary to relate the above quantities to gridpoint values (Frank
et al 2006). However, the relations (38), (39) and (40) are sufficient to obtain the conclusions
of this paper.

A Runge–Kutta box scheme is multisymplectic (i.e., satisfies a discrete local conservation
law of symplecticity in the sense of Bridges and Reich (2001)) if both coefficient sets
{cm, bm, am�} and {c̃j , b̃j , ãjk} define symplectic RK methods (Hairer et al 2002), i.e.

bmb� − b�a�m − bmam� = 0, ∀m, �,

b̃j b̃k − b̃kãkj − b̃j ãjk = 0, ∀j, k.
(41)

The following lemma is the discrete analogue of (18).

Lemma 1. Consider a skew-symmetric matrix K ∈ RN×N and a set of vectors u0(θ0),

u1(θ0), Uj (θ0), Xj (θ0) ∈ RN, j = 1, . . . , s̃, smoothly dependent on a parameter θ0 and
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satisfying the Runge–Kutta formulae

Uj = u0 + �k

s̃∑
k=1

ãjkXk, m = 1, . . . , s (42)

u1 = u0 + �k

s̃∑
j=1

b̃mXj . (43)

For symplectic Runge–Kutta methods (41), the following identity holds:

s̃∑
j=1

b̃j ∂θ0U
T
j KXj = ∂θ0


 s̃∑

j=1

b̃j

1

2
UT

j KXj


 +

1

�x
(F1 − F0), (44)

with Fi = 1
2∂θ0u

T
i Kui , i = 0, 1.

Proof. Substitute (43) into the definition of F 1 to obtain

∂θ0u
T
1 Ku1 = ∂θ0u

T
0 Ku0 + �x

s̃∑
j=1

b̃j ∂θ0u
T
0 KXj + �x

s̃∑
j=1

b̃j ∂θ0X
T
j Ku0

+ �x2
s̃∑

j,k=1

b̃j b̃k∂θ0X
T
j KXk. (45)

Solving (42) for u0, differentiating with respect to θ0, and substituting into the first series
above yields

s̃∑
j=1

b̃j ∂θ0u
T
0 KXj =

s̃∑
j=1

b̃j ∂θ0U
T
j KXj − �x

s̃∑
j,k=1

b̃j ãjk∂θ0X
T
k KXj

=
s̃∑

j=1

b̃j ∂θ0U
T
j KXj − �x

s̃∑
j,k=1

b̃kãkj ∂θ0X
T
j KXk,

where the skew-symmetry of K has been used. Similarly, the second series becomes
s̃∑

j=1

b̃j ∂θ0X
T
j Ku0 =

s̃∑
j=1

b̃j ∂θ0X
T
j KUj − �x

s̃∑
j=1

b̃j ãjk∂θ0X
T
j KXk.

Substituting the above two formulae into (45) gives

∂θ0u
T
1 Ku1 = ∂θ0u

T
0 Ku0 + �x

s̃∑
j=1

b̃j ∂θ0U
T
j KXj + �x

s̃∑
j=1

b̃j ∂θ0X
T
j KUj

+ �x2
s̃∑

j,k=1

(b̃j b̃k − b̃kãkj − b̃j ãjk)∂θ0X
T
j KXk. (46)

For symplectic RK methods (41), the last term in (46) cancels. Finally we note that

∂θ0U
T
j KXj + ∂θ0X

T
j KUj = 2∂θ0U

T
j KXj − ∂θ0

(
UT

j KXj

)
,

and (44) follows. �

Next, by premultiplying (38) by ∂θ0U
m
j and applying the quadrature over j and m,∑

j,m

bmb̃j

(
∂θ0U

m
j

)T [
JT m

j + KXm
j − ∇S

(
Um

j , τm, ξj

)] = 0,
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and applying lemma 1, we arrive at the semi-discrete conservation law

∂θ0

∑
j,m

bmb̃j

[
1

2

(
Um

j

)T
JT m

j +
1

2

(
Um

j

)T
KXm

j − S
(
Um

j , τm, ξj

)]

+
1

�t
(A1 − A0) +

1

�x
(B1 − B0) = 0, (47)

where

An =
s̃∑

j=1

b̃j

1

2

(
∂θ0u

n
j

)T
Jun

j , n = 0, 1,

Bi =
s∑

m=1

bm

1

2

(
∂θ0u

m
i

)T
Kum

i i = 0, 1.

Finally, taking the ensemble average of (47) around a loop in θ0 proves the following.

Proposition 3. The multisymplectic Runge–Kutta discretization (38)–(41) satisfies the
following discrete conservation law of wave action:

1

�t
(A1 − A0) +

1

�x
(B1 − B0) = 0, (48)

where

An = 1

2π

∮ s̃∑
j=1

b̃j

1

2

(
∂θ0u

n
j

)T
Jun

j dθ0, n = 0, 1,

Bi = 1

2π

∮ s∑
m=1

bm

1

2

(
∂θ0u

m
i

)T
Kum

i dθ0, i = 0, 1.

Note that the discrete wave action conservation law (48) holds for nonlinear problems,
for problems (16) where S depends explicitly on the space–time coordinated x and t (where
energy and momentum are not conserved), and for any tensor product grid (we have looked at
a single grid cell here, without any reference to the size of neighbouring cells). This discrete
conservation law is the discrete analogue of the general wave action conservation law of Hayes
(1970) and is an exact law. However, like the result of Hayes (1970), the utility of this result
depends on the identification of the ensemble parameter θ0.

Remark. By identifying θ0 with another coordinate direction, say y, which need not
be periodic, the semi-discrete conservation law (47) corresponds to the conservation of
momentum associated with translation symmetry in the y dimension (since S exhibits no
explicit dependence on y). As such, (47) is a more general statement of a semi-discrete
conservation law of semi-discretizations, with respect to the momentum in the nondiscretized
directions (Frank 2006). This semi-discrete conservation law has been noted in other contexts
before, see Reich (2000a, 2000b), Bridges and Reich (2001), Moore and Reich (2003a, 2003b),
Hong and Li (2006).

5. Numerical experiment

In this section we illustrate discrete wave action conservation using the discrete
variational/multisymplectic Euler method (23), (34), applied to a slowly modulated wave
train solution of the Klein–Gordon equation (4). The domain is the interval x ∈ [0, L)
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Figure 1. Solution un
i (light blue) and amplitude An

i (blue) at time T = 160/ε for ε = 0.02.

with L = 2π/ε and periodic boundary conditions. The coefficients α and β are chosen
to be

α = 1 +
1

5
sin

( π

27
εt

)
exp

[
−25

(
x

L
− 1

2

)2
]

,

β = 1 − cos
( π

20
εt

)
exp

[
−25

(
x

L
− 1

2

)2
]

.

We take as initial condition a uniform, right-travelling wave train

u(0, x) = sin(κx + θ0), v(0, x) = ut (0, x) = −ω cos(κx + θ0), κ = ω = 4π

εL
.

For the discretization, we have N = 30/ε,�t = εL/N , and integrate to time 160/ε.
For a linear problem, it is possible, by taking the derivative of (34) with respect to θ0, to

also integrate numerically and determine uθ0 and vθ0 , using initial conditions

uθ0(0, x) = cos(κx + θ0), vθ0(0, x) = ω sin(κx + θ0).

Then, under the assumption that un
i = Ãn

i sin
(
θ̃ n
i + θ0

)
, ∂θ0u

n
i = Ãn

i cos
(
θ̃ n
i + θ0

)
, we can

approximate the amplitude and phase of the numerical solution by

Ãn
i =

√(
un

i

)2
+

(
∂θ0u

n
i

)2
, θ̃ n

i = tan−1 un
i

∂θ0u
n
i

. (49)

Alternatively, we can integrate the discrete modulation equations (31), (32) to approximate
An

i and θn
i . A comparison of the numerical solution and the amplitude obtained by a separate

integration of (31), (32) is shown in figure 1.
The wave action density is given by (28). The total wave action at time tn is given by

An =
∑

i

An
i �x.

This quantity is conserved to machine precision, as can be seen by applying the summation
above to (31) with periodic boundary conditions. If we substitute Ãn

i and θ̃ n
i as determined
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Figure 2. Relative variation in total energy (light blue) and total wave action (blue) as a percentage
of the initial value, ε = 0.02.
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Figure 3. Approximation of the solution by the discrete modulation equations as a function of ε.

from (49) into (31), the residual is nonzero. Nonetheless, the total wave action is conserved in
this case as well. Figure 2 compares the relative variation in total wave action to that of total
energy for ε = 0.05. The total wave action is 2π/ε and the initial energy is 13.3/ε.

As a measure of the accuracy of the discrete modulation equations, we can measure the
approximation error in the L∞-norm

en = max
i

∣∣un
i − An

i sin θn
i

∣∣,
where again An

i and θn
i are obtained from a separate integration of (31), (32). This quantity

is plotted as a function of time in figure 3 for ε = 0.4, 0.2, 0.1 and 0.05. The results are



5492 J Frank

scaled in time to fit on one plot. The self-similarity of the error evolution suggests that the
discrete modulation equations approximate the numerical solution to order O(ε) for intervals
of O(ε−1).

6. Concluding remarks

In this paper we have derived discrete wave action conservation laws for the discrete
variational/multisymplectic Euler method and the class of multisymplectic Runge–Kutta box
schemes. Within the variational framework it is also possible to derive discrete modulation
equations. Numerical experiments confirm that wave action is conserved to machine precision
and also suggest that the discrete modulation equations approximate the numerical solution to
order O(ε) for intervals of O(ε−1).

Because the discrete variational framework also gives access to the full modulation
equations, a general development of wave action for this class would be desirable.

It is interesting that, in the derivation of the modulation equations for a discrete variational
integrator in section 3.1, it is unnecessary to neglect terms of order ε as in the continuous case
(cf (12)). In fact small parameters appear nowhere in the derivation. This hints at a potential
difficulty with the discrete modulation equations. Specifically, there is no guarantee that
the quantities An

i , ω
n+1/2
i and κn

i+1/2 are slowly varying on the time scale of fast oscillations.
Given an oscillatory function u(x), one can always find a monotone function θ(x) and a
positive function A(x) satisfying u(x) = A(x) sin θ(x) (just choose any θ(x) taking values
πm,m ∈ Z, at the zeros of u and define A ≡ u/sin(θ) elsewhere), but A and dθ/dx will not
be slowly varying in general.

The wave action conservation laws of this paper apply more generally to discretized
nonlinear PDEs, and in the case of the box schemes, also to nonuniform space–time grids.
To actually compute the wave action, however, one must have an explicit expression for a
periodic wave train, just as in the continuous case.

Wave action is the generalization to PDEs of the concept of an adiabatic invariant.
The classical example of an adiabatic invariant is the slowly modulated harmonic oscillator,
obtained from (4) by setting α ≡ 0 (Arnold 1989). Reich has shown that symplectic integrators
conserve adiabatic invariants over exponentially long times (Reich 1999, Cotter and Reich
2004), see also Cotter (2004). Estimates of the longevity of wave action conservation for PDE
discretizations are currently lacking.
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