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ABSTRACT

Exponential distributions of the type N = N, exp(—Ar) occur with a high frequency in a wide range of
scientific disciplines. This paper argues against a widely spread method for calculating the A parameter in
this distribution. When the In function is applied to both members, the equation of a straight line in ¢ is
obtained, which may be fit by means of linear regression. However, the paper illustrates that this is
equivalent to a least squares fit with a weight function that assigns more importance to the higher values of
t. It is argued that the method of maximum likelihood should be applied, because it takes into account all
of the data equally. An iterative method for determining A is proposed, based on the method of moments
for cases in which only a truncated distribution is available.

1. Introduction

In physics there are many magnitudes that depend on
others in an exponential way. In other cases, the values
of a magnitude follow an exponential frequency. An
example of the former is the number of radioactive
nuclei that persist in time without disintegrating. Drop
size distributions are an example of the latter case. The
exponential function is the same in both cases, but the
two concepts are essentially different.

In the case of exponential dependence, the equation
that rules the behavior of radioactive nuclei is

N = N, exp(—At), (1)

where N is the number of unstable nuclei remaining
after a time span ¢, with IV, being the initial number of
nuclei. In this equation the parameter of the exponen-
tial A (called the disintegration constant) is related to
the half-life of the radioactive isotope. If we have sev-
eral pairs of data (N,, t;), we can determine A from Eq.
(1) merely by taking the natural logarithm of both
members:
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InN = InN, — A, (2

which is the equation of a straight line, if we consider
time ¢ the independent variable and In N the dependent
variable. Thus, a simple least squares fit allows us to
obtain an estimation of the slope A.

In the case of exponential frequency, Eq. (1) is also
valid by simply considering that N is the number of
drops per unit of volume according to size ¢. This is the
drop size distribution proposed by Marshall and Palmer
(1948), which Smith (2003) compares to the probability
density function as follows:

f(x) = X exp(—Ax). ©)

The difference may seem insignificant at first sight, but
a controversy arises when it comes to calculating A.

2. Calculating A

In the second case, the value of N in Eq. (1) repre-
sents the number of drops with a size of approximately
t, which means that all of the drops in the sample have
to be grouped into classes. Because the distribution is
exponential, it may happen that in the larger sizes some
of the classes are empty. Fraile et al. (1992) have noted
that in this case it is not possible to use Eq. (2) for
determining A by the least squares fit because if N = 0,
InN makes no sense.
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These authors have also noted that, even if there are
no empty size groups, the least squares fitting of the
straight line in Eq. (2) places more importance on the
larger sizes.

From an experimental perspective, there are instru-
mental problems when accurately measuring the small-
est hydrometeors. These problems are the result of a
number of different causes. For instance, the hydro-
meteors may not reach the lower threshold, or the
problems may be the result of the method, the resolu-
tion of the equipment, overlapping, etc. Korolev et al.
(1998) have pointed out some of these indeterminacies
in measuring the number of small hydrometeors with
an Optical Array Probe 2D2-C. Fraile et al. (2004) have
also noticed these problems in measuring hailstones.

Furthermore, it is well known that in microphysical
measurements the largest particles are more important
in estimating the liquid water content, because this pa-
rameter is proportional to the cubed diameter of the
drop. Similarly, the largest hydrometeors are also the
ones that contribute more importantly to the reflectiv-
ity factor, because this factor depends on the sixth
power of the diameter of the drops.

This may award greater importance to the larger
sizes of the spectrum. However, if the aim is to calculate
size distributions, it is necessary to employ a method
that applies equally to the whole size spectrum. If one
part of the spectrum needs to be highlighted, an appro-
priate weight should be established for it, but not the
weight that a particular fitting method may introduce.

The aim of this paper is both to demonstrate that the
least squares fit of the straight line in Eq. (2) introduces
a bias, and to offer an alternative way for calculating A
parameter in an exponential distribution.

a. Differences in weight factors in the least squares
fit
If we have a set of n data points (x;, y;) that follow an
approximate relationship of the following type:

yi=flx) =Y,

the form of fis known, even though the k parameters A;
(j=1,..., k) on which it depends are unknown. Cal-
culating A; by means of the least squares fit is equiva-
lent to estimating the value of the parameters that mini-
mize the quantity

D=2 (Y, ~y) “)

Then, the system of k equations that leads to determin-
ing k parameters is
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In case some of the points are more reliable than oth-
ers, we may incorporate a weight factor w; for each pair
indicating their reliability. Consequently, instead of Eq.
(4) we will have to minimize

D, =2 wi(Y,~y). 5)

If the points (x;, y;) still show an approximately expo-
nential relationship, that is, if

y;=Nyexp(—Ax;) =Y, (6)

then the least squares fit is equivalent to estimating the
value of A and N, that will minimize the quantity

D=2 (Y, y) = 2 INgexp(—Ax) =y, (7)

and, if the reliability of the points were different, the
expression that would have to be minimized would be

i

D, = E wlY; — yi)z = E wNyexp(—Ax;) — y,']2-
)

It will be illustrated below that the least squares fitting
to the straight line in Eq. (2)—built from an exponen-
tial—will lead to an expression that is similar to the one
in Eq. (8), that is, attributing different weights to the
points.

It is certainly the case that if the points (x;, y;) comply
with Eq. (6), they also confirm that

Iny,=InN, — \x; = Z,,

which is a linear equation in x;. The least squares fitting
to that straight line is equivalent to estimating the value
of A and N, that minimize the quantity

D, = D\ (Z,— Iny)? = >, (InN, — \x; — Iny,".

i

If we call the relative residual p;, = [N, exp(—Ax;) —
yilly:s then

D,= > [In(p, + DI

13
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Fi1G. 1. Histogram of the frequency of hailstone sizes in a hailstorm in Le6n (Spain). The figure also includes the
exponential distributions that fit best with the least squares method (with a poor fit in the smaller sizes) and the

moment method.

Because, according to Eq. (6), p; is very small, the Mer-
cator series (a Taylor expansion of the natural loga-
rithm) leads to

2 3 4 2
Pi Pi PDi
Dl:2<pi_7+?_z+"'>'

i

As second-order and higher-order terms are neglected,
the result is

1
D= pt= 7 > [expAx)IIN, exp(—Ax;) — >
i 0o i

9

It is obvious that minimizing Eq. (9) is equivalent to
minimizing Eq. (8) if the weight w; is

_ exp(2Ax))

N2 (10)

i

What does this mean? It simply refers to the fact that
transforming an exponential distribution into a linear
function to subsequently estimate the parameters of the
line by means of the least squares fit is broadly equiva-
lent to applying the least squares fit to the exponential
function with a different weight assigned to each point
(x;, y;)- In addition, because w; is a growing exponential
function, more weight is assigned to the higher values of

x;. In consequence, the fit is better for the points with a
higher x; value. This fact can be illustrated graphically
when representing an exponential distribution with the
value A calculated in the way described above, together
with the data points (x;, y;) from which A has been
estimated. These points will be farther away from the
exponential curve for the lower values of x,. This is the
usual result when this method is applied to calculate A
(Fraile et al. 1992). In Fig. 1 it can be compared with the
exponential function that is obtained from calculating A
with the moment method. In this case, hailstones larger
than 5 mm have been measured, and, consequently, an
extension of this method was used, as described in sec-
tion 2b.

In conclusion, it may seem a paradox that with this
method the calculated A depends on a weight function
(10), which, in its turn, depends on A. Therefore, we
suggest that the value of A should be calculated from
the probability density function (3) by means of the
moment method. This method is generally known to be
biased (Wallis et al. 1974). However, in the case of an
exponential distribution it is identical to the maximum
likelihood method (Sneyers 1990), which is not biased.
Other methods may equally be used, for instance, the
chi-square minimization method (Cramér 1999). More-
over, if we take into account the fact that the exponen-
tial distribution is a particular case of the gamma dis-
tribution
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/B exp(—x/B)

fx) BT (@)

when the shape parameter is @ = 1, other methods may
be used, for instance, the ones proposed by Wilks
(1990) for the gamma.

b. A method for fitting truncated exponential
distributions

The estimated value of A according to the method of
moments is the inverse of the mean value of the sample.
The exponential distribution lies between zero and o°.
But there are situations in which only one range of
values can be observed; this is the case of solid precipi-
tation, which is only labeled “hail” if the size surpasses
5 mm in diameter (WMO 1992), or in the case of drops,
if the data are provided by equipment that measures
only sizes in a particular interval. In both cases, the
mean value of the sample does not coincide with the
inverse of the expected value of A. This could be a valid
point to insist on using the linear fit, because the
method of moments cannot be used in these conditions.
However, a simple procedure will be suggested below
for calculating A on the basis of the method of mo-
ments.

If we call the minimum threshold x, (e.g., x, = 5 mm
in the case of hail), the expected value of x between x,
and = is

J“’ xf(x) dx J“’ X\ exp(—Ax) dx

x pe 1
E(x) = So = So =Xot %
J f(x) dx f Aexp(—Ax) dx
x0 X0
and approximating E(x) by means of
E X
X=— (11)

n
if we have a sample of n data x;, the value of A is

1 B 1
f—x(]_Exi

n

A=

B n
E (; = x0) ’

- Xq

which is very easy to calculate, because it is a change in
the coordinates x;, taking x, as the point of origin.

If the distribution is truncated on both sides and we
call the lower threshold x, and the upper one x,, the
expected value of x is
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j XA exp(—Ax) dx

j Aexp(—Ax) dx

_ Xo exp(_)\xo) - Xy eXp(_/\xu) 1

exp(_)\x()) - eXp(_Axu) A ’
and we may reorganize this as follows:

1

A= Yo eXp(—Axg) — X, exp(—Ax,)”

(12)
E(x) —

exp(—Axo) — exp(—Ax,)

Consequently, if we want to fit n values of x; € [x,, x,,
to a truncated exponential, the expected value of x will
be given by Eq. (11). Equation (12) may be used for
calculating a new value of A, starting from an initial
value that is introduced in the member on the right-
hand side. In other words, Eq. (12) allows us to deter-
mine the parameter of the exponential distribution by
means of subsequent iterations: for a given value of A,
we obtain the value of A, ; = f()\;), where

exp(—Agxo) — exp(—A,x,)
(¥ — x0) exp(—AgXo) — (X — x,,) exp(—Agx,,)

(13)

Jw) =

The A error can be made as small as required. If we call
this error ¢, after m iterations the following will result:
A1 — Ay, < &

Function f (A;) tends to a fixed point under iteration,
that is, Eq. (13) converges, if the slope of the curve Eq.
(13) in the fixed point (i.e., the derivative of the func-
tion in that point) takes values between —1 and 1 (Ka-
plan and Glass 1995). The function derived from Eq.
(13) with respect to A, is

(x, — xo)2 exp(—AgXo) exp(—Agx,)

[(X — xo) exp(— A Xo) — (X — x,) exp(—Aex, )

() =

which is always positive, because both the numerator
and denominator are always positive. This result indi-
cates that whether the function is convergent or not, the
trend is monotonic (not oscillatory). Once the deriva-
tive has been seen to be positive, to verify the condition
mentioned in the previous paragraph it is only neces-
sary to test that

fr) <1,
which is equivalent to testing that

X, —X

In

> .
Me X,— Xy X=X, 14
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Fi1G. 2. The frequency of the relative error, understood as (A — Agna)/Aginar, @S the number of iterations for
calculating parameter A increases.

To assess the extent to which the convergence criterion
in Eq. (14) applies to the examples suggested (hailstone
and drop size), we have applied this equation to hail
data that are registered during a summer campaign in
the hailpad network of Ledn (Spain) and to the distri-
butions of hydrometeors measured inside convective
clouds by means of an optical array probe (OAP)
2D2-C (Séanchez et al. 2001). The result shows that in all
cases the inequality persists, thus, demonstrating that
the iteration function is useful, at least in the examples
described. In addition, not too many iterations are nec-
essary to obtain acceptable results. For example, for the
hailpads chosen, with five iterations A takes a value that
differs from the final value (the one it will supposedly
reach with infinite iterations), which is less than 5% in
60% of the cases. Moreover, in 60% of the cases the A
that is calculated with 10 iterations approaches the final
value with a difference of less than 1%. With 15 itera-
tions this percentage increases to almost 70%. The
gradual decrease of the difference with the final result
(or relative error) is represented in Fig. 2 according to
the number of iterations.

In the paragraphs above we have calculated A when
there is only a lower threshold x, and when there are
upper and lower thresholds in the sample. The remain-
ing case—an upper threshold only—is equivalent to us-

ing Eq. (12) when x, = 0. As expected (and this may be
easily tested), if x,, is very high, the value of A will be
very similar to the inverse of the mean value. In any
case, whatever the value of x,, the new A will always be
lower than the one calculated directly as the inverse of
the mean value.

3. Conclusions

e This paper has demonstrated that calculating the A
parameter in an exponential distribution by means of
the least squares fitting to the straight line in Eq. (2)
incorporates a weight factor that assigns more impor-
tance to the higher values of the independent vari-
able.

¢ In consequence, we suggest that this parameter
should be calculated by means of the method of mo-
ments or maximum likelihood, whose results are
identical in the exponential distribution.

¢ There are also exponentially distributed data that do
not extend to the whole domain of the exponential
distribution (from zero to infinity), usually resulting
from the sampling techniques employed. In these
cases, the sample has to be restricted to a reduced
interval, and we suggest the use of a straightforward
iterative technique based on the method of moments.
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