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ABSTRACT

Knowledge of the kinematics of the flow beneath surface waves is vital for the design of offshore
structures. Due to the technical difficulty of making pertinent measurements in storm conditions,
knowledge of the kinematics of storm waves has been based almost entirely on theoretical considera-
tions. Now measurements made with electromagnetic current meters during Tropical Storm Delia have
permitted verification of the theories.

There was considerable scatter between the measured velocities and the predictions of unidirectional
wave theories, with a clear bias toward overprediction. Use of higher order and irregular unidirectional
theories did not substantially improve the comparisons. A good fit with the data could, however,
be obtained by using the concept of a directional wave spectrum based on linear wave theory.

The simultaneous wave and particle velocity measurements were used to estimate the directional
spectrum through an analysis procedure which took into account the presence of a strong current. The
directional spectrum was also hindcast using a numerical model and the comparison of the hindcast
with data was good.

The fact that velocity spectra in confused storm seas can be accurately calculated will be directly
important in some design problems. In other cases, it is necessary to know the probability distribution
of the extreme events. Using the assumption of a Gaussian sea surface, it was possible to satisfactorily
predict the distribution of the magnitudes of velocity. All of the comparisons lead to the conclusion
that a proper description of storm wave kinematics is dependent on correctly accounting for the

directional spreading of the wave energy.

1. Introduction

The calculation of hydrodynamic forces on a fixed
structure during a storm requires knowledge not
only of wave heights, but also of the subsurface
flow due to the waves.

The usual design approach is to use a unidirectional
regular wave theory to calculate the velocity and
acceleration (kinematics) of the water below the
waves and then use a force theory to calculate the
forces on structural members due to that water
motion. In this paper we will examine the accuracy
of wave theories using measured wave kinematics
from Tropical Storm Delia.

Due to instrumentation problems and logistic
difficulties, measurements of wave kinematics in the
ocean have been rather rare. Bowden and White
(1966) used the electromagnetic flowmeter de-
veloped by the National Institute of Oceanography
in the intertidal zone at the mouth of the Mersey
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River. Later, Simpson (1969) used the same instru-
ment to study waves arriving at the end of a
Blackpool pier. Measurements further offshore were
made at the Naval Undersea Center oceanographic
research tower by Thornton and Krapohl (1974)
using Engineering Physics Company flowmeters.
Although the 19-m water depth for this experiment
was more typical of oceanic conditions than the
earlier measurements, the wave field studied was a
long low Pacific swell. The measurements during
Delia seem to be the first particle velocity measure-
ments made under storm conditions.

The wave theories presently used can be tested
by taking the recorded wave height and period and
using the theory to predict the horizontal velocity
of the water at the depths of the current meters.
Comparisons of the predictéd and observed velocities
show a fair amount of scatter, but also a clear and
persistent bias toward overprediction.

To find the source of the overprediction, it is
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necessary to discuss the type of wave theory used
in design practice. The fundamental difficulty in
constructing a mathematical wave theory is the
nonlinearity of the free surface boundary conditions.
Airy wave theory, which is based on a linearized
version of the equations, can be shown to fail to
match the known boundary conditions for waves of
all but infinitesimal steepness. This failure is so
glaring that a great amount of effort has been
directed toward producing higher order theories
which match the boundary conditions with greater
accuracy. The theory most often used in design is
Stokes fifth-order theory.

Unfortunately, in the quest for a boundary condi-
tion fit, it has been necessary to neglect another
known feature of the storm wave field. Nonlinear
wave theories all assume that the waves are uni-
directional or long-crested. This reduces the prob-
lem to two dimensions and makes the mathematical
analysis to higher orders possible. In reality, storm
waves are extremely confused and short-crested and
unidirectional wave theories should not be expected
to apply.

It is useful to think of an irregular sea as being
made up of the sum of many small, regular com-
ponent wavelets, each having a different amplitude,
frequency and direction of travel, and a random
phase angle. Now consider two wavelets with the
same amplitude, but different frequencies and phase
angles, traveling in exactly opposite directions. At
certain points on the sea surface, the crests of both
wavelets will coincide, producing a wave height with
the sum of their amplitudes. However, below
those points, the water velocities will be in opposite
directions and tend to cancel. This is the basis for
the scatter in the comparisons of observed and
predicted velocities.

Now if one of the wavelets travels east and the
other north, the vector addition of the velocities
from the two will never produce a velocity mag-
nitude as large as if they were traveling in the same
direction. Since the component wavelets will have
many directions and frequencies in a real storm sea,
these effects will conspire to produce a bias toward
overprediction in any unidirectional wave theory.

Progress is being made in understanding rionlinear
effects in directionally spread seas (e.g., Weber and
Barrick, 1977), but no practical method for calculat-
ing wave kinematics yet exists for such z theory.
However, because of the linearity of Airy theory, it
can be extended through spectral concepts to
realistically model many attributes of the irregular
sea. The pertinent question is thus whether the
assumption of unidirectionality or linearity is the
most damaging. We will show that during Tropical
Storm Delia much better agreement can be reached
by using a linear theory which accounted for the
directional nature of the measured waves.
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First, we briefly describe the measurements made
during Delia. Then, individual high waves in the
record are analyzed using Stokes fifth-order theory
which generally overpredicts the measured veloci-
ties. Tests of irregular unidirectional theories pro-
duced no substantial improvement in comparisons.

Using the simultaneous wave staff and current
meter records, it was possible to estimate the direc-
tional spectrum of the waves, although the presence
of a strong current introduced some complications
into the analysis. One of the products of the analysis
is an assessment of the accuracy of the linear
transfer function between wave height and particle
velocity. Since the accuracy is rather good, the
transfer function may be used to calculate velocity
spectra given the wave directional spectrum.

Directional spectra can be hindcast using numer-
ical models such as the one described by Cardone
et al. (1976), but there has been little verification
of the directional characteristics of the hindcast
spectra for storms. Thus, we made a hindcast of
Delia and found that the agreement between the
hindcast and measured directional spectra was quite
good.

The fact that the velocity spectrum in confused
seas can be calculated from linear theory will be
directly useful in studying the fatigue life of offshore
structures. However, for design work, it is also
necessary to know the magnitudes of the extreme
events which the structure must endure and the
spectrum does not provide that information directly.
We thus calculate the probability distribution of the
velocity magnitudes based on the wave heighit spec-
trum-and compare them with the observed velocity
distributions. This approach is also successful.

During Tropical Storm Delia, a linear wave
theory which accounts for the directional spreading
of the waves was able to accurately predict both the
velocity spectrum and the extreme speed distribu-
tion. On the other hand, a nonlinear regular wave
theory consistently overpredicted the velocities
under individual high waves. The implication is that
a proper description of storm wave kinematics is
more dependent on correctly accounting for the
directional spreading of the waves than on correctly
matching the nonlinear boundary condition.

2. Measurements during Delia

The measurements of wave kinematics were made
at the Buccaneer oil and gas production platform
located at 28°53'28” N, 94°41'42" W. The instru-
mentation system and preprocessing of the data were
described in some detail by Forristall et al. (1977),
but it is useful to repeat the most important points
here. The wave staff and a string of three electro-
magnetic current meters are mounted at the center of
a 200 ft bridge between two pile-supported struc-
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F1G. 1. Current meters being lowered into the water next to the
wave staff at the Buccaneer A platform.

tures. Fig. 1 shows two of the current meters being
lowered into the water on a pair of taut wires located
6 ft north of the wave staff. During Delia, the
current meter sensors were located 55, 35 and 10 ft
from the bottom and the water depth was 68 ft.
The instrumentation performed well during the
storm. However, we discovered a few months later
that the anchor holding the bottom of the taut wire
pair had rotated 31° in a scour pit. It has been
impossible to determine when the rotation occurred,
although it was most likely during the storm.
Discrepancies between the direction of wave travel
calculated separately from the three current meters
suggest motion of the taut wire system after 1500
CDT 4 September. However, no consistent pattern
could be found and it is possible that the system
was rotating in a pendulum mode during the latter
stages of the storm. The analysis of the current meter
records was thus done without any rotation correc-
tion and it must be recognized that there is some
uncertainty in the reported velocity directions.
The data were recorded in the field on two 7-track
analog FM tape recorders running at 0.03 inch per
second (ips). The field tapes were later digitized at
a playback speed of 7.5 ips with a sampling rate of
500 Hz and a 160 Hz antialiasing filter. The cor-
responding real-time rates were 2 Hz digitization
and 0.64 Hz filtering. The digitized records were
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converted to engineering units using the automatic
calibration signals written on the field tape and a
cosine response correction equation was applied to
the current meter signals.

The records from the current meters contained
motions of two widely separated time scales:
oscillatory motion associated with the waves and
much more slowly varying currents. To separate
out the oscillatory motion for study of the waves,
we applied the 249-point numerical filter described
by Forristall et al. (1977) as a high-pass rather
than a low-pass filter. It might be thought that
associating only oscillatory motions with waves
would remove one possible source of nonlinearity:
the Stokes drift. However, the transport of water
due to the Stokes drift can be seen only in Lagrangian *
measurements. Measurements of Stokes waves in a
fixed Eulerian frame will include only oscillatory
motions.

The fact that the wave and particle velocity data
were recorded on two different tape recorders
caused some difficulty in the analysis. The two tape
recorders ran at slightly different speeds (<0.5%
difference). This introduced a discrepancy between
the two data series which was on the order of 15
seconds per hour. It was therefore necessary to
correct the data to provide time correlation between
wave height and particle velocity. Fortunately, the
hour and minute marks written on each of the two
tapes by the same clock made such corrections pos-
sible. Using the minute marks, each record was
interpolated so that there were precisely 120 digitized
values between minute marks and the minute marks
on each tape were then synchronized. The records
are thus accurately aligned within the 0.5 s digitiza-
tion interval. The particle velocity data also had to
be corrected for the low-pass filter of the current
meter electronics. This correction, which was
very small at the frequencies of interest, was
accomplished numerically by applying the inverse of
the analytical description of the filter to the particle
velocity data.

3. Unidirectional wave analysis

In developing unidirectional wave theories, it is
assumed that all wave energy travels or propagates
in a single direction. From this assumption, it
follows that the horizontal components of wave-
induced velocities and accelerations are unidirec-
tional and colinear with the direction of energy
propagation. These theoretically described waves
are sometimes referred to as infinitely long-crested
since the unidirectionality implies that there are no
variations in wave properties perpendicular to the
direction of wave travel. Unidirectional wave
theories can be classified as being either regular or
irregular.
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a. Regular wave theories

Regular wave theories describe waves which are
periodic in space and time. The resulting wave
profiles are symmetric about the wave crest position
and propagate without deformation or change. The
solution to a regular wave theory is completely
specified by the wave height (or alternatively, crest
elevation), wave period and water depth. For these
specified parameters, a given regular wave theory
produces a unique surface profile and subsurface
kinematics. It is particularly important to note that
characteristics of the wave profile solution, such as
wave shape and the ratio of crest elevation to wave
height, are uniquely determined by the choice of
wave theory and the specified height, period and
depth.

The simplest example of a regular unidirectional
wave theory is the familiar Airy or linear wave
theory. This theory is based on a linearization of
the free surface boundary condition (pressure at the
wave profile surface). The resulting solution to the
wave equation produces a wave theory which is
characterized by a single harmonic function. The
resulting wave profile is sinusoidal. Due to the
linearization involved, this theory is strictly applica-
ble only to small amplitude waves of infinitesimal
steepness.

To remove this restriction, various higher order
nonlinear regular wave theories have been de-
veloped. These theories are based on methods for
approximating the nonlinear free surface boundary
conditions. Examples of such theories include the
Stokes fifth-order and Chappelear (1961) theories,
the regular streamfunction theory (Dean, 1965), and
the diagonal matrix version of the extended velocity
potential or EXVP-D theory (Lambrakos and
Brannon, 1974).

Nonlinear regular unidirectional wave thecries are
currently used in most analyses of static platform
loads under storm wave conditions. Results pre-
sented by Lambrakos and Brannon (their Fig. 8)
indicate that the Stokes fifth-order, regular stream-
function and EXVP-D wave theories predict essen-
tially the same velocities for the same soecified
profile. Therefore, within appropriate limits on wave
height and period, these theories predict similar
results. From the standpoint of engineering applica-
tion, there is apparently little basis to prefer one
theory over another.

b. Irregular wave theories

Observed wave profiles frequently have irregular
profiles which are not periodic in time. This ob-
served lack of regularity has led to concern over
the validity of applying regular wave theories to
irregular waves and has motivated the development
of several irregular wave theories. Irreguler wave
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theories provide solutions for wave-induced veloci-
ties and acceleration which are based on a com-
pletely prescribed surface profile, as opposed to the
simpler wave height and period specification required
for regular wave theories. Both nonlinear and linear
irregular wave theories have been developed.

Examples of nonlinear irregular wave theories
include the irregular streamfunction (Dean, 1965)
and extended velocity potential or EXVP (Lam-
brakos and Brannon, 1974) theories. These nonlinear
irregular wave theories again provide solutions to
the wave equation which approximately satisfy the
nonlinear free surface boundary condition, but force
the predicted wave profile to match the prescribed
profile. The wave profile is assumed to propagate
without deformation in the irregular streamfunction
wave theory. The EXVP wave theory provides for
deformation of the profile as it propagates.

A linear irregular unidirectional wave theory can
be developed based upon the linear superposition of
a number of linear or Airy waves. Basically, this
approach begins with a Fourier analysis of the
desired wave profile which provides the amplitudes
and phases of the harmonic components. Linear
wave theory is assumed to be applicable to each
harmonic component and the principle of superposi-
tion is used to add the wave solutions for the
components. The resulting solution provides the
wave-induced velocities and accelerations for the
desired wave profile. Note that such a linear ir-
regular unidirectional wave theory is an obvious
simplification of the directional wave theory de-
scribed in later sections of this report. Linear
irregular unidirectional wave theories based on the
above principles have been published (Wheeler,
1970; Jahns and Wheeler, 1973). Both of these
theories use an empirically motivated scaling of the
vertical coordinate in the depth decay function.
Additionally, Wheeler’s theory forces all harmonic
components to propagate at the same velocity so
that the waves propagate without deformation.

c. Comparison of predicted and measured velocities

We now proceed to compare measured wave
induced velocities with those predicted by unidirec-
tional wave theories. The main emphasis is on
Stokes fifth order theory. Some comparisons with
irregular unidirectional wave theories are also
included.

A sample of the processed data which includes
the highest wave measured in Delia is shown in Fig.
2. The top trace in the figure is the wave profile,
with the maximum distance between a crest and the
preceding trough equal to 24.4 feet. The period of
that wave, defined as the time between zero down-
crossings, was 8.0 s. The next six traces are the
eastward and northward components of the particle
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FiG. 2. Sample wave staff and current meter data including the
largest wave measured in Delia.

velocity records, with the eastward component of
the top current meter nearest the top of the figure.
Although most of the water velocity associated
with the largest wave was in the east-west direction,
the north-south component was not negligible. The
complicated nature of the flow field can be seen
more clearly in Fig. 3, where the vector velocity
at the top current meter has been plotted. The line
traces the history of the top of the velocity vector,
with the numbers giving the time in seconds since
the start of the record in Fig. 2. Since the velocity
is definitely not unidirectional, some judgment is
called for in a comparison of the data to a uni-
directional wave theory. To give the unidirectional
wave theory the fairest test, we based the com-
parison on the magnitude of the vector velocity.
The properties of a Stokes fifth-order wave with
a height of 24.4 ft and a period of 8.0 s were
determined and compared with the observations as
shown in Fig. 4. The calculated wave profile is
somewhat different from that measured, having a
sharper crest. The velocities at the three current
meter depths show a consistent tendency toward
overprediction under the crests. Note, too, that the
peaks of the observed velocity magnitude traces are
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much broader than the calculated peaks. This feature
is associated with the elliptical nature of observed
velocity vectors as shown in Fig. 3.

Because some scatter in the comparison of
observed and predicted wave properties is to be
expected, it is important to examine a number of
individual waves to see if any consistent trends can
be found. Since we are most interested in extreme
values, we selected the largest wave in each 30 min
segment of the data from 0600 to 1400 CDT for
analysis. The solid line in Fig. 5 shows the maximum
wave height determined for each 30 min segment.
For each wave, we compared and observed and
predicted peak velocity magnitudes under the crest
and trough of the wave. Precise time synchrony was
not required. The observed velocity magnitude
maximum nearest the crest or trough was used,
although the time of the maximum was almost
always within 1.0 s of the crest or trough.

The predicted versus measured velocities for the
16 waves are shown in Figs. 6, 7 and 8 for the top,
middle and bottom current meters, respectively.
Most of the velocities under the crests are over-
predicted, particularly for the upper two meters.
The velocities under the wave troughs are also
generally overpredicted for the lower two meters.
The velocities under the troughs at the uppermost
meter indicate a scatter of over- and underpre-
dictions. Plots of the ratios of predicted to measured
velocity versus wave steepness revealed no notice-
able trends.

It is not clear from Fig. 4 how much of the error
in velocity prediction is due to the mismatch be-
tween the measured irregular profile and the regular
profile calculated using the Stokes theory. There-
fore, we also analyzed this wave using the irregular
streamfunction theory. These results are also com-
pared with the measurements and Stokes results in
Fig. 4. Under the wave crest, the irregular stream-
function theory overpredicts the measured velocity
as did the regular Stokes theory. The amount of
overprediction by the irregular theory is slightly less
than that due to the regular theory, but the overall
trends of the two solutions are quite similar. These
results suggest that errors in predicted velocities
are not strongly influenced by either the agreement
(irregular streamfunction) or lack of agreement
(Stokes) between the predicted and measured wave
profiles. This suggestion is also supported by
analysis of several of the large waves whose pro-
files were closely approximated by Stokes theory.
The overprediction trends for these waves were
similar to the results shown in Fig. 4.

A sample comparison of linear irregular unidirec-

“tional theory with the data is also shown in Fig. 4.

The agreement between the linear irregular theory
and the nonlinear regular and irregular theories is
somewhat surprising. The amount of overprediction
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F1G. 3. Time history of the horizontal velocity measured at the top current meter during the largest wave. Numbers
on curve give the time in seconds after the start of Fig. 2.

in velocity under the wave crest is similar to that
from using the regular and irregular nonlinear
theories. These results again suggest that errors in
predicted velocities are not due to a mismatch
between measured and predicted wave profiles.

A final consideration of regular versus irregular
wave theories is based on work reported by Lam-
brakos and Brannon. They performed a theoretical
comparison of the regular Stokes fifth-order and
irregular EXVP wave theories. The comparison
examined the importance of specifying both wave
height and crest elevation which is possible with
irregular theories. Using the EXVP theory, veloci-
ties were predicted for waves of fixed height and
period, but different crest elevations. These EXVP
predictions were compared to the Stokes solution for
the same height and period which, of course, had
a single unique crest elevation. The comparison
indicated that the Stokes theory would overpredict
velocities under wave crests whenever it overpre-
dicted the crest elevation. This trend agrees with
the wave shown in Fig. 4. However, when all the
30 min maximum waves were considered, no clear
trend toward this sort of behavior was discernible.

d. Summary of comparisons

Measured wave-induced velocities have been
compared with velocities predicted by a unidirec-
tional regular nonlinear wave theory. Significant
errors are observed in the predicted velocities. The
theory overpredicts velocities. The amount of over-
prediction is most severe under the wave crests,
particularly at elevations nearer the free surface.
The theory used in the comparisons was Stokes
fifth-order theory. Evidence indicates that several
popular theories produce similar results.

The irregularity of observed ocean wave profiles
was examined as the cause of the observed over-
predictions. Both nonlinear and linear unidirectional
irregular wave theories were considered. Irregular
theories can describe observed wave profile irreg-
ularities in contrast to regular theories which can
describe only the height and period of the observed
wave. However, the errors in velocities predicted
by irregular theories are similar to those produced
by regular theories. Thus, the irregularity of
observed waves does not appear to be the cause of
the errors in predicted velocities.
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4. Directional wave analysis
a. Wave and velocity spectra

An intuitive idea of the reason for the over-

predictions of unidirectional wave theory may be
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gained from a study of Fig. 3. Some of the energy
of the wave is causing motion transverse to the
main wave direction which does not contribute
fully to the peak velocity magnitude. We might hope
that the task of calculating the kinetic energy levels
at the various depths would be somewhat easier
than calculating the peak velocities and still provide
a test of the appropriateness of a wave theory. Such
calculations can be performed using linear wave
theory and power spectral techniques.

As shown by Bowden and White (1966), data from
a wave staff and an electromagnetic current meter
are sufficient to estimate the directional wave
spectrum. Nagata (1964) has also developed the
applicable theory. During the analysis, a natural
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check on the accuracy of the linear transfer function
between height and velocity appears. In addition,
the measured directional spectra provide a rare
opportunity to check a numerical scheme for hind-
casting directional spectra. One complication not
considered by Bowden and White arose in the
analysis—the presence of a strong current. During
Tropical Storm Delia, the maximum measured near
surface current was 7 ft s~! (Forristall, et al., 1977).
The strength of this current compels consideration
of possible wave-current interaction.

b. Wave-current interaction

It is well known that when a train of waves
propagates through a region of slowly varying
currents, waves are conserved (Phillips, 1977, p. 57).
For the simple case of a train of regular waves
propagating in the direction of a slowly varying
current, this conservation of waves is expressed by

(1)

where n is the reciprocal of the number of waves
passing a fixed point per unit time, f is the wave
frequency measured in a coordinate system moving
with the current, u is the current velocity, and & is
the wave number given by the dispersion relationship

Qwf)? = gk tanh(kd), (2)

where g is the gravitational acceleration end d is
the water depth.

The wave current interaction described by (1) is
purely kinematic and does not describe any changes
in wave energy. Such energy exchanges between
waves and currents are predicted from consideration
of the dynamics of either linear wave theory (Phillips,
1977) or higher order wave theories which include
nonlinear effects (Longuet-Higgins and Stewart,
1960). but will not be dealt with here.

By definition, # is the wave frequency (f;) per-
ceived by a fixed observer, so

fo=f+ uk/2m. (3)

Egq. (3) provides the relationship between wave fre-
quencies perceived by a fixed observer and an
observer moving with the current. This Doppler
shift is purely an effect of the measuremernt frame
and does not describe any physical modification of
the waves by the current. Wave theories are formu-
iated in a coordinate frame in which the current is
zero; i.e., the only velocities predicted by wave
theories are those associated with the wave-nduced
motion. In the case where waves exist in the pres-
ence of a current, the coordinate frame of the wave
theory moves with the current. For the linear wave
theory upon which the calculation of the directional
spectrum is based, the dispersion relationship given
by Eq. (2) relates the wavenumber to the frequency
fin the moving coordinate system. However, the

n = f + uk/2w = constant,
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FiG. 8. As in Fig. 6 except for the bottom current meter.

fixed wave staff and current meter array measures
waves of apparent frequency f;. Thus, to properly
estimate directional spectra using the linear disper-
sion relationship, we must account for the frequency
shift given by Eq. (3). The result of the calculations
will be the directional spectrum in the coordinate
frame moving with the current. This is the spectrum
that could be related to a wavenumber spectrum
estimated from aircraft or spacecraft observations.

¢. Hindcast directional spectra

The directional spectrum in the moving frame is
needed in applications since the wave theory holds
true in that frame and thus can be used to calculate
wave velocities and accelerations from the spectrum.
It is not apparent that the wave hindcast model
described by Cardone et al. (1976) and used in this
study should do a reasonable job of hindcasting that
directional spectrum, since it explicitly includes
neither the kinematic nor the dynamic wave-current
interactions. However, some heuristic arguments
can be made which indicate the possibility of
success, which has been partially demonstrated in
previous comparisons of hindcast and measured
wave data (Cardone et al., 1976).

The wave-current interactions should have the
most effect toward the high-frequency end of the
spectrum. However, the high-frequency tail of the
spectrum is dependent mainly on the local wind and
is limited by a fully developed spectral form which
has empirically inciuded wave-current interactions.
Those spectral components which are governed only
by nearby conditions will have no chance to be
modified by spatially variable currents and should
be correctly specified by the hindcast model.
Spectral components which propagate from far away
where the current was substantially different will
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be modified by the variable current. However, these
components will typically be the lower frequency
components on which the wave-current interactions
have the least effect.

The previous verifications of the hindcast model
were based on wavestaff measurements which
allowed only comparison of the wave spectra, that
is, total wave energy and the energy distribution as
a function of wave frequency (Cardone et al., 1976).
Since current data were not available, the effect of
wave-current interaction could not be included. The
hindcast and measured total energy as measured by
the total variance or significant wave height com-
pared satisfactorily, particularly at peak storm con-
ditions. Since the Doppler shift expressed by Eq. (3)
does not affect total wave energy, this aspect of the
previous verification will remain unchanged. The
comparisons of hindcast and measured energy
frequency distributions were generally favorable,
again particularly near peak storm conditions, but
a tendency for hindcast energy to exceed measured
energy at the lower frequency bands has been ob-
served. As will be shown later, accounting for the
Doppler shift in the measured wave spectra tends to
increase the energy at lower frequencies, but the
magnitude of this increase is not sufficient to com-
pletely explain this tendency of the hindcasts.

During a hurricane, the currents and the waves
are both being generated by strong winds at the same
time. Although it would be preferable to couple
the wave hindcast model with a wind-driven current
model and include wave-current interactions ex-
plicitly, the above arguments show that there is some
hope of success even neglecting the interactions.
The comparisons between hindcasts and measure-
ments show that this hope is justified.

5. Estimation of directional spectra in the presence
of currents

The goal of this development is the calculation of
the directional spectral density in a coordinate frame
which moves with the current from measurements
of water surface elevation and water particle
velocity in a fixed coordinate frame. Cartwright
(1963) studied the similar problem of calculating
the spectrum of encounter of a ship moving through
directionally spread waves. The present problem
can be thought of as the inverse of the one he studied
and is somewhat more difficult. We proceed by first
expressing the familiar equations for wave theory in
the moving frame. Next, the transformation from
the moving frame to'a fixed frame is introduced
and used to express the wave theory relative to the
fixed frame in which the measurements were made.
The transformed wave theory is then used to develop
a procedure for calculating the directional spectral
densities relative to a fixed frame from the cospectra
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of the measurements. Finally, the directional spectral
density in the moving frame is obtained from the
density relative to the fixed frame by applying the
inverse of the transformation.

a. Moving coordinate frame wave theory

We assume that the water surface elevation in a
coordinate frame moving with the current may be
described as

Nx,y,0) =3 3 Apn COSYpa(x,¥,1), 4)
where "o
Ymn(X,3,8) = kyx cosl,
+ k,y sin@, — 2wfint + by (5)

A = 2[S(fm,0)ASnAB, ]2, (6)

and
{x,y,z) rectangular coordinate system which moves
with the current. The origin is at the sea
floor and x is positive northward, y posi-
tive eastward and z positive upward
fm wave frequency in cycles per second (Hz)
k, wavenumber associated with frequency f;,

0, direction the wavelet is traveling as meas-
ured clockwise from the x axis

a random phase for the (m,n) wavelet,
assumed to be uniformly distributed over
the angles (0,27) and independent from
wavelet to wavelet

amplitude of the (m,n) wavelet

directional spectral density at frequency f
and direction of travel 6

frequency interval about frequency f,,

angle interval about travel direction 6,.

Amn
S(£,9)
Afon
A6,

We further assume that the kinematics of the waves
described by (4) can be obtained from linear wave
theory so that

coshk,,z |
sinhk,,d
X €086, cosPma(x,y,8), (7)

Volx,y,2,0) = 2 2 Apn2Tfm

m n

coshk,,z
sinhk,,d

X sinB,, COSlIlmn(xayat)a

Vy(X,y,Zst) = z 2 Amnz'”'fm

(8)

where V. (x,y,z,f) is the x component of the water
particle velocity at space location (x,y,z) and at time
t, and V,(x,y,z,t) the y component of the water
particle velocity.

b. Fixed coordinate frame

Let the current have a vector velocity (as
measured in the fixed frame) equal to (T,,7,). The
current is assumed to be uniform with depth so that
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it acts as a simple translation of the frame in which
the wave theory applies. In Delia, the current was
nearly uniform with depth, so the value of the current
at the top current meter was used in the analysis. It
might be possible to treat more complicated situa-
tions by depth-averaging the current in the manner
suggested by Stewart and Joy (1974).

The fixed frame measurements are thus being
made in a coordinate system moving at velocity
(=T,, —T,) with respect to the frame of Eq. (4). If
the measurement site is located at (x,,y,) in the
moving frame at time ¢ = 0, then the measurement
site location as a function of time is given by

9)
(10)

x'=x, — Tyt,
Y =y, — Tt

1) WAVE THEORY

Substituting Eqgs. (9) and (10) into (4) and (5), the
water surface elevation with respect to the fixed
frame becomes

Nx', Y0 =2 3 Amn COSYpa(x',y",0),  (11)

where
Ypn(X',y' 1) = kpxy c080,, + kny, siné, + ¢,
= Qufn + knT, cosb, + k,T, sinf,)t. (12)
The water particle velocities will have a similar
substitution of {,,(x’,y’,t) for Y. (x,y,0).
2) CROSS-COVARIANCES

The cross-covariances of these quantities meas-
ured in the fixed frame can be formed by taking
lagged products and passing from summetion to
integration: :

Cml®) =2 J i J " S(f6) cos2nrB(£.0))dbds, (13)

0 JO
Cu ) =2 r " S(£6)0(f) cost

*T X cos2alrB(fL0)]d6df. (14)
S =2[ f " S(£6)0(/) siné

*T X cos2alrB(£O)Id6dE, (15)
Copt) =2 r " S(£8Qf) cose

* P X cos2lrB(f,6))d8ds, (16)
Cyy, () = 2r rﬂ S(£,0)Q%(f) cos® siné

: ’ X cos2nlrB(f,0)]dodf, (17)
o) =2 f SUFOQH) sin0

X cos2w[7B(f,0)1d6df, (18)
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where
coshkz
o(f) = 2af snhid (19)
B(.0) = f + (1/2w)k(T, cos@ + T, sinf). (20)

3) COORDINATE TRANSFORMATION

To recognize Egs. (13)-(18) as Fourier transforms
of power spectra, we introduce a change of variables
in the integration given by

f=B(£.9),
6 = 0.

21
(22)

This change of variables is a logical consequence
of the coordinate transformation given by Eqgs. (9)
and (10) as expressed in Eq. (12). Note that f or
B(f,0) is the frequency in the fixed coordinate
frame, which is a function of the angle 6. The
frequency f corresponds to f; introduced in Eq. (2)
[cf. Egs. (2) and (20)]. However, (20) is a more
general expression than (2) since it indicates the
angular dependence which arises when the direction
of wave propagation is not colinear with the current
velocity.

The Jacobian of the transformation expressed in
(21) and (22) is given by

B _ - 47 f(T, cosd + T, sinf)
af g(tanhkd + kd sech?kd)

For currents opposed to the direction of wave
propagation, there exists a frequency high enough
that the Jacobian is zero. To see the consequences
of this more clearly, let —u = T, cosf + T, sinf and
make the deep water approximation for wave-
number such that

23)

0
—{5— =1 — (4nfu/g). 24)
The frequency for which the Jacobian is zero is then
f* = g/dmu (25)

and for this frequency the phase speed of a wave
is given by
C* = g/2uf* = 2u. (26)

Substituting Eq. (25) in the deepwater version of
(21) yields

2;*)

From Eq. (27), we note that frequencies f in the
interval [ f*,2f*] would be mapped into the same
range as frequencies in the interval [0, f*]. Increasing
frequencies fin the interval [ f*,2f*] would result
in decreasing frequencies f. Waves with frequencies

F= f(l + @7)
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J > 2f* would have phase speeds less than « indicat-
ing an apparent propagation against the wave-
number vector (f < 0).

Thus, the transformation given by (21) can be
properly executed only over one frequency branch.
This restriction is not very serious in practice
since even for strong currents, £ * will be rather high
(u=5 ft s' corresponds to f* = 0.51 Hz).
Furthermore, on physical grounds, it is unlikely that
any significant amount of high-frequency wave
energy will travel in a direction opposing the current.
Thus, we make the assumption that S(f,8) is zero
for f > f* and proceed with the analysis.

For subsequent use, we note that for f € [0,f*]
there exists an inverse function such that

f=BUf0. (28)

Eq. (28) can be evaluated by combining (2) and (20)

with (21) and solving by successive approximations.
4) COSPECTRAL DENSITIES

We now define
S(f£.0) = S[B~'(f.6),61(98/3f)*
0(£.6) = Q[B(f.9)1
With these definitions and the change of variables

discussed in the previous section, Egs. (13)-(18)
for the cross covariances can be expressed as

(29)
and
(30)

Con®) =2 J coswaﬂrde S(£.0)d, 31)
Cop (1) = ZJ cos2wfrdf J S(£,.0)O(f,0) coshsd,
0 (32)
Coy (1) = ZJ cos27rf7dff S(f,0)0(f,0) sinbdé,
¢ (33)
Cy v (1) = ZJ cos21'rf7df[ S(f,0)0%(f,0) cos?ddb,
(34)
CV v, ('T) = ZJ COSZ')TdefJ "
x S(£,0)0%(f,0) cosd sinbdd, (35)

Cont) =2

0

27
cos2mfrdf f S(F8)0(7.6) sin®6dé.
° (36)
These expressions for the cross covariances are
now recognizable as the Fourier transforms of the

cospectral (c;,) and quadspectral (q,,) densities
'since

Coyl) = 2 j

0

-]

Cyy COS2amfrdf + 2 J gy SiN2mfrdf.
¢ (37
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Therefore, we can write by inspection
emlF) = S0P = J SGads, . (9
cnld) = | SGBQIH cosidh, (39
can () = [ S(EHO(0) sinbds, (40)
ev ) = J SFHOFH) cosbdd,  (41)

o) = [ SO0 cosi sindad. (42

conlP) = f SUHOFH sintéds.  (43)

0

5) DIRECTIONAL SPECTRA ESTIMATION

The left-hand sides of Egs. (38)—-(43) can be found
directly from the fixed frame measurements. At each
frequency, we thus have six integral measures of the
transformed directional spectrum from which we
desire to learn something about the spectrum. Given
the form of the integrals, it is natural to express
the directional dependence as a truncated Fourier
series of the spreading function H( f ). Therefore,
let

S(fG) = S(HH(f.6)

S(PlaoH/2 + ai(f) cosd + ay(f) cos26
+ b,(f) sind + by(f) sin28]. (44)

The function Q(f,0) is known from Egs. (30) and
(19), which express linear wave theory. However,
relatively slight departures of the observed transfer
function from Q can seriously affect the values
of the Fourier coefficients. In addition, it is useful
to investigate the agreement between the data and
linear theory. Therefore, we will replace O(f,0) by
q(H)Q(f.0), where g(f) is treated as an unknown to
be found at the same time as the Fourier coefficients.
Its departure from unity will be a measure of the
skill of linear theory in explaining the data. Note
that this method follows the philosophy of Bowden
and White (1966), who used *‘the observed value of
the transfer function’ in their analysis of the zero
current case.

Inserting Eq. (44) in (38), we find immediately that

ay(f) = 1/7. (45)

The other five equations will be linear in the five
unknowns a;, as, by, b, and 1/q if we make the
approximation, good for g =~ 1, that

/@ = 2/q) - 1. (46)
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If higher accuracy is needed, an iterative scheme
may be used. Define the notation

2

RG.jJ) = J

0

O'(£.6) sin‘d cos*Hdé, 47
where the integrals can be evaluated numerically.
Then using Eqgs. (44)—(47), Egs. (39)-(43) become

a,R(1,0,2) + a,[2R(1,0,3) — R(1,0,1)]
+ b;R(1,1,1) + by[2R(1,1,2)]
= q7ley /S = —(1/2mR(1,0,1), (48)
a;R(1,1,1) + a,[2R(1,1,2) — R(1,1,0)]
+ bR(1,2,0) + b[2R(1,2,1)]
= q7'cwy, /S = —(1/2mR(1,1,0), (49)
a;R(2,0,3) + a)[2R(2,0,4) — R(2,0,2)]
+ b,R(2,1,2) + b[2R(2,1,3)] — g 2¢y v, /S
= ~cy_y /S — (1/2mR(2,0,2), (50)
aR(2,1,2) + a,[2R(2,1,3) — R(2,1,1)]
+ bR(2,2,1) + b[2R(2,2,2)] — g 2¢y v, /S
= —cyp,/S — (1/2mR(2,1,1), (51)
a,R(2.2,1) + a;[2R(2,2,2) — R(2,2,0)]
+ b1R(2,3,0) + by[2R(2,3,1)] — g 2cy 1, /S
= —cyp,/S = (1/2mMR(2,2,0). (52)
Eqs. (48)—-(52) are solved for a,, a,, b,, b, and 1/q,

giving the transformed directional spectrum S(f,6)
through Eq. (44). Note that if Q(f,6) were a function
of falone, which would be the case for zero current,
the analysis would reduce to that given by Bowden
and White (1966).

The series given by Eq. (44) is quite similar to
the type of expansion for the spreading function
which is possible given the data from a tilt and roll
buoy (Longuet-Higgins ef al., 1963). Unfortunately,
the severely truncated series typically has large
negative side lobes which are physically unrealistic.
Longuet-Higgins ef al. (1963) eliminated this prob-
lem by introducing a weighting function which
effectively smoothed the resulting angular distribu-
tion function. This approach has the disadvantage of
making the resolution of any distribution narrower
than cos*(6/2) impossible.

The amount of information present in wave height
and velocity signals does not permit greater angular
resolution than is present in a second-order Fourier
expansion. However, if a given functional form for
the directional spectrum is assumed, the covariances
of the signals can be used to produce very useful
information about the parameters of that function.
By choosing a physically realistic function form, a
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smooth spreading function with adequate angular
resolution can therefore be obtained.

There have been a few measurements of direc-
tional spectra in the ocean which had rather good
directional resolution. The classic SWOP study
(Chase et al., 1957) analyzed stereo-optical photo-
graphs of waves. Tyler et al. (1974) used radio
backscatter to determine the directional distribution
of waves in the 7 s band. Regier (1975) analyzed the
data from an array of six wave staffs mounted
on the research platform Flip. On the basis of
these observations, the directional spreading func-
tion for a given frequency can be reasonably sup-
posed to be unimodal and symmetrical.

There are a number of functional forms which are
smooth and unimodal. Since these functions have
similar shapes, it is difficult to decide between them
from a study of the data. To facilitate comparisons
with previous results, we therefore adopted a
commonly used form proportional to cos®[(0 — 6,)/
2]. As s increases, the function becomes more
sharply peaked.

The parameter s is determined from the data as
follows. The actual functional form to be fit to the
data is written as

_ 1 I'éc+1)
2Vr TG + 1)

where 6, is the direction of the peak and the
additional factors have been included to make

H(f,0) cos®[(0 — 6,)/2], (53)

f’ H(Fo)dd = 1, (54)

and the parameters § and 6, depend on frequency f.
To match H(f,6) to the data, we write (53) as a
Fourier series of the form

H(f.6) = (1/m)[¥% + i (cp cosnd,) cosnd

0

+ 3 (c, sinnb,) sinnd], (55)
n=1
where
G + 1
Cn - — G+D . (56)
I's+n+1DI'G—-n+1)
In particular,
§
= s 57
G+ 57
53 — 1)
= — 58
TG NG+ 2 8)
Comparing (55) with (44),
ma, = ¢, cosb,, (59)

Tdy = Coy COSZéo, (60)
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FiGg. 9. Directional spectrum at Buccaneer, 1230 CDT
4 September 1973. Solid line: analysis assuming zero current;
dashed line: analysis using measured current equal to (—2.98,
—5.34) ft s,

b, = ¢, sinb,, (61)

7Tb2 = Cq Sin290. (62)
Thus, ;
tan@o = bl/ala (63)
tan26, = by/as,, (64)
c.® = (a® + bH)7?, (65)
c? = (a2 + b2)w?. (66)

In practice, only the values calculated from (63) and
(65) were used in the analysis, since the values
depending on the higher coefficients tended to be
somewhat unstable.

Since there were three current meters operating
at the station, three independent sets of covariances
were available for use in (63) and (65). Actually,
combinations of axes from different current meters
could be used to further increase the total number
of estimates, but this was not done. The results
using the records from the three meters were rather
similar, but to increase the statistical reliability of
the results they were combined by averaging the
calculated values of ¢, and c,. Since the deeper
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meters would be expected to provide relatively little
information on the shorter waves, the averaging used

- weighting by O( £.0).

Eq. (57) can be solved for § in terms of ¢; and
the directional spreading at each frequency is then
given by (53). The directional spectrum in terms of
Doppler-shifted frequencies is then given by (44).
Eq. (29) can then be used to transform directional
spectral densities to their proper value in the frame
advecting with the current. If spectral densities at
specific frequencies are desired, interpolation can be
used. For some purposes, it may be useful to re-
parameterize the advecting spectrum in terms of 6,
and s. This can be done by using a nonlinear curve-
fitting routine.

It is appropriate at this stage of the development
to discuss some of the details of the procedures -
actually used in implementing the calculations. For
each 30 min segment of data analyzed, 2048-point
fast Fourier transforms were taken of concurrent
wave and current meter records. Cospectra were
formed by multiplication in the frequency domain.
The cospectra were smoothed using a Gaussian filter
of effective width 0.01 Hz to produce spectra with
20 equivalent degrees of freedom.

An example of the effect of considering the
measured current in the calculation of the direc-
tional spectrum is shown in Fig. 9. The time shown
is 1230 CDT 4 September 1973. The current was
equal to (—2.98, —5.34) ft s~!, which was close to
the highest measured. For ease of comparison, the
spectra are presented in terms of the parameters
S(f), s(f) and 64(f). The plots of the three param-
eters are stacked one above the other with a common
frequency scale. Note that because of the functional
form of (53), the spreading parameter is displayed
on a logarithmic scale.

The results of the analysis assuming no current are
shown by solid lines in Fig. 9 and the results using
the measured current are shown by dashed lines.
The strong current was setting toward 240° true,
almost exactly in the same direction as the high-
frequency components of the wave spectrum.
Therefore, the basic effect of including the current
in the analysis is to shift the energy measured in the
fixed frame to lower frequencies. The higher peak
in the spectrum including the effect of the current
is due partly to the shift of energy from higher
frequencies and partly to the effect of the trans-
formation factor (88/8f) in (29). The total energy
of variance is preserved by the transformation. The
change in shape of the energy spectrum, however,
is not negligible. The magnitude of the change,
unfortunately, casts some doubt on measurements
made from fixed locations when strong unmeasured
currents might have existed.

The effect of the current on the other parameters
is more difficult to explain in general terms, since
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it is the result of transforming many wavs com-
ponents with different frequencies and directions of
travel. However, much of the change is clearly
related to the red shift of almost all comporents in
the spectrum. The highest values of s still occur
near the low-frequency peak of the energy spectrum,
a feature noted by many previous investigators, in
particular, Mitsuyasu et al. (1975). That is, the
energy at the peak of the spectrum has the narrowest
directional spread.

This single example of a measured directional
spectrum shows that the directional characteristics
of the wave spectrum in a tropical storm are very
complicated. Waves with different frequencies also
have different spreading and different main direc-
tions of travel. Thus, efforts toward producing a
simple parameterization of directional spectra in
storms seem futile.

c. Fit of the data to linear directional theory

As mentioned in the development above, the ac-
curacy of linear theory in explaining the measured
velocity data can be checked by examination of the
transfer function correction q( f). Recall that if
q(f) = 1, the data is best fit by linear theory. Thus,
the factor g(f) can be thought of as the ratio between
the measured velocity and that predicted by linear
theory. These ratios are shown for the three current
meters in Fig. 10. In general, the performance of linear
theory is quite good, with agreement almost always
better than 10% for the frequencies at which most of
the wave energy is concentrated. The agreement
shows that linear theory certainly can be applied in
calculating directional spectra and that linear direc-
tional theory is much more successful in explaining the
data than higher order unidirectional theories which
had significant bias.

However, the detailed structure of the discrep-
ancies between linear theory and the data may still
be of some interest. The ratios were constant
neither in frequency nor time through the storm, al-
though the same trends continued to be observed.
The general trend was toward overprediction at
higher frequencies, followed at the lower meters by
a decrease in signal-to-noise ratio and unde:predic-
tion at frequencies high enough for the transfer func-
tion to be very small. The visual correlation of the
ratios across depth was rather high. All of these facts
argue that the discrepancies cannot be explained
completely by current meter calibration errors, but
are instead probably due to nonlinear phase locking
effects between harmonics. Further study of this
type of data may shed some light on nonlinear ef-
fects in random directionally spread seas.

The trends with frequency shown in Fig. 20 show
some similarity with the results presented by
Thornton and Krapohl (1974). Their Fig. 5 shows
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FiG. 10. Ratio of measured to theoretical velocity at
Buccaneer, 1200 CDT 4 September 1973.

that the measured velocity slightly exceeded the
theoretical velocity for the energetic low-frequency
range of the spectrum. Then in an intermediate
range, the measurements were roughly equal to the
theory. Finally, above about 0.23 Hz the measure-
ments became much greater than the theoretical
predictions. Cavalieri et al. (1977) showed measured
velocities slightly less than predicted by linear
theory over the range 0.15-0.25 Hz.

Despite the probable existence of nonlinear ef-
fects in the data, it is clear that linear theory pro-
vides sufficient accuracy for many purposes and is
more accurate than unidirectional theories which
include nonlinear effects. Since the linear transfer
function between wave surface and particle velocity
is correct to a good degree of approximation, (7)
and (8) can be used to predict the velocity spectra
when the directional wave spectra are known. This
procedure will be directly useful in some practical
problems where the force on a structure may be
approximated by a linear transfer function from the
kinematics of the flow. We will see in a later section
that the use of linear theory also permits calculation
of the probability distribution function of velocities
and that these distributions closely approximate the
observed distributions.

6. Hindcasting the directional spectra

In order to use directional spectra in design, we
must have a method of hindcasting directional
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spectra from historical wind field data. A numerical
hindcasting scheme designed specifically for hurri-
canes has been developed by Cardone et al. (1976)
and calibrated with measured frequency spectra for
Gulf of Mexico hurricanes. The Delia data represent
the first opportunity to check the model against
directional spectra measured in a tropical storm.

There are two major aspects to the wave hind-
casting model: the wind field description and the
wave prediction technique. The importance of the
wind field description cannot be overemphasized.
For hurricanes, it is possible to use a model storm
approach, since the similarity of hurricane pressure
fields allows their description with relatively few
parameters. This is fortunate, since the sparseness
of measurements in most hurricanes precludes the
use of standard synoptic meteorological analysis
techniques.

The wind field model used is an application of
" the theoretical model of the horizontal air flow in
the boundary layer of a moving vortex as originally
derived by Chow (1971). The pressure field is pre-
scribed as the sum of an axially symmetric part,
parameterized by the central pressure and a scale
radius, and a large-scale pressure field with constant
gradient. The equations of motion averaged over the
boundary layer depth are then numerically inte-
grated. Several solutions are typically made to de-
scribe the storm at various stages of its development
and then interpolation along the storm track is used
to produce wind fields at each time needed by the
wave program.

The wave prediction model is a rather straight-
forward application and calibration of the model of
Pierson et al. (1966) which simulates the process of
wave growth, dissipation and propagation on a hexag-
onal grid system consisting of 1694 points spaced
35 km apart. At each grid point, the directional spec-
trum is resolved into 13 frequency and 24 direction
bands. The growth algorithm, applied to spectral
components traveling within 90° of the wind direc-
tion, parameterizes the linear and exponential
growth of energy associated with the mechanisms
proposed by Phillips (1957) and Miles (1959), re-
spectively. Spectral components traveling against
the wind are attenuated at a rate proportional to the
fourth power of the frequency and the energy of the
local wind sea. Propagation of spectral components
in deep water is accomplished by a simple Lagran-
gian scheme. In shallow water, the effects of refrac-
tion, shoaling and bottom friction are included.

A rather different approach to numerical wave
hindcasting has been proposed recently by Hassel-
mann et al. (1976) who contend that the evaluation
of the wave spectrum in a generating situation is
dominated by energy transfers across the spectrum
associated with nonlinear resonant wave-wave
interactions. Since the incorporation of such a
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mechanism rigorously in a numerical hindcast model
is impossible with present computer speeds, Hassel-
mann et al. (1976) proposed a new structure for
hindcast models based on the hypothesis that the
nonlinear interactions act to stabilize the spectral
shape. The shape invariance with the stage of wave
development is exploited by the representation of
the frequency spectrum in terms of a small (1-95)
number of parameters and the derivation of a set
of simpler prognostic equations for the parameters.
The directional spread of energy is fixed for all
frequencies and is assumed concentrated about the
local wind direction.

It was recognized by Hasselmann et al. (1976) that
the simple parametric models proposed may not
work in meteorological systems involving rapidly
changing wind fields (e.g., hurricanes) and they sug-
gest that hybrid models which model wave growth
and dissipation in parametric space and which track
swell resolved in spectral bands would be necessary.
While such models are under development (¢.g.,
Gunther and Rosenthal, 1977; Weare and Worthing-
ton, 1977) there remain formidable problems such
as the simulation of sea-swell energy transfers
and the simulation of the spectral energy balance
in the late stages of wave development.

The hindcast model applied here to Delia includes
nonlinear effects in a highly implicit way. The
Pierson-Moskowitz (1964) fully developed form of
the frequency spectrum, coupled to a frequency-
dependent functional form for the angular spread of
energy, is used to limit wave growth. As shown by
Pierson (1977), in simple, offshore, fetch-limited
wave generation, the growth algorithm simulates
features such as the migration of the spectral peak
toward lower frequency and a decrease in spectral
peak sharpness with increasing fetch which have
been attributed to nonlinear effects. Also, in re-
gions of rapidly turning winds, spectral energy is
redistributed angularly in the growth algorithm to
simulate the known tendency for the peak in the
directional spectrum to track the local wind direc-
tion, albeit with lag, which is an effect probably
caused by nonlinear interactions. Finally, the linear
and exponential growth rates employed in the model
are calibrated against measurements of net wave
growth and therefore include contributions to
growth of the forward face of the spectrum asso-
ciated with weak wave-wave interactions.

Study of hurricane Camille led to some modifica-
tion of the parameterizations of the growth-
dissipation calculations which were most important
for very high winds. These modifications led to a
model which accurately hindcast the significant
wave height and power spectra during several
measured hurricanes (Cardone et al., 1976).

The wind field used to hindcast the directional
spectra in Delia was the same as that used by
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Forristall et al. (1977) to hindcast the winc-driven
currents in Delia. The storm track, central pressure
analysis, and comparisons of measured and hind-
cast wind speed and direction may be found in that
reference.

The first level in the verification of the wave
hindcast results is a comparison between the meas-
ured and hindcast total variance. For ease of
interpretation, we have actually displayed the
approximation to the significant wave height given
by four times the square root of the variance in
Fig. 5. The measurements are given by the dashed
line and the hindcast results by the dotted line. The
hindcast results are generally higher than the data
by about 2 ft and the peak of the hindcast leads
the peak of the data by 1 h. Part of the reason for
the discrepancy may be due to the placemert of the
model grid points with respect to the Buccaneer
station and the storm track as shown in Fig. 11.
The comparisons have all been made using results
from grid point 1350, which the storm track ap-
proached sooner and nearer. Note that the very large
radius to maximum winds in Delia meant that the
wind speed at Buccaneer actually began declining
about 1200 CDT.

The measured directional spectra are compared
to the hindcasts in Figs. 12-14 for 0800, 1200
and 1500 CDT, respectively. For ease in compari-
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FiG. 11. Detailed storm track for Delia near Buccanee: and the
surrounding hindcast grid points.
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Fic. 12. Directional spectrum at Buccaneer, 0800 CDT
4 September 1973. Solid line: measurements; dashed line:

-hindcast.

son, both the measured and hindcast spectra have
been fit to the spreading function given by (53) by using
a nonlinear curve-fitting program. The measured
spectra are given by the solid lines and the hind-
casts by the dashed lines. In addition, the dotted
line in Fig. 13 shows the spectrum measured at
1300, so that the peak measured spectrum can be
compared with the peak hindcast spectrum.

The positive bias in total energy in the hindcasts is
associated with too much low-frequency energy. Itis
possible that this discrepancy is related to some
unmodeled wave-current interaction or to attenua-
tion associated with wave-bottom interactions that
are stronger than modeled. The match of the high-
frequency energy and the fit of the peak storm spec-
tra are, however, quite good. The hindcasts of
the directional parameters of the spectra are
excellent, particularly considering the dearth of
previous calibration of the directional features of the
hindcast model.

The directional spectra give a fascinating view of
the development of the sea state as a tropical storm
approached. The low-frequency energy around 0.10
Hz propagates as swell from near the center of the
storm. Since the storm track had an average bearing
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FiG. 13. As in Fig. 12 except at 1200-1300 CDT. Solid line:
measurements at 1200 CDT; dashed line: hindcast at 1200 CDT;
dotted line: measurements at 1300 CDT.

of about 300°, both the measured and hindcast direc-
tions of propagation for the low-frequency com-
ponents stay near 300° throughout the storm period
shown. The hindcasts also match the observed nar-
row directional spread of the low-frequency
components.

In contrast, the higher frequency waves generated
by the local wind are much more spread and tend
to follow the changes in the local wind direction.
The energy at 0.20 Hz was propagating toward 240°
at 0800, swinging to 210° at 1200 and then back to
265° at 1500, as the storm center rounded the plat-
form. The hindcast directions at this frequency are
in good agreement, but the model seems to react
to shifts in the wind direction a bit more quickly than
does nature.

In between the low and high frequencies dis-
cussed above, the directional properties show a
smooth transition which is closely matched by the
hindcast. In summary, the directional spectral model
produced a much better fit to the data than could
be hoped for with any simple spectral parameteriza-
tion or simple parameter hindcast model based

thereon. This agreement, coupled with the previ-
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ous agreement between hindcast and measured
energy spectra during more severe seas (Cardone
et al., 1976), strongly suggests that the directional
spectra of severe seas can be satisfactorily hind-
cast for use in design applications.

7. Velocity probability distributions

We have seen that the spectra of the measured
velocities can be explained using linear wave theory
and that the directional wave spectrum can be esti-
mated from the measurements. Knowledge of the
velocity spectra is useful for some design problems,
particularly those involving fatigue. However, de-
sign work also requires information about the peak
waves to be expected and the spectrum provides
no direct measure of the extremes. Fortunately,
by analogy with methods of estimating wave
height distributions, it is possible to develop a
formula for the probability distribution of the
velocity. This distribution can then be compared
with the measured extreme value distribution to
show that directional spreading of linear waves
can account for the extreme velocities measured
as well as accounting for the velocity spectra.

If the phase angles in Eq. (5) have a uniform ran-
dom distribution, then the surface elevation 7 will
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FiG. 14. As in Fig. 12 except 1500 CDT.
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have a Gaussian distribution with mean zero and
standard deviation equal to the total variance of the
spectrum. The distribution in the fixed measurement
frame of reference will be the same as the distribu-
tion in the frame moving with the current. The
Gaussian distribution of surface elevations is com-
monly observed, although sometimes nonlinear ef-
fects are observable (Longuet-Higgins, 1963). By the
form of the summations for the velocity com-
ponents in (7) and (8), it is obvious that they too
will have Gaussian distributions, with standard
deviations for the x and y components given,
respectively, by

cosh?k,,z
a,? = S fAO472f,2 —— cos%6,, (67
‘ % %’ fadams, sinh?k,,,d (67)
cosh?k,,z
P = Smnld Af4n* _ “_m—' in?@,. 68
% % % % . sinh?*k,,d o (68)

The prediction of Gaussian velocity component
distributions can be checked by using the measured
directional spectrum to evaluate (67) and (68) and
comparing the theoretical distributions with those
measured. Fig. 15 shows the distributions for the
upper current meter during the hour beginning at
10600 CDT plotted on a normal probability scale.
The theoretical normal distributions are thus straight
lines. The fit is generally very good, except that
the positive tail of the distributions for V, is higher
than theoretically predicted. At this time, the wave
energy was propagating in a generally westward
direction such that most of the high positive
velocities occurred under the troughs of waves.
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Thus, this discrepancy is consistent with the results
in Fig. 6.

The fit of a Gaussian distribution to the velocity
components is encouraging and certainly better than
the fit of regular wave theories to individual waves
as shown in Fig. 6. However, to compare results
more directly with the regular wave fits, it would
be useful to have the distribution of the peak
velocity magnitudes (speeds). The analysis will also
show that this distribution is particularly practical,
since it is independent of most of the details of
the directional spectra.

Longuet-Higgins (1952) has studied the closely
related problem of the distribution of ‘the heights
of waves. There exists some function B(f) such
that the representation of Eq. (4) can be written

17(0,0,¢) = cos(2mfot)B(¢). (69)

This is a carrier wave of frequency f, modulated by
an envelope function B(f). When the spectrum of
n(t) is concentrated in a narrow frequency band,
Longuet-Higgins showed that the distribution of the
amplitudes is equal to the distribution of the func-
tion B(t). Further, the probability density function
of B(t) was shown to be Rayleigh with parameter
a? equal to the zeroth moment of the spectrum of
n. The Rayleigh distribution for wave heights has
been shown to be reasonably accurate when checked
against actual storm waves, although there is some
overprediction of the highest waves, probably due to
the nonlinearity of the real sea (Forristall, 1978).
By similarity of form, it is obvious that the distri-
bution of velocity component peaks should also be
Rayleigh, with parameters given by (67) and (68).
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Fi1G. 15. Cumulative probability of velocity components. Lines are
from linear theory, points are measurements.
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The speed S of the water is the magnitude of the
velocity. Thus

S = (V.2 + Vv - (70)
If, following Longuet-Higgins, we write
V, = cosQufyt)B,(1), (71)
V, = cosQmufit)B,(1), (72)
then
§ = cosRmfot)[B*(1) + BA(1)]'?, (73)

and the distribution of the speed peaks will be the
same as the distribution of the envelope function in
brackets. )

Some well-known methods for combining proba-
bility distributions could be used to calculate the
distribution of S, provided B,(f) and B,(f) are in-
dependent. This is not necessarily true. For ex-
ample, if the wave spectrum is unidirectional at
angle 6, then

V, = tanfV,. 74

However, there exists a coordinate system (a,b) in
which V, and V, are statistically independent. The
angle of rotation between the (a, b) coordinates and

the (x,y) coordinates is given by:
tan20 = 2Cy v /(Cy,v, — Cy,v,)- 5)

In the (a,b) coordinate system, theorems (e.g.,
Parzen, 1960) for finding the distributions of squares
and sums of independent random variables may be
used. First, if

Z, = B2, (76)
then Z, has a probability density function given by:
Fp(20) = (2a,)™" exp(—za/20?). an

Then, if Z = Z, + Z,, the probability density of Z
is given by the convolution of the density functions
for Z, and Z, or

o) = J oz — Dy ®dx = [2e? — ad)]

(78)

Now, since the distribution of S is the same as that
of (Z)2, the density function of S is

S

X [exp(—z/2a?) — exp(—z/2a,?)].

) = oo™ — el (79)
and its distribution function is
Fg(8) = 1 — {(@® — o)) "[a,® exp(—82%/2a,%)]
— oy exp(—5?/20,")]}.  (80)
We now define
o = a2 + o = a2 + a2, (81)
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and define the spreading factor c¢ by
(82)

where the rotation was taken such that a, = «,. If
the speed is normalized so that

§=S/a, (83)

then Eq. (80) can be reduced to a parametric
distribution dependent only on the spreading
factor, i.e.,

= a,2/a?,

F@ =1- ( ) exp(—£€/2¢)

c
2c -1

+ (216”_01 ) expl—£/2(1 ~ A1 (84)

This distribution has been plotted for three values
of ¢ in Figs. 16—18. If the waves are unidirec-
tional, ¢ = 1; ¢ = 0.5 would be produced by omni-
directional waves. By a rather complicated deriva-
tion, it. can be shown that ¢ = 0.75 would be pro-
duced by spreading of the form given by (53) with
s = 5.33 and the same 6, for all frequency bands.
Since we are primarily interested in the tail of the
distribution, the figures actually show the proba-
bility of exceedance of a given normalized speed
which is given by 1 — F(S/«a). By way of example,
for ¢ = 1, which is of course a Rayleigh distribu-
tion, the probability that a speed peak will exceed
3.03« is 1/100.

To find the spreading factor given a complicated
measured or hindcast directional spectrum, it is
necessary to rotate the velocity variances into the
(a, b) coordinate system. This can be done using a
Mohr’s circle construction (a tensor transformation)
to get

&l = Coy, = W(Cyy, + Cyry) + 1. (85)
a2 = Cyy, = W(Cyy, + Cyy) =1,  (86)

where

| P = Y(Cy, — Cop ) + Cyte (8D

The values of ¢ during Delia were mostly in
the range ¢ = 0.70to ¢ = 0.75, with the values at the
bottom meter somewhat higher. Thus, there is justi-
fication for lumping together the measurements from
several hours by normalizing by the variance a.

To compare the predicted and measured distribu-
tions, the x and y particle velocities were com-
bined using (70). Then, the peaks of the speed trace
were selected from 1 h segments of the records and
ranked in descending order. Note that there are two
Jeaks of the speed trace per wave cycle, one asso-
ciated with the wave crest and one with the wave
trough. The association of peaks with either crests or
troughs is not preserved in this type of analysis.
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Additionally, it is necessary to know the number
of speed maxima in a given hour to compute proba-
bilities. Of course, this is known directly from the
observed velocities, but it would not be known in
the historical hindcast case and, in practice, the
speed data contain many small maxima probably
related to turbulence or noise rather than surface
waves. Thus, it is desirable to have an independent
estimate of the number of speed maxima in an hour.
It has been found that the number of surface waves
in a time interval is well approximated by the ratio
of the first to the zeroth moment of the wave spectra
times the length of the time interval. A similar esti-
mate can be made from the moments of the theo-
retical velocity spectra at various depths, account-
ing for the fact that there will be twice as many
speed maxima as waves. Our comparisons pro-
ceeded on this basis.

The speed peak distributions for the three current
meters over the period 0600-2000 CDT are shown
in Figs. 16—18. The distributions at the top two
meters agree remarkably well with the theory at a
spreading factor of 0.75, while the distribution at
the bottom meter is somewhat higher. This is con-
sistent with the greater attenuation of higher fre-
quency energy components with depth.

It is interesting to note from Figs. 16 and 18 that
the distribution corresponding to unidirectional
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theory (c = 1) would over-predict the water speed
at the tail of the distributions by about 10%. How-
ever, when unidirectional wave theory was applied
on a wave by wave basis to the highest waves, we
saw that the overprediction was as much as 40%
under wave crests. The reason for this seeming
discrepancy can be traced to the nature of a direc-
tionally spread sea. Just as the wavelets that add to
produce the highest waves do not necessarily add
colinearly in velocity, the wavelets which add to
produce the highest speeds do not necessarily pro-
duce the largest wave height. In other words, in a
directionally spread sea, the highest particle
velocities do not necessarily occur under the
highest waves.

- 8. Conclusions

The waves measured in Tropical Storm Delia were
directionally spread. Thus, the use of unidirectional
wave theory to calculate water particle velocities
results in both random and systematic errors. How-
ever, the use of linear wave theory along with the
concept of the directional spectrum succeeded in
predicting both the spectra and .extreme value
statistics of the measured velocities. Although ef-
fects of nonlinearities were undoubtedly present,
the assumption of linearity has been shown to be
less damaging than the assumption of unidirec-
tionality. A numerical wave model was also suc-
cessful in hindcasting the observed directional
spectra.

For some design problems, it will be possible to
use hindcast directional spectra from historical
storms directly to calculate either the spectra or
extreme value distributions of the velocities. How-
ever, for large space frame structures, it will prob-
ably be more practical to simulate the velocities
and accelerations from the hindcast directional
spectrum using linear theory and a Monte Carlo
randomization of the phase angles.
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