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First-order theory predicts that zero-crossing wave heights should have a Rayleigh distribution, but 
measured waves are slightly smaller than the theoretical prediction. Suggested explanations for this 
discrepancy have included the nonlinearity of the wave surface, limitations on height as a result of 
breaking, and the effect of spectral width. In a recent paper, Tayfun (1981b) showed that the shape of the 
spectrum influences the height distribution because the wave envelope has different amplitudes at the 
time of the crest and trough. We have compared the distribution developed by Tayfun to simulated 
waves with different spectral shapes as well as to observations and found excellent agreement. The 
theoretical, simulated, and measured wave height distributions agree to within 1% in height. This result 
reinforces the conclusion that linear Gaussian simulations can reproduce many features of ocean waves. 

INTRODUCTION 

The envelope of band-limited, normally distributed noise 
has a Rayleigh distribution. If the band of frequencies present 
in the noise is rather narrow, it is natural to associate crest-to- 
trough wave heights with twice the amplitude of the envelope, 
so that zero-crossing wave heights also have a Rayleigh distri- 
bution. Since this argument was applied to ocean waves by 
Longuet-Higgins [1952], the distribution has proved to be 
very useful in engineering studies of wave loading. Neverthe- 
less, Thompson [1974], Hating et al. [1976], and Forristall 
[1978] all found that the Rayleigh distribution overpredicted 
the heights of the highest waves in long field recordings. 
Figure 1 shows the data from Forristall along with the Ray- 
leigh distribution and a Weibull distribution that was empiri- 
cally fit to the data. 

There have been numerous suggestions for the cause of the 
overprediction. In Forristall [1978] I speculated that the likely 
source of the discrepancy was the failure of the assumption of 
linearity of the wave profile and that the theoretical under- 
standing of the distribution would not improve in the near 
future. It now appears that I was wrong on both counts. Both 

not contribute to the wave height. This is true regardless of 
whether these components are free or nonlinearly locked. 
Nolte and Hsu thus proposed filtering out the portion of the 
spectrum that did not contribute to height before calculating 
the Rayleigh distribution. This correction has the effect of 
shifting the solid curve in Figure 1 to the left by the same ratio 
at all levels of probability. A test calculation gave good agree- 
ment for the probabilities of the highest waves but underesti- 
mated the heights of moderate waves somewhat. 

Longuet-Higgins [1980] pointed out that he originally nor- 
malized the heights by the rms wave amplitude (4) rather than 
by the square root of the spectral variance (rnoX/2), as was 
done by Forristall [1978]. He then calculated the ratio 6/rno •/2 
as a function of spectral bandwidth. This procedure again 
shifts the solid curve in Figure 1 proportionally to the left, 
although not as far as the filtering scheme of Nolte and Hsu 
[1979]. 

Some support for the influence of spectral width on the 
wave height distribution was given by Larsen [1981], who 
analyzed records from a deep pressure transducer. All of the 
records had rather narrow spectral widths, but they did show 

Tayfun [1980] and Lonouet-Higgins [1980] have pointed out a trend in the same direction as predicted by Longuet-Higgins 
that second-order locked harmonics do not change the zero- . [1980]. 
crossing wave height. Longuet-Higgins [1980] also showed Finally, Tayfun [1981b] studied the consequences of the 
that higher-order nonlinearities would tend to increase the 
heights for a given wave spectrum. 

Tayfun [1981a] suggested that the overprediction could be 
due to wave heights being steepness limited by the physical 
process of breaking. However, the data analysis by Chen et al. 
[1979] showed that measured wave heights and periods were 
rather far away from the breaking criteria, even in hurricane 
conditions. 

Several discussions of the importance of spectral width have 
appeared. The distribution for c•est heights as a function of 
spectral width that was calculated by Rice [1945] and dis- 
cussed by Cartwright and Longuet-Higgins [1956] does not 
apply to wave heights. The Rice distribution is for local 
maxima, including maxima that may be negative, and not for 
crest-to-trough heights. Nolte and Hsu [1979] pointed out 
that waves with frequencies that are even multiples of the 
frequencies of the primary components of the spectrum will 
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fact that the crest and trough of the wave do not occur at the 
same time. If the spectrum is not narrow, the envelope will 
change during that half-wave period. Furthermore, if the wave 
is high, so that the crest is near an extreme on the envelope, it 
is likely that the associated trough will have a smaller ampli- 
tude, and the wave height will be less than twice the value of 
the envelope at the crest. 

Rice [1945] derived the joint distribution for the amplitudes 
of two points on the envelope separated by time z, and Tayfun 
[1981b] integrated it to give a distribution for zero-crossing 
wave heights. This approach seems to give a good represena- 
tion of the effect of spectral width on the wave height distri- 
bution, but its predictions need to be tested. 

Simulated wave series are very helpful in studying the form 
of the height distribution, since long records can be produced 
with specified spectral forms. Furthermore, the simulations 
can be made to conform to the assumptions in the theory. 
Gaussian simulations contain none of the contaminating ef- 
fects of nonlinearities or wave breaking that might confuse the 
issue in measurements of real waves. 

We begin by reviewing the derivation presented by Tayfun 
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10,548 FeRRISTALL: WAVE HEIGHT DISTRIBUTIONS FOR SPECTRAL SHAPE 

Ol 

OOl 

OOOl 

OOO01b I I I I I I I 1 2 3 4 5 6 7 

'X: Ho/(mo) 1/2 
Fig. 1. Probability of exceeding a given normalized wave height: 

(solid line) Rayleigh distribution' (dashed line) empirical Weibull dis- 
tribution fit to data' (triangles) measurement. 

E1981b]. His distribution is then compared to that found from 
analysis of simulated wave records with various spectral mo- 
ments. The agreement is very good. Finally, we calculate the 
spectral moments of the measurements used by Forristall 
[1978] and show that Tayfun's distribution also fits the distri- 
bution of those wave heights well. It thus is reasonable to 
conclude that the spectral shape controls the wave height dis- 
tribution and that nonlinearities, wave breaking, and other 
effects not included in the simulations have negligible effect. 

TAYFUN'S DISTRIBUTION 

The variation with time of the sea surface at a point can be 
described as a Fourier series: 

r!(t) = • a, cos (ro,t + 

where the ai are amplitudes, roi are frequencies, and •Pi are 
phases. For a linear model the phases are uniformly distrib- 
uted, and r/(t) has a Gaussian distribution. 

The wave record can also be described by its power spec- 
trum S(ro), which has moments defined by 

m, = ro'S(ro) dro (2) 

By Parseval's theorem, mo is the variance of the wave record. 

A mean frequency can be defined as 

roo= m•/mo (3) 

and the spectral width is given by 

V 2 --- m2/moroo 2 -- 1 (4) 

It is always possible to find A(t) and O(t) such that (1) can be 
rewritten as 

r!(t) = A(t) cos (rOot + O(t)) (5) 

The function A(t) can then be shown to have a Rayleigh distri- 
bution [Rice, 1945, Equation (3.7-10)]. When the spectrum has 
a relatively narrow width, r/(t) has the appearance of a carrier 
wave at frequency rOo modulated by the envelope function 
A(t). The peaks of r/(t), then, have the same Rayleigh distri- 
bution as the envelope. 

If the envelope varies slowly, the distance between a crest 
and a preceding trough will be approximately twice the height 
of the crest, and the wave height distribution will also be 
Rayleigh. However, there will be cases where the spectrum is 
sufficiently narrow for an amplitude-modulated carrier wave 
to be a good description of the process but where the vari- 
ation in amplitude between crest and trough is important. 

Rice [1945, equation (3.7-10)] also derived the joint distri- 
bution for the value of A at time t and its value at some later 

time t + z. If we define the normalized variables 

x = A(t)/mo •/2 
and 

y = A(t + •;)/mo 1/2 (6) 

then their joint probability density function is 

g(x, y; z)- 1 - r 2 Io 1 - r2j exp - • •27•j (7) 
where 

r2_. p2 + 22 (8) 
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Fig. 2. Wave height distribution from a boxcar spectrum: (solid 
lines) Tayfun's [1981b] distribution for various values of r; (dashed 
lines with points) results from numerically simulated waves. 
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1 $(co) cos (co coo)Z dco (9) /9 mo 

j. = m S(co) sin (co - coo)Z dco (10) 
mo 

and Io is a modified Bessel function. The mean time between 
crests and troughs can be estimated from the mean frequency 
to be n/coo. Using this constant value of z = n/coo as an ap- 
proximation, the density function of the normalized wave 
heights defined by 

z= x + y (11) 

can then be found from evaluation of the convolution integral 

f(z) = •/•t(z - u, u; n/coo) du (12) 
Equation (12) can be evaluated numerically without diffi- 

culty. Spectra of different shapes will have different values of 
the parameter r as evaluated by using (8)-(10). Tayfun [1981b] 
found an approximation for r in terms of the spectral width 
defined in (4). However, this approximation is not very good 
for moderately large values of the spectral width, and the 
evaluation of the trigonometric moment in (9) and (10) is no 
more difficult than the evaluation of the moments in (2). The 
form of (9) and (10) indicates that spectral components far 
from the peak will have little influence on the wave height 
distribution. On the other hand the spectral width is rather 
heavily influenced by high-frequency components, since it de- 
pends on the second moment. 

The probability that that normalized wave height will 
exceed a given value z is given by 

•0 z 1 - F(z)= 1 - f(u) du 

1 - F(z)- f(u) du 

fO TM 1 - F(z)= f(1/v) dv/v • 

(13) 
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Fig. 3. Wave height distribution for a narrow spectrum and short 
simulation lengths: (solid line) Tayfun distribution for r =0.9; 
(dashed line with points) simulation with a transform length of 2048. 
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Fig. 4. Wave height distributions for a Pierson-Moskowitz spec- 
trum: (solid line) Tayfun distribution with r = 0.68; (broken line) sim- 
ulation of Pierson-Moskowitz spectrum; (dashed line) simulation of 
boxcar spectrum with r -- 0.68. 

When z is large, the numerical evaluation of (13) is more 
accurate if the last form is used. 

SIMULATED WAVE HEIGHTS 

The derivation of (12) included two approximations: first, 
the assumption that the wave height distribution can be calcu- 
lated from its envelope even when the spectrum is not very 
narrow and second, the approximation of the wave period 
distribution by a delta function at 2n/coo. The effect of these 
approximations can be isolated from other factors that might 
influence the distribution of measured wave heights by ana- 
lyzing simulated wave series. 

Waves that conform to the model given by (1) can be eco- 
nomically simulated by using a fast Fourier transform to sum 
the series [Borgman, 1969]. The amplitudes of the wavelets are 
chosen to fit a given spectrum, and the phases are chosen from 
a uniformly distributed random variable. Osborne [1982] has 
used a similar Monte Carlo simulation to study wave statis- 
tics. A Fourier transform with frequency resolution 
Aco- 2n/NAt includes all the information in a time series of 
length N and sample spacing At. If the phases in the frequency 
domain are uniformly distributed, then the time series should 
have a Gaussian distribution, and in fact it does. 

Most of our simulations were made by using a boxcar spec- 
trum, which can be thought of as the result of applying a 
perfect bandpass filter to white noise. If the passband is given 
by 

-e _< n(co - coo)/coo -< e 

then evaluation of (8)-(10) gives 

(14) 

Simulations for various values of r were made with coo = 0.408 
s -•, At- 0.5, and Fourier transforms of length 8192. The 
choices of coo and At insured that the wave peaks would be 
adequately sampled. The simulations were repeated 1500 
times to produce approximately 400,000 waves for each spec- 
trum. The sample statistics are thus reliable to low probability 
levels. Zero-crossing wave heights were defined as the dis- 

r = p = sin e/e (15) 
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Histogram of spectral parameter r for the wave records used to develop Forristall's empirical distribution. 

tances between the highest and lowest samples found between 
two successive zero down-crossings. 

Figure 2 shows comparisons between the sample distri- 
butions of the simulations and Tayfun's [1981b] distribution 
for various values of r. The form of the plot is designed to 
emphasize the differences between distributions that are really 
quite similar. The abscissa is the probability that a given nor- 
malized height will be exceeded. The ordinate is the ratio 
between that height and the height having the same probabil- 
ity according to the Rayleigh distribution. These are the ratios 
of the distributions along horizontal lines in plots with the 
form of Figure 1. For r = 1, (12) converges to the Rayleigh 
distribution, which would plot as a straight line with an ordi- 
nate of 1 in Figure 2. The theoretical distributions are shown 
by solid lines, and the sample distributions from the simula- 
tions are shown by dashed lines with data points. 

Figure 2 only shows about the higher half of the wave 
distributions, since the lower waves have probabilities higher 
than the Rayleigh distribution as the parameter r decreases. 
For the waves shown the height decreases steadily as the spec- 
trum becomes broader and r decreases. The agreement be- 
tween the theoretical and simulated distributions is remark- 

ably good. Some discrepancy is evident only for the broadest 
spectra, where the theoretical distribution is a bit too low. 
Even there, the disagreement is only about 2% in wave height. 

The shape of the distribution is also accurately predicted. 
The curves droop farther below the Rayleigh distribution as 
the probability decreases. The methods of Nolte and Hsu 
[1979] and Longuet-Higgins [1980] produce distributions that 
would plot as horizontal lines on Figure 2. 

Simulations of very narrow spectra must be made with long 
Fourier transforms to ensure enough variability. Figure 3 
shows the result of simulating a boxcar spectrum with r = 0.9 
and a transform length of 2048 instead of 8192. The higher 
wave heights predicted by the theory were not produced. For 
the short transform there were only 34 Fourier lines in the 

boxcar, and this was evidently few enough to reduce the prob- 
ability of the highest waves. The sample distributions for the 
widths shown in Figure 2 did not change significantly for 
transform lengths longer than 8192. 

Simulations of spectra with more natural shapes can also be 
made. Figure 4 shows wave height distributions for a Pierson- 
Moskowitz spectrum with to 0 = 0.446. Numerical integration 
of the spectrum in (9) and (10) gives r = 0.68, and Tayfun's 
[1981b] distribution for this value is plotted as the solid line 
in the figure. The result of simulating a boxcar spectrum with 
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Fig. 6. Measured, fitted, and theoretical distributions: (data 
points) measurements used by Forristall [1978]' (dashed line) empiri- 
cally fit Weibull distribution; (solid line) Tayfun distribution for 
r = 0.65. 
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the same value of r is also shown. The agreement between the 
three curves is excellent. However, the simulated Pierson- 
Moskowitz spectrum has too few low waves. The agreement, 
using rather broad spectra, indicates that the approximations 
made in deriving (12) were justified. 

Longuet-Higgins [1980] calculations gave •/rno•/2= 0.931 
for a Pierson-Moskowitz spectrum, so his distribution would 
plot as a straight line with an ordinate of 0.931 on Figure 4. 
This is a good approximation for the probabilities of the high- 
est waves but misses the shape of the distribution in the inter- 
mediate range. 

Since Tayfun's [1981b] distribution depends on the trigono- 
metric moments (9) and (10), it is not sensitive to the details of 
the high-frequency tail of the distribution or a high-frequency 
cutoff in simulations or data. This is a pleasant contrast to 
distributions that depend on the spectral width defined by (4). 
If a Pierson-Moskowitz spectrum is cut off at 20) o, then 
v--0.30 and r = 0.68. If the cutoff is raised to 10COo, then 
v -- 0.42 and r = 0.68. 

MEASURED WAVE HEIGHTS 

The agreement of the theoretical distribution with simulated 
wave records indicates that the mathematical approximations 
used in its derivation do not cause large errors for repre- 
sentative spectra. However, other physical factors could cause 
the distribution of measured wave heights to differ from the 
theory. Comparisons of measured distributions with the 
theory should indicate whether any of these factors are impor- 
tant. 

Nature will not cooperate by providing a long series of 
waves with a constant spectral shape. Ideally, one could still 
find a number of spectra with the same value of the parameter 
r. Figure 5 shows the distribution of the values of r for the 
wave records used by Forristall [1978]. The distribution is 
rather narrow, with a mean of r = 0.65. The mean spectral 
shape is just slightly broader than the Pierson-Moskowitz 
form. Since Figure 2 indicates that the variation of Tayfun's 
[1981b] distribution with r is nearly linear, it is reasonable to 
use the mean values of r as representative of the entire data 
set. 

Figure 6 shows the comparison of Forristall's measured and 
empirically fitted distributions with Tayfun's [-1981b] distri- 
bution for r = 0.65. The three agree quite closely. There is 
more statistical variability in the data at low probabilities 
than there was for the simulations, since the data only includ- 
ed about 55,000 waves. It seems possible that Tayfun's distri- 
bution fits the trend of the data at low probabilities better 
than the empirical distribution. 

The data and Tayfun's [1981b] distribution are compared 
in an ordinary exceedance diagram in Figure 7. The fit is 
excellent. Both Figures 6 and 7 show a slight deficit of very 
low waves in the data, similar to that found in the Pierson- 
Moskowitz simulations. 

CONCLUSIONS 

The distributions of measured and simulated zero-crossing 
wave heights agree excellently with a distribution derived by 
Tayfun [1981b] from the work of Rice [1945]. It seems that, 
given the wave spectrum, the expected value of the wave 
height can be predicted to within 1%. The trigonometric mo- 
ments of the spectrum given by (9) and (10) give a more appro- 
priate measure of the spectral shape than the spectral width. 

The theoretical distribution describes measured and simu- 

lated wave heights equally well. Simulated and measured 
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Fig. 7. Wave height distributions: (solid line) Rayleigh distri- 
bution; (data points) measurements used by Forristall [1978]; (dash- 
dot line) Tayfun distribution for r = 0.65, (dashed line) empirical Wei- 
bull distribution. 

waves with the same value of r have the same wave height 
distribution. It thus seems likely that wave breaking and non- 
linear phase locking of wave components have little effect on 
the distribution. Osborne [1982-[ also reached this conclusion 
from his simulations. The agreement of measurements and 
simulations is also a good argument for the usefulness of 
linear simulations of waves. 

Tayfun's [1981b] wave height distribution should be used 
whenever great accuracy is demanded, and the spectral shape 
is known from measurements or wave hindcasts. The approxi- 
mate method resulting from Longuet-Higgins [1980] gives rea- 
sonable values for the low-probability tail of the distribution. 
The empirical distribution proposed by Forristall [1978-] is 
still a useful approximation, if details of the spectral shape are 
not known, since the wave spectra that were used in deriving 
it were representative of storm conditions. This empirical dis- 
tribution also offers some advantage in ease of manipulation. 
Finally, if heights good to within 10% are adequate, the Ray- 
leigh distribution is still useful. 
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