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ABSTRACT

Many empirical and heuristic distribution functions for wave crest heights have been proposed, but their
predictions differ considerably. Part of the lack of agreement is due to the difficulty of making measurements
that accurately record the true height of the wave crests. Surface following buoys effectively cancel out the
second-order nonlinearity by making a Lagrangian measurement. Pressure transducers filter the nonlinear com-
ponents of the signal in complicated ways. Wave staffs have varying degrees of sensitivity to spray. The location
of the instruments also plays an important role. There is clear evidence from measurements in the North Sea
that spurious crests due to spray are a problem downwind even from mounting supports that appear transparent.

Much of the theoretical nonlinearity can be captured by calculations correct to second order. Explicit calculation
of the interactions of each pair of components in a directional spectrum is straightforward although computa-
tionally intensive. This technique has the advantage that the effects of wave steepness, water depth, and directional
spreading are included with no approximation other than the truncation of the expansion at second order.
Comparisons with measurements that are believed to be of the best quality show good agreement with these
second-order calculations. Simulations for a set of JONSWAP spectra then lead to parametric crest distributions,
which can be used easily in applications.

1. Introduction

Qualitatively, the sharpening of the crests of surface
waves is the most obvious manifestation of nonlinearity
in the ocean. Yet a detailed quantitative description of
this phenomena accurate enough for engineering use
remains elusive. The problem is to calculate the statis-
tical distribution of crest heights given the directional
spectrum of the waves and the water depth. By crest
height, we mean the highest point on a wave trace be-
tween the time it crosses above mean water level and
the time it crosses below mean water level, the ‘‘zero-
crossing crest height.’’ The alternate definition of a crest
as a local maxima is not useful for engineering purposes
since wave records can show many small maxima be-
tween zero crossings.

To first order, the water surface can be represented as
Gaussian noise with a reasonably narrow frequency
band. The crest heights then have the same distribution
as the envelope of the noise, which has the Rayleigh
distribution

2h
P(h . h) 5 exp 28 , (1)c 2[ ]Hs
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where hc is the crest height, Hs 5 is the significant1/24m0

wave height, and m0 is the variance of the wave spec-
trum. We use this definition of the significant wave
height throughout this paper instead of its original def-
inition as the average of the highest ⅓ of the zero cross-
ing waves since m0 is the more fundamental measure
of the energy in the spectrum, predicted by all modern
wave forecasting programs. Forristall (1978) and many
others have shown that the H1/3 definition usually gives
values about 5% lower than the definition from the var-
iance.

Real waves show a small but easily noticed departure
from a Gaussian surface. The crests are higher and
sharper than expected from a summation of sinusoidal
waves with random phase, and the troughs are shallower
and flatter. It is easy to tell by inspection whether a
wave record is right side up.

The shape of regular progressive waves can now be
calculated to a very high degree of accuracy, but no
complete theory for the statistics of random waves ex-
ists. Longuet-Higgins (1963) used a Gram-Charlier se-
ries to describe the probability density function of the
surface elevation. He calculated the moments that de-
termine the properties of the distribution from a weakly
nonlinear wave theory. The major problem with the re-
sult is that the density function is sometimes negative.
Srokosz (1998) has recently overcome this problem by
forming a Pearson distribution with a specified positive
value of skewness and zero kurtosis. These distributions
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have the possible flaw of predicting bounds on the max-
imum and minimum values of the surface elevation. In
addition, neither the theory of Longuet-Higgins or that
of Srokosz predicts the distribution of zero-crossing
crest heights, which is of most interest in applications.

A theory for the second-order interactions of waves
in a random directional sea has been available for some
time. It is not clear how to derive a crest height distri-
bution directly from the theory, but it is reasonably sim-
ple to simulate time series of waves that include these
interactions. Sample distributions correct to second or-
der can thus be found through analysis of long simulated
records. Serious exploration of this approach has re-
cently begun. Jha (1997) has performed such simula-
tions for unidirectional waves and compared them to
laboratory and field measurements. Prevosto (1998) ex-
tended the work to directionally spread waves. He cal-
culated the skewness of the surface elevation and the
most probable crest heights for many combinations of
spectral shapes and water depths. We use essentially the
same technique but extend the work by comparing the
results to several sets of field measurements. In addition,
we fit Weibull distributions to simulations with a wide
variety of wave steepness and Ursell numbers to produce
parametric versions of wave crest distributions correct
to second order, which can be used very easily in ap-
plications.

We begin with a review of some of the methods that
have previously been proposed for calculating wave
crest heights for engineering design. The next section
discusses the principles of operation of some instru-
ments commonly used to measure waves and the prob-
lems they may have in accurately measuring crests.
Then we present the equations for the second-order in-
teractions between wave components in a random di-
rectional sea in intermediate water depth. The results of
using those equations to simulate wave crests are com-
pared to measurements and to previous methods. Sim-
ulations for a set of JONSWAP spectra then lead to
parametric crest distributions. We close with conclu-
sions and recommendations for future work.

2. Previous estimates of extreme crests

For design purposes, a crest height is often estimated
by taking the height and period of the design wave and
applying a high-order regular wave theory such as
Stokes fifth order. Since such regular waves are often
used as input to calculate forces on a structure, this
method has the advantage that the crest height used to
set the deck elevation is consistent with the wave used
in the force calculations. It has the disadvantage of ne-
glecting the random and directionally spread nature of
the real sea.

A popular empirical crest height distribution was pre-
sented by Haring et al. (1976) and is given as

21 h h h
P(h . h) 5 exp 2 1 2 4.37 0.57 2 .c 5 1 2 1 2 6[ ]2 m d d0

(2)

This equation was derived by empirical fitting to 376
hours of storm wave records including measurements
with Baylor wave staffs in the Gulf of Mexico and Wav-
erider buoys in the North Sea and the Gulf of Alaska.
The distribution is a function of the variance in the
spectrum, m0, divided by water depth, d. It gives a high-
er probability of high crests for shallow water, as would
be expected theoretically from the increased nonline-
arity of shoaling waves. It does not have any dependence
on wave steepness and it reduces to the Rayleigh dis-
tribution in very deep water, which cannot be strictly
correct, since deep water waves are also nonlinear.
Equation (2) is, however, significantly different from
the Rayleigh distribution for large waves anywhere on
the continental shelf.

It is reasonable to suppose that the nonlinear wave
surface could be approximated by an amplitude-mod-
ulated Stokes waves. In deep water, the nonlinear crest
amplitude from this model is

1
2r 5 a 1 ka , (3)

2

where a is the linear wave amplitude and k is the wave-
number. D. L. Kriebel (1998 personal communication)
suggests using the wavenumber associated with the fre-
quency of the highest waves, which he estimates as
0.95/ f p where f p is the peak frequency of the spectrum.
This choice seems reasonable since we are trying to
estimate the distribution of the highest crests.

Tayfun (1980) and Huang et al. (1986) produced crest
height distributions from the Stokes model. There is
some disagreement between these authors on the exact
form of the resulting distribution. Equation (4) below
is taken from the review by Tucker (1991):

8
1/2 2P(h . h) 5 exp 2 [(1 1 2Rh /H ) 2 1] , (4)c s25 6R

where R 5 kHs is the wave steepness.
Kriebel and Dawson (1991) produced a version of

this distribution that does not involve taking the a square
root, which is given by

2 3h h
P(h . h) 5 exp 28 exp 8R . (5)c 2 3[ ] [ ]H Hs s

If the wave steepness becomes large, the probability
density function for Eq. (5) can become negative, and
Kriebel and Dawson (1993) used the same assumptions
to derive the slightly different formula,

22h 1 h
P(h . h) 5 exp 28 1 2 R . (6)c 21 2[ ]H 2 Hs s
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Kriebel and Dawson (1993) also extended their dis-
tribution to intermediate water depth using the depth-
dependent terms from the Stokes second-order expan-
sion. The resulting distribution is the same as Eq. (6)
with R replaced by R*, an effective steepness given by

R* 5 kHs f 2(kd), (7)

where

coshkd(2 1 cosh2kd) 1
f (kd) 5 2 . (8)2 32 sinh kd sinh2kd

It seems reasonable to use R* in a shallow water version
of Eq. (4) as well.

3. Instrumentation

Verification of crest height distributions has been
hampered by the difficulty of accurately measuring
wave crests in extreme sea states. Measurements from
one type of sensor often disagree with those from an-
other type, and there is no agreement on which is cor-
rect. The basic problem is the lack of any absolute stan-
dard against which the accuracy of the sensors can be
judged. The notes below illustrate the problems for some
of the sensors in common use. They are not meant to
be exhaustive.

a. Buoys

Buoys are the most popular instruments for collecting
information on wave climate. Instrument comparisons,
most notably those in WADIC (Allender et al. 1989),
have demonstrated that the popular models can accu-
rately measure integral properties of the wave field.
Crests measured by buoys are, however, generally small-
er than those measured by other instruments.

This underestimation of crest heights is often thought
to be due to the buoy partially submerging in a crest or
sliding sideways away from the highest point on a high
crest. These mechanisms may play a role, but even a
perfect surface following buoy will underestimate wave
crests. A buoy that acts as a particle on the surface will
move forward in the direction of wave propagation in
the crest and backward in the trough. It will therefore
spend more time than a wave staff at a fixed location
in the crest, and less time in the trough.

The orbital motion of the buoy distorts the shape of
the wave profile, but does not by itself make the crest
measurements lower. However, almost all buoys mea-
sure wave elevation through double integration of the
vertical acceleration. The absolute value of the still wa-
ter elevation is thus not known, and crests heights are
measured from the mean of the elevation measurements.
Since the buoy spends extra time in the crest, the mean
water level will be slightly higher than the true still
water level, and the crest height above mean water level
will be slightly too small.

The motion of the buoy is a finite amplitude effect.

James (1986), Srokosz and Longuet-Higgins (1986),
and Longuet-Higgins (1986) have all considered aspects
of this problem and show that to second order, the ver-
tical displacement of the mean surface is equal to the
amount that the crest is raised. Therefore, the Lagrang-
ian motion of the buoy cancels out the second order
nonlinearity of the wave crest. The details of the buoy
motion are greatly complicated by its mooring line and
the random nature of the real sea, and have not yet been
worked out completely. Nevertheless, the main features
of the argument must still be important, so acceler-
ometer buoys cannot be considered as a real choice for
measuring the distribution of wave crests.

b. Pressure transducers

Pressure transducers are useful for measuring waves
at shallow water sites or on platforms where the sensor
can be mounted relatively close to the sea surface. The
signal must be corrected for the attenuation of the pres-
sure fluctuations, which increases with increasing depth
and increasing wavenumber. These corrections are rea-
sonably accurate for at least the low frequency part of
the wave spectrum, but it is hard to see how the results
could be useful for estimating the crest distribution. If
the corrections are made with first-order theory, as is
usual, the resulting surface will be Gaussian. If the dif-
ficult problem of making higher-order corrections is
faced, the result will only be an expression of the theory
used rather than an independent check of it.

c. The Baylor wave staff

The Baylor wave staff consists of a pair of stainless
steel wire ropes separated by insulators about 20 cm
long. The transducer measures the natural frequency of
the inductive loop made by the two wires and the sea
surface, from which the length of the loop is found. The
instrument is robust and relatively immune to fouling.
It has been particularly popular for wave measurements
from platforms in the Gulf of Mexico.

Tests have shown that it has a linearity better than
1% and that it will record changes of elevation at least
as fast as 300 m s21. Our experience from calibrating
Baylor staffs is that quite a firm short is necessary before
the sensor responds. It thus seems unlikely that it would
be affected by spray.

d. EMI laser

The EMI laser is a pulsed range finder operating in
the near-infrared region. Narrow pulses of light are pro-
duced by a laser diode, and the radiation from the target
is used to stop a time interval measurement. The time
of travel is converted to an analog voltage proportional
to the distance to the reflector. The response of the op-
tical unit is 10 to 15 Hz, but the output is usually filtered
by a 2-Hz Butterworth filter to eliminate high frequency
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noise. We are aware of some tests that showed that the
instrument responded to artificial spray, but we do not
have details of the tests.

e. Marex radar

The Marex wave radar is a ranging device derived
from a radar altimeter. The radar operates in the micro-
wave (J) band with a beamwidth of 668. It must be
positioned on a structure so that sidelobes of the beam
do not reflect from members of the structure. We do not
know of any tests of its response to spray.

4. Second-order wave profiles

A second-order expansion of the sea surface can cap-
ture the effects of wave steepness, water depth, and
directional spreading with no approximations other than
the truncation of the expansion at second order. Higher-
order interactions and other effects will of course influ-
ence the distribution of real wave crests. In particular,
wave breaking could be important. The effect of wave
breaking on wave heights in deep water was considered
by Tayfun (1981), and Thornton and Guza (1983) con-
sidered the shallow water case. The point of our inves-
tigation is, however, to see how well a straightforward
application of second-order theory can match obser-
vations.

The second-order wave interactions for infinite water
depth were calculated by Longuet-Higgins (1963), and
the calculations were extended to intermediate water
depths by Sharma and Dean (1979). We reproduce the
latter result for completeness. Let the first-order water
surface be given by

N

h 5 a cos(k x 2 s t 1 e ), (9)O n n n n
n51

where t is time; x is the position vector in the plane;
sn, en, and kn are, respectively, the radian frequency,
phase, and vector wavenumber of Fourier wave com-
ponent n; and an is its amplitude. The frequencies and
wavenumbers are related by the linear dispersion equa-
tion

5 g |kn | tanh(|kn |d),2s n (10)

where g is the acceleration of gravity and d is the water
depth. The second-order correction to the wave surface
given by Sharma and Dean (1979) is then

N N1
(2) 2h 5 a a {K cos(c 2 c )O O i j i j4 i51 j51

11 K cos(c 1 c )}, (11)i j

where

2 2 21/2K 5 [D 2 (k · k 1 R R )](R R )ij i j i j i j

1 (R 1 R ) (12)i j

1 1 21/2K 5 [D 2 (k · k 2 R R )](R R )ij i j i j i j

1 (R 1 R ) (13)i j

2 2 2 2(ÏR 2 ÏR ){ÏR (k 2 R ) 2 ÏR (k 2 R )}i j j i i i j j
2D 5ij

2 2 2(ÏR 2 ÏR ) 2 k tanhk di j ij ij

22(ÏR 2 ÏR ) (k · k 1 R R )i j i j i j
1 (14)

2 2 2(ÏR 2 ÏR ) 2 k tanhk di j ij ij

22(ÏR 1 ÏR ) (k · k 2 R R )i j i j i j
1D 5ij

2 1 1(ÏR 1 ÏR ) 2 k tanhk di j ij ij

2 2 2 2(ÏR 1 ÏR ){ÏR (k 2 R ) 1 ÏR (k 2 R )}i j i j j j i i
1

2 1 1(ÏR 1 ÏR ) 2 k tanhk di j ij ij

(15)
2k 5 |k 2 k | (16)ij i j

1k 5 |k 1 k | (17)ij i j

2R 5 |k | tanh(|k |d) 5 s /g and (18)i i n i

c 5 k x 2 s t 1 e .i i i i (19)

For infinite water depth, Eq. (7) reduces to Eq. (3.7)
of Longuet-Higgins (1963), except that the latter equa-
tion is missing a factor of ½.

a. Form of the interaction kernel

The positive interaction terms given by Eq. (15) occur
at the sum of the frequencies of the interacting wave
components. They produce the sharpening of the crests
and flattening of the troughs that we associate with sec-
ond-order Stokes waves. The negative interaction terms
given by Eq. (14) occur at the difference of the fre-
quencies of the first-order wave components. These in-
teractions give the setdown of the water level under
wave groups.

The qualitative behavior of the interactions can be
understood by considering the simple case of two com-
ponent waves with nearly the same frequency. For this
case the positive interaction term in Eq. (11) has a fre-
quency approximately twice that of the linear compo-
nent waves. It will thus have positive peaks in phase
with both the crests and troughs of the linear compo-
nents. The frequency of the negative interaction term is
the difference of the frequencies of the components,
which is the beat frequency or envelope of the linear
wave groups. Since the interaction kernel given by Eq.
(12) is negative, this low frequency second-order wave
will be negative under high wave groups.

Figure 1 shows an example of the result of summing
all of the second-order interaction terms in a JONSWAP
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FIG. 1. An example of first- and second-order waves for a JON-
SWAP spectrum with a peak period of 12 s and a significant wave
height of 11.2 m in 40-m water depth. The solid line shows the first-
order simulation, the short dashed line shows the sum of the positive
second-order terms, and the long dashed line shows the sum of the
negative second-order terms.

FIG. 2. Second-order interaction kernel for waves in shallow water.

spectrum. The example spectrum had a peak period of
12 s and a significant wave height of 11.2 m. The water
depth was 40 m. As expected, the sum of the positive
interaction terms is positive in both the troughs and
crests of the large waves, while the sum of the negative
terms is generally small except for the setdown under
the group of large waves in the middle of the record.

The skewness kernel is defined as (K2 1 K1)/4 and
is a measure of the strength of the second-order inter-

action. It is a function of the frequencies of the two
interacting waves as well as their angular separation and
the water depth. The strength of the interaction is much
greater in shallow water, matching the observation that
the wave profile is more skewed in shallow water.

Figure 2 shows an example of the interaction kernel
for relatively shallow water. The depth is 1 m and f 1

5 0.5859. The ratio of the frequencies of the two waves
is shown on the x axis and the difference in the direction
of travel of the waves is on the y axis, with 08 in the
center of the scale. In water this shallow the peak of
the interaction does not occur for colinear waves, but
for waves separated by a small angle. The kernel has a
depression for waves that are nearly in the same direc-
tion, which is due to the large value of the negative
interaction term for waves with nearly the same direc-
tion and frequency in shallow water. This depression is
particularly deep and sharp near f 1/ f 2 5 1. It does not
appear in deep water. Figure 2 shows that wave setdown
effects will be much more important for unidirectional
waves produced in a wave tank than they are for natural
waves in the ocean, which are always spread direction-
ally to some extent.

b. Numerical implementation

The calculations indicated by Eqs. (11)–(19) are easy
to implement, but represent a fair amount of compu-
tation since there are very many interactions to be cal-
culated, particularly in the three-dimensional case. A
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typical simulation would have 4096 time steps at 4 Hz.
A first-order simulation of a given wave spectrum is
produced from Eq. (9) by choosing the phases en from
a uniform random distribution and calculating the wave
height using an inverse fast Fourier transform to perform
the summation in eq. (9). The second-order interactions
are then calculated for each pair of component waves
in the first-order simulation. The summation in Eq. (11)
gives time series of the positive and negative interac-
tions as shown in Fig. 1. Adding the time series of the
positive and negative interactions to the first-order sim-
ulation then gives the second-order simulation.

The interactions do not have to be calculated for all
of the 2048 frequencies in the Fourier transform of the
time series, partly because the energy in the first-order
spectrum is very small at the higher frequencies, but
also because the energy in the measured spectrum at
these high frequencies appears to be mostly due to non-
linear interactions. It is possible to use an iterative
scheme to produce a first-order spectrum from the mea-
sured spectrum, but it is much simpler to truncate the
second-order calculations at a small multiple of the peak
frequency of the spectrum. This simplification has little
effect on the crest height distributions. The calculations
described in this paper were typically truncated for f 1

1 f 2 greater than four or five times the peak frequency.
Repeating a simulation with precisely the same spec-

tral variance at each Fourier line does not include all
of the natural variability of waves. The variances are
actually random variables with a Chi-squared distri-
bution. If a directional spectrum is simulated, the ad-
dition of several wave components with different di-
rections and the same frequency will automatically pro-
duce this distribution in the frequency spectrum. For
consistency, we therefore multiply the input spectral
lines in two-dimensional simulations by a Chi-squared
random variate.

We generally want to perform many simulations using
the same spectrum in order to produce stable statistics
for rare crest heights. Since the skewness kernel is the
same for all of the repetitions, it is efficient to calculate
it once for each spectrum and store it. The calculations
also exploit the fact that the kernel is symmetric in the
two frequencies and depends only on the difference in
the two angles. We use an angular resolution of 128 for
the three-dimensional simulations.

Repeating a simulation many times with different ran-
dom numbers gives enough samples to stabilize the sta-
tistics at low probability levels. In a typical example,
we would use 200 repetitions of a 4096 time step sim-
ulation at 4 Hz for a spectrum with a peak period of 8
s. Running this example several times showed that the
standard deviation of the crest height normalized by the
significant wave height was 0.018 at a probability level
of 0.001 and 0.041 at a probability level of 0.0001.

The length of the individual simulations does not have
any measurable effect on the statistics, at least within
the limits used in this study. To test this assertion, we

did 10 000 repetitions of a unidirectional simulation
with 4096 time steps and 5000 repetitions of a simu-
lation of the same spectrum with 8192 time steps. At a
probability level of 0.001, the 4096 point simulations
gave a normalized crest height of 1.2256 and the 8192
point simulations gave a normalized crest height of
1.2238.

Different sample rates and numbers of repetitions
were used in some of the case studies discussed below.
In general, we used the same sample rate as the mea-
surements. As discussed by Tayfun (1993) and shown
in the Camille measurements below, the sample rate can
have some effect on the statistics if there are too few
sample points per fundamental wave period. Since 2D
simulations are much more economical than 3D simu-
lations, we often used many more repetitions in the 2D
simulations.

5. Comparisons with measurements

a. Storms at Tern in the North Sea

The Tern platform is located in the northern North
Sea between the Shetland Islands and Norway. It is
about 150 km from the nearest shoreline and in 167-m
water depth. It is a fairly standard eight legged steel oil
production platform that was installed in 1988. It was
equipped with a structural monitoring system including
strain gauges, two wave height sensors, and an electro-
magnetic current meter. Jonathan et al. (1994) and Jon-
athan and Taylor (1995) give descriptions of the mea-
surement system and the oceanographic conditions in
the storms considered here.

Figure 3 shows an outline plan of the platform with
the sensor locations marked. The rectangles in the figure
show the outline of the structural members of the plat-
form at mean sea level (MSL), at the 41-m depth of the
Marsh McBirney electromagnetic current meter, and at
the mud line. A Marex wave radar was mounted under
the southeast corner of the platform deck and an EMI
laser wave sensor was mounted under the deck on the
southwest corner. Both of these sensors measure the
distance from the instrument to the instantaneous water
surface.

Three storms at Tern have been studied in detail. One
of the storms occurred in January 1992 and two in Jan-
uary 1993. The storm on 4 January 1993 is referred to
as 93a and the one on 17 January 1993 is referred to
as 93b. Conditions in all three storms were extreme,
with peak significant wave heights above 12 m. Storms
93a and 93b are particularly useful for wave process
studies since the conditions remained stationary, nearly
within the limits of sampling variability, for 8 or 9 hours.
Storm 92 built quickly to a peak Hs of 13.8 m and then
declined.

Figures 4 and 5 show the probability distributions of
the wave crest heights for storms 93a and 92 respec-
tively. The crest heights are normalized by the signifi-
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FIG. 3. Outline plan of the Tern platform with locations of the wave height sensors and the
mean wave directions for the storms.

FIG. 5. Probability distribution of normalized crest heights mea-
sured at Tern during the storm on 1 Jan 1992. The crest heights are
normalized by the significant wave height during each hour of the
measurements. Eight hours of measurements with an average signif-
icant wave height of about 11 m were combined to produce the
observed distribution.

FIG. 4. Probability distribution of normalized crest heights mea-
sured at Tern during the storm on 4 Jan 1993. The crest heights are
normalized by the significant wave height during each hour of the
measurements. Nine hours of measurements with an average signif-
icant wave height of about 12 m were combined to produce the
observed distribution.

cant wave height during the hour the crest was mea-
sured. If the waves were linear so that the surface el-
evation had a Gaussian distribution, the crest heights
between zero crossings would have a Rayleigh distri-
bution. This theoretical distribution is shown by the sol-
id line in the figures. As expected, the sample distri-
butions from the measurements show an excess of high
crest heights above the Rayleigh curve.

The sample distributions also show a significant dis-
agreement between the results from the two wave sen-
sors. In storm 93a, the crests measured by the Marex
radar are about 10% higher than the crests expected from

linear theory, but the highest crests from the EMI laser
measurements are 20%–30% higher than linear theory.
In storm 92, however, the situation is reversed. The
measurements from the EMI laser are about 10% above
the linear curve while those from the Marex radar are
much higher. It seems quite likely that the difference
between the storms can be explained by the difference
in wave directions, as shown in Fig. 3. In storm 93a,
the waves were propagating to the north, so that their
crests passed the Marex radar before encountering any
structural elements on the platform. On the other hand,
the leg on the southwest corner of the platform is up-
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FIG. 6. Distribution of crest heights in storm 93a at Tern on 4 Jan
1993. The ordinate shows the crest height normalized by the height
predicted at that probability level by the Rayleigh distribution. The
measurements are from the Marex wave radar.

FIG. 7. Distribution of crest heights during storm 92 at Tern on 1
Jan 1992. For an explanation of the curves, see Fig. 6.

wave from the EMI sensor, and it is quite likely that
spray caused by a wave crest hitting that leg would
sometimes pass under the EMI laser. The response of
wave sensors in the presence of spray is not known with
any certainty, but it is reasonable to suppose that spray
from structural interference could cause a laser gauge
to record higher crests than those in the ambient waves.

This hypothesis is supported by the fact that in storm
92 the waves were propagating to the east so that the
EMI laser was on the windward side of the platform
while the Marex radar was in the lee of structural mem-
bers. Apparently, both of the sensors measured crests
higher than the ambient waves due to spray from struc-
tural members, although there is no obvious evidence
of spray in the measured time series. The location of a
wave sensor with respect to the platform it is mounted
on thus may be at least as important as the response
characteristics of the sensor itself.

Given the likely platform interference, we compare
the second-order simulations with the Marex measure-
ments during storm 93a and the EMI measurements dur-
ing storm 92. Figure 6 shows the comparison for 93a.
The ordinate in this figure gives the ratio of the crest
height to the height predicted by the Rayleigh distri-
bution at the probability level of the abscissa. It thus
shows that the measured wave crests were about 10%
higher than expected from linear theory and that the
ratio increases slightly at lower probability levels. The
measurements are for 9 hours of the storm, which in-
cluded about 3000 crests.

The simulations were based on spectra calculated
from the measurements for each hour. For the two-di-
mensional simulations, 200 repetitions for each of the
nine spectra were made. The simulations were made at
a 5.12-Hz sample rate, the same as the measurements,
and each simulation was 4096 points long. There were
therefore about 44 hours of simulation for each hour of
measurements, so the statistics of the simulations are

much more stable than those of the measurements. The
three-dimensional simulations were based on directional
spectra calculated from the wave radar and the electro-
magnetic current meter. Since the three-dimensional
simulations demand much more computer time, only 30
repetitions were made for each spectrum, giving 6.67
hours of simulation for each hour of measurement.

The statistics of the simulations are very similar to
those of the measurements, about 10% higher than linear
theory and increasing slightly at lower probability lev-
els. The three-dimensional simulations are about 2%
lower than the two-dimensional simulations. The dif-
ference is caused by the slightly lower values of the
second-order interaction kernel for waves that are not
colinear. The two-dimensional simulations appear to be
slightly higher than the measurements while the three-
dimensional simulations appear to be slightly lower.

Figure 7 shows the measured and simulated statistics
for storm 92. Both the measurements and the simula-
tions are for 8 hours at the peak of the storm when the
significant wave height ranged from 7.85 to 13.78 m.
The 2D and 3D simulations are very similar to those
for storm 93a, but the data points in the top 10% of the
crests are consistently higher than the simulations. There
is no obvious difference in the spectra of the two storms
that would explain the difference in their crest statistics.
It is possible that the response of the EMI and Marex
sensors is slightly different, even when they have good
exposure to the ambient waves.

b. Hurricane Opal

This storm entered the Bay of Campeche in the Gulf
of Mexico on 30 September 1995 as a tropical depres-
sion. It intensified rapidly as it accelerated north–north-
westward on 3 and 4 October on its way to a landfall
in the panhandle of Florida. Its maximum intensity was
observed early on 4 October as the eye passed 27.38N,
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FIG. 8. Distribution of crest heights during Hurricane Opal at Bull-
winkle. For an explanation of the curves, see Fig. 6.

FIG. 9. Distribution of crest heights during Hurricane Camille at
SP62 for 1200–1600 CDT 17 Aug 1969. For an explanation of the
curves, see Fig. 6.

88.58W with a 916-mb central pressure and a very small
eye 10 n mi in diameter.

Waves from Hurricane Opal were measured at the
Bullwinkle oil production platform located at 27.98N,
90.98W in 410 m of water. A comprehensive instru-
mentation system was installed on Bullwinkle in order
to measure the environment and the response of the
structure. Swanson and Baxter (1989) give a good de-
scription of this system. A Baylor wave staff was used
to measure wave elevations and three Marsh–McBirney
electromagnetic current meters measured the wave par-
ticle velocities.

Since the eye of the tight storm passed 125 miles to
the east of Bullwinkle, the waves there were never ex-
tremely high. We used the 14 hours of measurements
from 0500 to 1800 UTC 4 October 1995 in our analysis,
and the significant wave height during that time ranged
from 4.78 to 6.14 m. The measurements were recorded
at 4 Hz. Figure 8 show the observed and simulated
distributions of crest heights for Hurricane Opal. The
simulations are about 2.5% lower than the simulations
for the Tern storms since the waves were not as steep.
The three-dimensional simulations produce crests about
1% smaller than the two-dimensional simulations, but
they are still 2% larger than the bulk of the observations.

c. Hurricane Camille

Camille, whose path crossed the north-central Gulf
of Mexico, was one of the most intense and destructive
storms to strike the United States this century. Waves
were recorded by a Baylor wave staff at station 1 of the
ODGP (Hamilton 1976), which was on the South Pass
62A oil production platform located at 298049500N,
888449300W. Camille passed almost directly over the
station, and the large waves that were measured had a
great influence on setting the standard criteria for plat-
form design in the gulf. The measurements were re-
corded on an analog tape recorder and, unfortunately,

were only digitized at a 1-Hz sampling rate. The wave
staff broke at 1630 CDT 17 August 1969, which hind-
casting studies show to be very close to the peak of the
storm.

Measurements and simulations of the crest heights
from 1200 to 1630 CDT are shown in Fig. 9. The sig-
nificant wave height grew from 9.96 to 13.40 m during
this period. Only two-dimensional simulations are
shown since directional spectra were not measured dur-
ing the storm. The simulations made at a 1-second time
step agree reasonably well with the measurements, al-
though there appears to be considerable scatter in the
measurements which cause the distribution to deviate
from a smooth curve. We also made simulations with
a ¼-second time step, and they are significantly differ-
ent, about 2.5%–3% higher. The difference is not due
to the energy content of the sea at frequencies above 1
Hz, which is very small, but to the fact that 1-Hz sam-
pling frequency is likely to miss the very peak of the
waves. This effect was investigated in some detail by
Tayfun (1993), who found that the higher waves would
be underestimated by approximately (p 2 /6)(D/T ) 2

where D is the sampling interval and T is the average
wave period. For the 10-s average wave periods in this
part of Camille, the formula gives an error of 1.6%,
close to the difference in the simulations. The relatively
long sampling interval in the digitized record of the
Camille waves clearly causes an underestimate of the
true crest heights.

d. Shallow water waves in Lake Ontario

The Canada Centre for Inland Waters maintains a
research tower at the western end of Lake Ontario near
Toronto. Many interesting studies of wave processes
have been conducted there, including the definitive mea-
surements of directional spectra by Donelan et al.
(1985). The tower is in 12 m of water. An easterly a
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FIG. 10. Distribution of crest heights at the CCIW tower on 10 Jan
1977.

FIG. 11. Comparison of crest height distributions at Tern for D 5
167 m, Ts 5 13.6 s, Hs 5 12.0 m.

FIG. 12. Comparison of crest height distributions at the CCIW
tower for D 5 12 m, Ts 5 7.94 s, Hs 5 3.0 m.

storm on 10 January 1977 produced waves that reached
a significant height of 3 m at the tower. During that
storm, 14 wave staffs on the tower and extensions from
it were operational, and we have examined measure-
ments from them during one hour at the peak of the
storm. The measurements were recorded at 5 Hz.

Despite that the structure appears to be very transpar-
ent, a few unusually high crests were observed in the lee
of the platform but not by the wave staffs on the wind-
ward side of the platform. Therefore in Fig. 10 we only
included data from the 6 wave staffs with the clearest
upwind exposure. The two-dimensional simulation
agrees very well with the measurements, while the three-
dimensional simulation appears to be a bit high, at least
at low probabilities. In shallow water, waves with a nar-
row directional spreading can be more nonlinear than
unidirectional waves because the interaction kernel reach-
es its maximum for wave components slightly separated
in direction, as shown in Fig. 2.

Figure 10 also shows the results of a two-dimensional
simulation made with the water depth increased to 1000
m, labelled ‘‘Deep Water.’’ The crests in this simulation
are about 3% lower than those for the true water depth
of 12 m, showing the increased nonlinearity of the
waves due to the shallow water at the tower.

6. Comparisons with previous estimates

Figures 11 and 12 compare our two-dimensional, sec-
ond-order wave simulations with previous methods of
estimating crest heights. Figure 11 is for conditions dur-
ing the peak of storm 93a at Tern, for D 5 167 m, Tp

5 14.3 s, Hs 5 12.0 m. Using Ts 5 0.95Tp, we have
Ts 5 13.6 s for use in Eq. (6). The steepness, R 5
0.2628, and the effective shallow water steepness R*
are virtually identical for this relatively deep water.

Our two-dimensional second-order simulation is
shown as the solid line in the figure. The Kriebel and
Dawson (1993) distribution from Eq. (6) agrees quite

well with this simulation. The results from Eq. (4), la-
belled ‘‘Tayfun’’ in the figure, are a few percent lower.
For the steepness of 0.2628, there is a noticeable dif-
ference between these two versions of the distribution
derived from modulated Stokes waves. The distribution
of Haring et al. (1976) is even lower because the water
depth at Tern is deep enough that the nonlinear adjust-
ment in Eq. (2) is too small. We also tested Eq. (2) for
the 410-m water depth at Bullwinkle, and the resulting
distribution (not shown) was very close to the Rayleigh
distribution.

Crest heights calculated from Stokes fifth-order
waves are shown as small circles in Fig. 11. The wave
heights at several probabilities of exceedence were cal-
culated from the Rayleigh distribution and the crest
height of a Stokes fifth wave with that height and a
period of 13.6 s was found. These crests are slightly
lower than those from the second-order simulations and
agree very closely with the distribution from modulated
Stokes waves given by Eq. (4). The steps in this cal-
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FIG. 13. Normalized crest height distributions for a mean JON-
SWAP spectrum with a peak period of 10 s in a water depth of 20
m. Solid lines show unidirectional simulations, small circles show
directionally spread simulations and dashed lines show the Weibull
fits to the spread simulations. Simulations for four values of steepness
are shown with Sp 5 0.01, 0.03, 0.05, and 0.07 starting from the
bottom set of curves.

culation of crest heights from regular waves are standard
practice, but they are somewhat inconsistent since actual
trough to crest wave heights are lower than given by
the Rayleigh distribution. If an empirical distribution
such as the one due to Forristall (1978) were used to
estimate the wave heights, the Stokes crest heights for
this example would be about the same as given directly
by a Rayleigh distribution of crest heights.

Figure 12 is for conditions during the peak of the
storm in Lake Ontario, for D 5 12 m, Tp 5 8.36 s, Ts

5 7.94 s, and Hs 5 3.0 m. The steepness is R 5 0.251,
and the effective shallow water steepness R* 5 0.613.
We used the shallow water steepness in Eqs. (6) and
(4). The Kriebel and Dawson (1993) shallow water dis-
tribution is unrealistically higher than any of the others,
probably because the very high value of effective steep-
ness invalidates the mathematical assumptions that were
made in the derivation of the distribution by reversion
of series. Equation (4), labeled ‘‘Tayfun,’’ gives a more
reasonable result, but it too is considerably higher than
the simulations (and the data).

The crest heights from individual Stokes fifth-order
waves again agree with Eq. (4), and the Haring et al.
(1976) distribution gives about the same result in this
case, but all are considerably larger than the simulations.
The Stokes crest heights may be too high because the
regular wave method effectively concentrates all of the
energy of the spectrum at one frequency, and the pos-
itive interaction term is largest for self interaction. The
method also does not include the negative interaction
which produces a set down under high wave groups.
The Haring et al. distribution is too low for very deep
water and too high for very shallow water. These dif-
ferences should not be too surprising since the water
depths in these examples are outside the range of water
depths in the data from which this empirical distribution
was developed.

The higher wave heights during this storm were some-
what higher than the normally recommended limit of
applicability of Stokes second-order theory. However,
for a wave height of 6 m and a period of 7.94 s, Stokes
wave theory gives a crest height of 3.92 m while a 15th-
order Chappelear numerical wave expansion gives a
crest height of 4.08 m. The difference is noticeable, but
small compared to the discrepancies in Fig. 12, and in
the opposite direction.

7. Parametric crest height distributions from
simulations

The second-order simulations appear to match a va-
riety of measurements relatively well. Performing the
simulations is, however, rather time consuming espe-
cially for directionally spread waves. For applications,
it would be useful to have simple functional forms that
match the results of the simulations. In order to produce
such parametric distributions, we simulated crests for a
variety of wave steepness and Ursell numbers. The spec-

tra were constructed using the equations of Goda (1985),
which give spectra similar to the JONSWAP form but
with a specified peak period and significant wave height.
The spectra had peak periods of 8, 10, and 12 s. The
steepness based on the peak period Tp,

2p HsS 5 , (20)p 2g Tp

varied from 0.01 to 0.10 in steps of 0.01. Most of the
simulations were made using the standard JONSWAP
peak enhancement factor g 5 3.3, but some simulations
were also made with g 5 1.0 and 10.0. The runs were
repeated for water depths of 10, 20, and 40 m and for
infinite water depth. Combinations of steepness and wa-
ter depth that gave physically impossible wave heights
were not simulated. The three-dimensional simulations
used a cos2s spreading function with the parameter s
taken from the fetch-limited measurements of Ewans
(1998).

Each case of the two-dimensional simulations in-
cluded 10 000 repetitions of a 1024-s time series at 4
Hz for statistical stability. The three-dimensional sim-
ulations require much more computer time, so only 250
repetitions were done for each case. In addition, only
about half of the two-dimensional cases were included
in the directionally spread simulations.

Figure 13 shows some example results from the sim-
ulations in a water depth of 20 m. The simulations are
for a standard JONSWAP spectrum with a peak period
of 10 s. Four sets of simulations are shown with Tp 5
0.01, 0.03, 0.05, and 0.07, starting from the lowest set
of curves. The directionally spread simulations show
more sampling variability than the unidirectional sim-
ulations since they include fewer data points. For steep
waves in this water depth, the directionally spread crests
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FIG. 14. The contour lines show the ratio between the crest heights
of directionally spread and unidirectional waves at a probability level
of 1/1000 as a function of steepness and Ursell number.

are higher at low probability levels than the unidirec-
tional crests. As mentioned before, this effect is due to
the smaller low frequency setdown terms in the direc-
tionally spread waves.

The parameterization of the simulations involved two
steps of fitting. First, the simulations for each case were
fit to a Weibull distribution of the form:

b
h

P(h . h) 5 exp 2 . (21)c 1 2[ ]aHs

Then simple expressions for the Weibull parameters a
and b were found as functions of the water depth and
wave spectrum. These expressions are based on param-
eters that characterize the degree of nonlinearity of the
waves, that is, the wave steepness and Ursell number.
We found that basing the wave steepness on the mean
wave period, rather than the peak period, produced good
fits for spectra with the same peak period but different
peak enhancement factors. The steepness parameter
used in the fits is thus

2p HsS 5 , (22)1 2g T1

where T1 is the mean wave period calculated from the
ratio of the first two moments of the wave spectrum,
m0/m1.

The standard parameter for characterizing the effect
of water depth on the nonlinearity of waves is the Ursell
number. The Ursell number based on the significant
wave height and mean period is

HsUr 5 , (23)
2 3k d1

where k1 is the wavenumber for a frequency of 1/T1.
Proposals have been made for nonlinearity parameters
which combine the effects of steepness and water depth,
but we found that the fits were better when the two were
included separately.

The fits are forced to match the Rayleigh distribution
with a 5 1/ 8 and b 5 2 at zero steepness and UrsellÏ
number. The fits to the two-dimensional simulations are
then

a 5 0.3536 1 0.2892S 1 0.1060Ur (24)2 1

2b 5 2 2 2.1597S 1 0.0968Ur (25)2 1

and the fits to the three dimensional simulations are

a 5 0.3536 1 0.2568S 1 0.0800Ur (26)3 1

2b 5 2 2 1.7912S 2 0.5302Ur 1 0.284Ur . (27)3 1

Examples of these fits to the three-dimensional simu-
lations are shown as the dashed lines in Fig. 13. From
the bottom distribution up, S1 5 0.0143, 0.0431, 0.0718,
and 0.1005. The Ursell numbers are 0.0441, 0.1322,
0.2204, and 0.3085.

One of the more interesting features of the simulations

is the influence of directional spreading on the crest
height. Figure 14 shows the ratio between the crest
heights at the 1/11000 probability level for spread waves
and the crest heights for unidirectional waves as deter-
mined from the fits in Eqs. (24)–(27). The ratios are
shown as contour lines as a function of wave steepness,
S1, and Ursell number. For deep water waves with Ur
ø 0, the unidirectional crests are slightly bigger, but in
shallow water the crests in directionally spread waves
are always larger. As mentioned before, this behavior
is due to the much smaller setdown terms in the inter-
action kernel for spread waves, as shown for example
in Fig. 2.

8. Conclusions

Second-order simulations of wave crests agree well
with measurements of high wave crests made in both
deep and shallow water. Three-dimensional simulations
that account for the directional spreading of waves pro-
duce crests that are about 2% lower than two-dimen-
sional simulations in deep water. Shallow water makes
the simulated waves more nonlinear and the crests high-
er as expected. Directionally spread crests can be higher
than unidirectional waves when the water is shallow
enough. All of these features appear to agree with mea-
surements, but we cannot be too definite about the ac-
curacy of the simulations because there is still doubt
about the accuracy of the measurements.

The measured height of wave crests is apparently
influenced by both the type of sensor used and the lo-
cation of the sensor on a platform. The two influences
have been difficult to sort out because there have been
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few comparisons of different instruments placed near
each other. To remedy this situation, the Wave Crest
Sensor Intercomparison Study (WACSIS) was con-
ducted on the Meetpost Noordwijk research platform in
the North Sea through the winter of 1997/98 (van Unen
et al. 1998). In that project, waves were continuously
recorded using a Baylor wave staff, Marex radar, Saab
radar, and EMI laser, and video recordings of the waves
were made at 2 Hz during daylight hours. The mea-
surements in this dataset should provide a good test of
second-order theory.

The second-order simulations appear to have a greater
range of applicability than previous methods, which
have been proposed for estimating crest height distri-
butions. Simulations of pseudo-JONSWAP spectra in-
dicate that the crest height distribution increases almost
linearly with wave steepness. A systematic investigation
of simulations for various input spectra and water depths
has led to parametric distributions that match the ob-
servations and are accurate enough for engineering use.
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