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On the nonlinear transfer of energy in the peak of 
a gravity-wave spectrum. II 

BY M. J. H. Fox 

Department of Applied Mathematics and Theoretical Physics, 
Silver Street, Cambridge 

(Communicated by M. S. Longuet-Higgins, F.R.S. - Received 28 July 1975) 

This paper presents the first accurate calculations of the nonlinear transfer 
of energy within a continuous spectrum of water waves. The spectrum is 
assumed to be narrow, that is, the wave energy is initially concentrated 
near one particular wavenumber, and use is made of the transfer equation 
derived previously in part I (Longuet-Higgins I975) for this case. It is 
shown that when the spectrum is describable as a sum of normal distri- 
butions, then the sixfold multiple integral can be reduced to a single 
integration. Hence the accurate evaluation of the energy transfer (as a 
function of the two dimensional wavenumber) becomes practicable. 

For a symmetric normal spectrum it is found that the transfer function 
generally has the form of a clover-leaf, with four maxima lying in the 
characteristic directions dA = ?+ V2dj, as seen from the peak. These are 
separated by troughs of negative transfer lying in the axial directions 
dA = 0, dp, = 0. For a typically asymmetric spectrum, one of the negative 
troughs may be filled in, so that the transfer function more closely re- 
sembles a butterfly. An interpretation is given in terms of the balance of 
terms in the transfer equation. 

The (one dimensional) transfer function for the frequency-spectrum 
can be found by integration of the two dimensional transfer function. 
Typically it has a pronounced minimum near the peak frequency, indicat- 
ing strong negative transfer there, and two weaker maxima, one on each 
side. For asymmetric spectra, the maximum transfer is greater on the 
steeper face of the spectrum, usually on the low-frequency side. A com- 
parison with the rough calculations of Sell & Hasselmann (1972) for the 
JONSWAP R3C spectrum shows good agreement. 

1. INTRODUCTION 

This paper continues the calculation and interpretation of the nonlinear energy 
transfer in a continuous spectrum of deep-water waves, which was begun in a 

previous paper (part I, Longuet-Higgins I975). That paper considered an ideal 
case in which the energy was all concentrated in the neighbourhood of the spectral 
peak. By making use of an evolution equation due to Davey & Stewartson (1974), 
a simplified expression was found for the energy flux. Hence it was shown that the 

energy flowed away from the spectral peak in certain characteristic directions, 
[ 467 ] 
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and that for a normally-shaped peak the rate of change at the summit was 

negative. 
The detailed calculation of the energy flux to all parts of the spectrum was seen 

to depend on a multiple integral which in general must be evaluated numerically. 
Because of the computing time involved a satisfactory degree of accuracy is hard 
to achieve. However, in the particular case of the normal (bell-shaped) peak we 
shall show that the multiple integral can actually be reduced to a single integral. 
This then allows us to evaluate the energy transfer accurately at all points of the 
wavenumber plane, and to draw smooth contours of energy flux, an achievement 
not found possible previously (Sell & Hasselmann I972; Hasselmann et al. 1973). 

It then becomes clear (?4) that the initial flux has the form of a four-leafed 
clover (see, for example, figure 2a), the four maxima lying near the characteristic 
lines as predicted earlier. The flux of energy as a function of frequency alone can 
also be found accurately, by a further integration. 

In ? 5 we extend the technique to the case when the spectrum is representable as 
the sum of two or more different normal distributions. Hence we can discuss also 
the effects of asymmetry in the energy spectrum. 

Lastly, in ? 6 we calculate the energy transfer in a typical sea state on the assump- 
tion that the directional spectrum can in fact be represented as the sum of three 

bell-shaped functions; and we compare the results with the previous calculations 
by Hasselmann et al. (I973). 

2. BASIC EQUATIONS 

The definitions, assumptions and notation will be the same as in part I 

(Longuet-Higgins 1975). It was there shown that the rate of change of the action- 

density N(QC) at wave-number ic near the spectral peak is given by an expression 
of the form 

<.. _ fl[(N1+N2)NN4- (N3+N4) NN21 

X 3(K1 + K2 - 3 - K4) 8((1 + (+2 (3 - 0}4) dK3 dK 3d4 (2.1) 

in non-dimensional units, where N2 N(Ki) and 8( ) denotes the Dirac delta func- 
tion. oi and Kci are related by O = ( - -(A - 2/j) + 2M, where (Ai, /ti) == i and M is 
a constant. In part I, appendix B it is shown that this sixfold multiple integral 
can be reduced in general to the triple integral 

a = 32= f[(NI +N2) 3N4-(N3 ) 2]-d^dfd (2.2) 

where (A', /t) = ?' 2 = -(c2-1),1 ( 

(,') = Ar )X (2.3)- p(r-) 
(see figure 3 of part I), 

g = (A2 _-2ja/2) - (A/2 _-24lt/2), (2.4) 
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/i' and f" are some other functions of (A', /') and (A", u") respectively, and 

(2.5) 
(, ,) j,, (a, ?") 

8(A', u')' a(A(", u")' 

We shall find it convenient to choose 

/' = A'+42(,',} 
/3" = A" + 2,U", 

J' = 48', J" =d p". 

A' =- 
+J') = I P/ -, ) 

so that 

Also 

(2.6) 

(2.7) 

(2.8) 

and similarly for A", ". In the (A', t')-plane, the coordinate curves a = constant 
are hyperbolae, while the curves f = constant are parallel straight lines (see figure 
1). Similarly for (A",,u"). 

~~'-~' ~% '.~<0 > ' 

a> o>0 

i K O 

FIGURE 1. Coordinate curves of a and /3' in the (A', /')-plane. 

3. A SYMMETRIC NORMAL SPECTRUM 

Suppose initially that the action density has the normal form 

N(K) = R exp (-PA2-Q/t2), (3.1) 

where P, Q and R are positive constants (see part I, ? 9). Then on substitution in 

(2.2) we obtain 
aNI/ = I1 + 12 + + 4, 
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where 

I, = 47nR3 fjfexp [-!P{A2 + (A+A'_ A")2 + (A + A' +A")2} 

-Q{2 + ( +u -,t )2 +, + ( ?+ (,c + ,^)2+}] (3.2) 

and I2, 13, 14 denote three similar expressions. Substitution from (2.8) gives 

14 = 47rR3 exp (- PA2 -3QA2)fexp(-Aa2-B- C) da dfl'd'" (33) 

where 

A (P +Q)('2 

B = (P - Q) + (PA - V2Q)/', (34) 

= I(P + Q) (f2 + f'2) + (PA + V2Q) #?'. 

Integration with respect to a from - co to oo may be carried out immediately to give 
jo QI3'm~ (I9f B2 dlf?'rli 

x1 = 8rPR3 exp (- _PA2 - 3Q ?2) exp (+ Q) ('2 + fi"2)]. ~00 iA [(P + Q) ( P 

(3.5) 
The singularity at f' = f" = 0 is integrable, and on writing 

,f' =rcoso, " = rsinO, (3.6) 
we have 

f^v / *oWo dr dO 
I R = stR3 exp (- PA2 - 3 exp[- (Ur2+ Vr + W)](+Q, (3.7) 

where now 

P +Q (P-Q)2cos2 0 sin2 0, 4 P+Q 

V = (PA + V2Qa) cos 0- 2 PQ (PA- V2Q/p) cos 0 sin2 0, (3.8) 

P+Q PQ 
W=-( p+ ]2/) sin20 . 

We may integrate again with respect to r to obtain 

ri1 = 17 7r\ 2 2 
T 

I ,16 .2R3exp(-PA2-_3Q)2)Jf exp (-W+ 4U) [(p+ Q)2 _(p _Q)2sin .202 

(3.9) 

Thus the original sixfold multiple integral has been reduced to the sum of four 
single integrals, which can be evaluated quickly and accurately. 

Finally we note that reversing the sign of 0 simply leaves unchanged the first 
two integrals, and interchanges the third and fourth. Hence altogether 
OA VN\ d9 
a-T= 32Z exp (-PA'-a Q2) exp - W+ 4U) V[(P-Q)2 - (p Q)2 sin220] 

+ three similar expressions. (3.10) 
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4. NUMERICAL RESULTS: THE SYMMETRIC NORMAL SPECTRUM 

The integrals in (3.10) were evaluated numerically by Simpson's rule. Convergence 
was rapid as the number of integration points increased. In every case 21 points 
gave an estimated accuracy of at least three significant figures. The evaluation of 
ON/Or at 2000 points in the c-plane took about 10 s on an IBM 370/165. 

As a check it was found, first, that the computed value of aN/Or at the peak 
K = (0, 0) agreed precisely with the value found in part I, ?9 by an independent 
method (involving the evaluation of a double integral). 

Secondly, the three conservation laws 

{d:= 0, 

aN dic= 0, (4.1) 

J(A2-2a2)--dKx = 0, 

representing the constancy of wave action, momentum and energy respectively, 
were tested by computing each of the corresponding integrals (except for the /i- 
component of the second relation, which is satisfied by symmetry about the A-axis). 
The relations were all found to be satisfied to a high degree of accuracy. 

In figure 2a is shown a contour plot of the function aNOlT in the case when 
P =Q = 1. It will be seen that the function has four positive maxima, all lying 
close to the characteristic directions dA = + 1/2d/, as predicted in part I. The four 

positive maxima are separated by troughs of negative aN1/8 lying along the A and 

/u-axes. 
Figure 2b shows the 'frequency spectrum' N(w) and the corresponding rate of 

change, 8N(o)/lr. These are found by integrating N and aN/ar along lines C = con- 

stant, which are parallel to the ,/-axis, in this approximation. The curve for aN/ar 

shows a strongly negative minimum at the origin, with two positive maxima, 

symmetrically situated to either side. 
The regions of negative energy transfer in figure 2a may be interpreted in the 

following way. We saw in part I, ? 3 that for resonant interactions to take place the 

four wavenumbers xl, c,, t3, K, must lie at the corners of a parallelogram, with K1, K2 
at opposite corners. Also they must all lie on a hyperbola with asymptotes parallel 
to the directions dA = ? /2d/. In ?5 of part I it was pointed out that one such 

possibility was when Kc and K, lay inside the peak, and Kc, K2 outside the peak zone 

but in the characteristic directions as seen from the peak. This makes the terms 

(N + N2) N N4 in the integrand larger in general than the terms (N3+N4) N,N2, so 

the energy transfer to Kl is then positive. 
However, a second possible configuration is when ic and 1r lie inside the peak, 

and s, and 3 outside it but near the directions of the A- and It-axes (see figure 3). 
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(b) 

FIGURE 2. (a) Contours of the transfer function OaN/r in the c-plane, when the wave spectrum 
has the symmetrical normal form (3.1), in which P = Q =- 1; R -= /(2/PQ). (b) The ,t- 
integrated spectrum Nt and transfer function dNVA/dr corresponding to figure 2 a. 

472 
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Then the largest terms in the integrand are 

N2N4(N 3-N1). (4.2) 
But if ic lies on the A-axis, as in figure 3, then initially (N3-N1) < 0 in general. 
Hence the energy transfer aNla/ can be expected to be small but negative 

C K' / 

FIGURE 3. Four interacting wavenumbers, Kl, C2, K3, 1C4, in the situation when Ki lies on the 
A-axis and well outside the main peak. 

5. ASYMMETRIC SPECTRA 

The above method of calculation can be extended to narrow wave spectra con- 

sisting of the sum of two or more normal distributions: 

N() = R E a exp [-1Pp(A - A)2 - Q2], (5.1) 
P 

where ap. ,PQ, A, are arbitrary constants (a, P., QP > 0). Substitution into equa- 
tion (3.2) then gives 

aO = 4R3 2 E paqa exp [- {Pp(Ap)+P(A+A Aq) 
20 pq r d ' d" 

+ P,(A + A' + A" - hA)2} - {QVt2a + Qq(j +t/Y -. )2 
+ 

Qr(/ + / Qr +/")2}] dfl' d 

+ similar expressions. (5.2) 

Each of these terms may be treated in exactly the same way as before, although 

the final transformation from J dO to dO requires the interchange of (p, q, r) 

and (p, r, q) in the sum (5.2). 
By this method it is possible to estimate some of the effects of asymmetry in 

narrow spectra. In the following examples all spectra have been normalized so as 

to have a total (non-dimensional) action of 7, that is, we have taken 

R = [E an V(2/PnQJ)]-1 (5.3) 
p 
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(b) 

FIGURE 4. (a) Contours of the transfer function ?aN/la for the asymmetric spectrum given by 
(5.1), in which P1 = Q1 = 1; P2 = 0.3, Q2 = 1; a2/a1 = 0.8; A1 = 0, A2 = 1.25. (b) The 

/,-integrated spectrum NA and transfer function dNA/dr corresponding to figure 4a. 

474 
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Figures 4a and 4b show the results, comparable to figures 2a and 2b, for an 
initial spectrum consisting of two normal spectra having the same width in the /u- 
direction (Q = Q2 = 1.0) but different widths (P1 = 1.0, P2 = 0.3) in the A-direction. 
The ratio of the amplitudes in 0.8, and the distance between centres is 1.25. In 

figure 4a the effect of this amount of asymmetry appears slight, but in figure 4b 
it can be seen that the /u-integrated transfer is markedly greater on the forward 

(b) 

FIGURE 5. (a) As in figure 4a, but with Q1 = Q2 = 0.25. (b) The /,-integrated spectrum and 
transfer function corresponding to figure 5a. 
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(low-frequency) face of the spectrum. At the peak of the spectrum the transfer is 
still strongly negative. 

In figures 5a, 5 b and 6 a, 6 b the spectra have the same structure in the A-direction 
as in figures 4a, 4b, but are successively broader in the ,i-direction. Thus in figures 
5a, 5b, Q1 = Q =0.25 and in figures 6a, 6b, Q = Q2 = 0.1. The main effect can 
be seen in figures 5 a and 6 a, where the regions of negative transfer on the negative 
A-axis are diminished in size and eventually become positive; whereas on the 

positive A-axis the negative regions become comparatively deeper. 
This can be attributed to the fact that in a spectrum which is broadened in the 

,/-direction the positive energy transfer described above tends to spread away from 
the asymptotes and onto the axes. But this transfer is proportional to (N1 + N2) N3N4 
and as K1 and C2, are on opposite sides of the peak the positive transfer is relatively 
greater on the steeper (low-frequency) side, (tending to even out the asymmetry 
in the A-direction). Hence it is on the steeper side that the negative transfer becomes 
blotted out. 

6. A COMPARISON WITH NORTH SEA SPECTRA 

Hasselmann et al. (i973) have presented numerical estimates of the weak non- 
linear energy transfer in spectra corresponding to wave observations in the North 
Sea (JONSWAP 1). Further details of the computations are given by Sell & 
Hasselmann (1972). The authors found that although for fairly broad spectra the 

energy transfer near the spectral peak was generally positive, nevertheless as the 

TABLE 1. PARAMETERS CORRESPONDING TO THE SPECTRUM OF FIGURE 7 

p P, Q, a, Ap 
1 1.00000 0.03 1.000 0.000 
2 0.08000 0.03 0.200 2.000 
3 0.01563 0.03 0.625 7.656 

TABLE 2. PARAMETERS CORRESPONDING TO THE SPECTRUM OF FIGURE 8 

p PF Q a., A, 
1 1.00000 0.03 1.000 0.000 
2 0.08000 0.03 0.110 2.000 
3 0.01563 0.03 0.045 7.656 

peak was narrowed, this effect was diminished and even reversed in sign. Instead, 
the dominant effect was to shift the peak towards lower frequencies. The authors 
also suggested that the form of the wave spectrum, and the peak in particular, 
might be determined predominantly by the nonlinear energy transfer. 

As noted earlier, however, Sell & Hasselmann (1972) were not able to compute 
the transfer function 3N/1T8 in any detail, because their computed results were not 
either stable enough or smooth enough to enable them to draw reliable contours 
of energy transfer in the wavenumber plane. 
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(b) 

FIGURE 6. (a) As in figure 4a, but with Q- = Q2 = 0.25. (b) The it-integrated spectrum and 
transfer function corresponding to figure 6a. 
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Following the present method, we may compute the energy transfer given by 
equation (2.1) for an asymmetric spectrum having parameters chosen so as to 

approximate the observed wave spectra studied by Sell & Hasslemann. 

Figure 7 a shows a comparison between the 'mean JONSWAP spectrum' JN5 of 
Sell & Hasselmann (1972) and a spectrum consisting of the sum of three normal 
distributions as in equation (5.1). The values of the parameters are given in table 1 

spectral density, F/(m2 s-1) 

(a) 

frequency/(rad s-1) 

FIGURE 7. For description see opposite. 



Transfer of energy in the peak of a gravity-wave spectrum. II 

10-6 x source function, dFitdt 

(C) 
.r3 

r2 

0 11 

i . .- ,r-<^-- ^r, '. .- ?0-1-/ . i~""^------- - ^ -- ..:---i--- 
o 1 , 2 3 5 

I\ I C 0-_frequency 
t 

IJA 
I 

^R, rads s-' 

1-2- 1 

-3- 
1 1 

1 5 

-40 

FIGURE 7. (a) The frequency spectrum corresponding to equation (5.1) (- ) and the 
JONSWAP spectrum JN5 (x- x ). (b) The computed transfer function aNalr corres- 
ponding to the spectrum of equation (2.1). (c) The /-integrated transfer function for 
figure 7b, (---), compared with the numerical computations for JN5 by Sell & 
Hasselmann. ( 972) ( x - x ). 

(for further details see appendix A). In figure 7b are shown the contours of the 
transfer function aNla/ corresponding to equation (2.1). It will be seen that the 
transfer is rather similar to that in figure 6 a, having four positive maxima, but 

being negative along the /u-axis and on certain parts of the positive A-axis. 
The /-integrated transfer function is shown in figure 7c, converted to physical 

units (see appendix). For comparison we show the results of Sell & Hasselmann 

(with the frequency scale converted from Hz to rad/s). The curves agree as regards 
order of magnitude, and in the position of the minimum (i.e. maximum negative) 
transfer beneath the peak. However, the curve of Sell & Hasselmann is markedly 
less symmetrical. This must be attributed mainly to the asymmetry of the (8- 
dimensional) coupling coefficient G(xK,K,Kc3, K4) which in our approximation is a 

constant. 

Corresponding results for the 'sharp JONSWAP spectrum' R3C are shown in 

figures 8 a, b and c. The parameters in this case are given in table 2. From figure Sc 
we see that the agreement between the computed transfer functions is now much 

closer, both the central minimum and the two side maxima being reproduced 
fairly well. No doubt this is due to the fact that the spectrum is narrower and the 

on?3~~~~~~~~~~o ~Vol. 348 A. 

479 
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narrow-band approximation correspondingly better. It should be noted that in the 

computations of Sell & Hasselmann, greater resolution is really required to deter- 
mine both the position of the central minimum, and the transition from positive 
to negative transfer on the left of the peak. This transition will affect the rate at 
which the peak energy is displaced towards lower frequencies. 

spectral density, F/(m2 s-1) 

0.8 

(a) 

3 5 

frequency/(rad s-1) 

FIGUTRE 8. For description see opposite. 
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10-6 x source function dF/dt, 

- 10 

(c) 

S 

frequency 
rads s-1 

FIGURE 8. (a) The frequency spectrum corresponding to equation (5.1) (--) and the JON- 
SWAP spectrum R3C ( x - x ). (b) The computed transfer function aN/lT corresponding 
to the spectrum of equation (5.1). (c) The /,-integrated transfer function for figure 8b, 
(---) compared with the numerical computations for R3C by Sell & Hasselmann (I972) 
(x-x). 

7. FURTHER DISCUSSION 

From equation (2.1) it can be seen that, for spectra of the same shape, ON/Ir 
is proportional to A3L2 where A is a scale for the amplitude and L a scale in the 
(A, ju)-plane. Hence the I/-integrated transfer rate is proportional to A3L3. But the 

amplitude B of the I/-integrated spectrum F is proportional to AL. Hence 

F/a7T - SB3, 

where S is a function of the spectral shape alone. Table 3 shows the computed values 
of S when for A we take the peak spectral density and for B the value of the kt- 

integrated spectrum at the negative peak of the transfer function. 
In table 3, the two spectra which are broadest in the I/-direction are the last 

two, cases 5 and 6. Thus there appears a general tendency for the transfer function 
of a given frequency spectrum to diminish as the corresponding angular spread 
increases. 

30-2 
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TABLE 3. SCALE FACTORS FOR CERTAIN SPECTRA 

case A B S comments 

1 1.3 20.0 9.1 symmetric spectrum, see ?4 
2 0.8 7.5 14.7 j asymmetric spectra with the same 
3 0.8 4.7 9.28 / A-dependence, successively broader 
4 0.8 2.9 5.7 j in the ,-direction, see ?5 
5 0.7 0.9 2.6 similar to JONSWAP JN5 
6 0.8 1.2 2.3 similar to JONSWAP R3C 

8. CONCLUSIONS 

By adopting a certain analytic description of the energy spectrum (equation 
(5.1)) we have been able to reduce the energy transfer integral to a manageable 
form, and hence, for a sufficiently narrow spectrum, to compute the energy transfer 

precisely. It turns out that the maximum energy transfer does indeed lie close to 
the characteristic directions predicted earlier, with minima, or 'valleys' lying 
along the axes of symmetry. 

For the 'sharp JONSWAP spectrum' we find that the integrated transfer func- 
tion agrees well with the rough computations of Sell & Hasselmann (i972), for 
which the transfer becomes more symmetric as the spectrum is narrowed. For 
even narrower spectra the transfer will presumably be still more symmetric, and 
the negative maximum at the peak will be enhanced. 

Our results suggest always a tendency for the spectral peak to become broader. 
There is no indication that a peak could be built up by the weak nonlinear energy 
transfer. Presumably the building up of narrow spectra requires the continuing 
accompaniment of energy input from the wind. 

I am indebted to Professor M. S. Longuet-Higgins, F.R.S., for suggesting 
this problem, and for his guidance in the preparation of this paper. I am indebted 
also to the Natural Environment Research Council for the support of a research 

studentship. 

APPENDIX. COMPARISONS WITH FIELD DATA 

For a comparison with the JONSWAP spectrum JN5 of Sell & Hasselmann 

(1972)t we have the following parameters 

frequency at peak: p = 0.3 Hz = 0.6 it s-1, 

width of peak at half 

maximum intensity: a, =- 0.053 Hz = 0.106 7 s-1, 

height of peak: N- = 0.24 n2/Hz = 0.12 r-1 m2s. 

We must transform to nondimensional units in which g = 1, ao = 1. This gives 

t This is equivalent to the spectrum shown in figure 2.21 (c) of Hasselmann et a. 1973, but 
is not the same as figure 2.12 of that paper, in which the spectrum has been rescaled. 
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ow = 0.053/0.3 = 0.177 and NY = (0.6 7)5/(9.8)2 x 0.12 7n-1. We must also transform 
from units of (frequency)-1 to units of (wavenumber)-1. Since from ?2 of part I, 

= eA + 62o + 0 (3) 
we have the lowest order in e. 

width of peak in 
wavenumber space: Aw = (2/e) x 0.177, 

energy spectrum: E(cr) = 62oF(Cr) =- e2F(r), 

with F(-r) dor = F(A) dA. Hence the height of the peak in wavenumber space is 

Nh 
s a X . 

In the JONSWAP spectrum an angular spreading factor proportional to cos2 0 
was assumed. Hence the width of the peak in the m-direction was | times the wave- 
number of the peak in the 1-direction, giving ,, = 1.5 e-1, so /w/Aw = 4.0. According- 
ly in the spectrum of figure 7 we have taken for the largest term in the sum: 
P1= 1.0, Q1 = 0.03, so P1/Q = 16.0-- ( #/Aw)2. These and the remaining para- 
meters of the spectrum in figure 7 a are given in table 1. 

For comparison of the /-integrated spectrum F(A) with, say, the JONSWAP 

spectrum JN5, the scale of N must be multiplied by 

(N/A) o!/(2cg2) 
and the scale of the integrated transfer rate 8jF/a must be multiplied by the cube 
of this factor. Converting now to the frequency spectrum, we must multiply by a 
further factor (2/e). Since also E = e2opN and t = C-2r we have 

dE EN 
Qt Or p 8 

Lastly, to express the result in units of m2 we must multiply by g2/c2, giving al- 

together a scale factor 
(Np,A)3 o-4 == 4.7 x 10-6 m2 

for JN5 and case 5. This is used in figure 7c. 

For the RP3C spectrum the appropriate parameters are op = 0.35 Hz, cw = 0.067 
Hz and Np = 0.22 m2/Hz. Converting these to the appropriate units we have for 
case 6 a corresponding scale factor 1.3 x 10-5 m2. This is used in figure 8c. 
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