
A fast method for nonlinear three-dimensional
free-surface waves

BY CHRISTOPHE FOCHESATO AND FRÉDÉRIC DIAS*
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An efficient numerical model for solving fully nonlinear potential flow equations with a free
surface is presented. Like the code that was developed by Grilli et al. (Grilli et al. 2001 Int.
J. Numer. Methods Fluids 35, 829–867), it uses a high-order three-dimensional boundary-
element method combined with mixed Eulerian–Lagrangian time updating, based on
second-order explicit Taylor expansions with adaptive time-steps. Such methods are
known to be accurate but expensive. The efficiency of the code has been greatly improved
by introducing the fast multipole algorithm. By replacing every matrix–vector product of
the iterative solver and avoiding the building of the influence matrix, this algorithm
reduces the computing complexity from OðN 2Þ to nearly OðNÞ, where N is the number of
nodes on the boundary. The performance of the method is illustrated by the example of the
overturning of a solitary wave over a three-dimensional sloping bottom. For this test case,
the accelerated method is indeed much faster than the former one, even for quite coarse
grids. For instance, a reduction of the complexity by a factor six is obtained for NZ6022,
for the same global accuracy. The acceleration of the code allows the study of more
complex physical problems and several examples are presented.

Keywords: boundary-element method; surface-water waves; nonlinear waves;
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1. Introduction

For several decades, fully nonlinear potential flow equations have been used to
model water waves. The governing equation is Laplace’s equation, subject to
nonlinear boundary conditions. The numerical simulation of water waves is a
vast topic. The main progress witnessed in the last decade is the advent of time-
dependent three-dimensional calculations, due to the rapidly increasing power of
computers. At the same time, two-dimensional calculations have also matured,
producing either highly accurate results or calculations over impressively large
grids. The reader is referred for example to the review by Dias & Bridges
(in press). The main approaches for solving exactly or approximately the time-
dependent three-dimensional water-wave equations can be classified into three
categories: the methods that solve model equations such as nonlinear
Schrödinger type equations or Boussinesq type equations, the high-order spectral
methods and the methods based on boundary integrals. The main advantage of
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C. Fochesato and F. Dias2716
using model equations is that significantly larger spatial and temporal scales can
be considered (see Fuhrman et al. 2004 for the state of the art on such methods).
The main disadvantage is that the ranges of validity are limited. The main
advantage of high-order spectral methods, which are based on series expansions,
is that they are computationally efficient and robust when the series converges
(see Bateman et al. 2001 for the state of the art on such methods). The main
disadvantage is that the series do not always converge and numerical instabilities
develop. The main advantage of boundary integral equation methods (BIEM) is
that they are accurate and can describe highly nonlinear waves. However, they
are expensive and, as clearly said by Nishimura (2002), they have been
considered losers in large problems for that reason. Recent developments on fast
multipole-accelerated boundary integral methods have revealed that the
discretized equation for BIEM may possibly be solved with OðNÞ, at least in
integral equations for Laplace’s equation. Here N is the number of unknowns
introduced to discretize the boundary integral equation (BIE). Surprisingly, the
BIEM community in applied mechanics seems to remain rather indifferent to
such developments (see again Nishimura 2002). In the water-wave community,
there is even more scepticism. When the present work was initiated 3 years ago,
several researchers had some doubts on the feasibility of the proposed numerical
wave tank, probably due to earlier failures by various teams. It is true that the
fast multipole algorithm (FMA) does not exist as a black-box implementation
and requires significant work to be inserted in any new context.

The main results of the present paper are the derivation and the validation of
a rapid boundary-element method (BEM) that will make large-scale problems in
three-dimensional free-surface waves more tractable. The method recently
developed by Fructus et al. (2005), which is also based on an integral formulation
but makes an extensive use of Fourier transforms, is an interesting alternative
but is restricted so far to flat bottoms.

The capability of BEM to describe accurately nonlinear water waves in three
dimensions has been demonstrated by several authors, such as Romate &
Zandbergen (1989), Broeze et al. (1993), Grilli et al. (2001), Xue et al. (2001)
and Guyenne & Grilli (2006). Arbitrary waves can be generated over a non-
uniform bottom with various boundary conditions. The method used for
example by Grilli et al. (2001) combines a high-order BEM with a mixed
Eulerian–Lagrangian temporal scheme, based on explicit Taylor expansions.
The key features of this model will be reviewed in §2.

The main drawback of this kind of discretization is the necessity to assemble
and solve full linear systems, as opposed for example to finite-difference methods
or finite-element methods, which lead to banded coefficient matrices. With
the use of an iterative solver such as GMRES (generalized minimal residual),
both the assembling and solving steps are OðN 2Þ. There are two major ways to
improve the model efficiency. The first one consists in sharing the work and
taking advantage of parallel computers (e.g. Wang et al. 1995). The second way
is to speed up the computation of matrix–vector products with a fully populated
matrix. A decomposition of the matrix can be used through particular
transforms, such as fast Fourier transforms for irregular grids (Potts & Steidl
2003) or wavelet transforms (Alpert et al. 1993). Another idea is to use
hierarchical algorithms. Several methods share the same idea: H-matrices,
including the panel clustering method (Hackbush 1999), mosaic skeleton
Proc. R. Soc. A (2006)



2717A fast method for free-surface waves
matrices (Goreinov et al. 1997) and the FMA all give a hierarchical block sparse
structure to the approximate matrix. The first two are algebraic techniques,
whereas the FMA requires knowledge of the functions involved in the
approximation of the interaction kernel by an expansion in separable functions.

First developed by Greengard & Rokhlin (1987) for the N-body problem, the
FMA allows a faster computation of all pairwise interactions in a system of N
particles, in particular the interactions governed by Laplace’s equation. So, it is
well suited to our problem and we chose to apply this technique. The idea of the
algorithm is based on the fact that the interaction strength decreases with
distance, so that far away points can be placed in groups to contribute at one
collocation point. A hierarchical subdivision of space automatically gives
distance criteria to distinguish close interactions from far ones. In this last
case, the kernel is approximated by an expansion where both spatial variables are
separated. For Laplace’s equation, the interactions are represented by Green’s
functions which can be expanded into spherical harmonics. The main
components of the algorithm are given in §3 and for a more detailed description
the reader is referred to Greengard (1988) or Beatson & Greengard (1997).

The outcome turned out to be very efficient, especially in two dimensions. In
three dimensions, optimal implementations have been more difficult to obtain
and several improvements have been suggested. Indeed, there is a loss in
efficiency if one wants great accuracy in three dimensions, in particular for non-
uniform distributions of particles. We do not attempt here to list all the work on
the method. We just indicate that Cheng et al. (1999) have designed a better
version with new translation techniques. However, for a reasonable accuracy,
former FMA gives sufficiently good results compared to direct evaluation of
interactions in order to be incorporated in various numerical models (see
Nishimura 2002 for a review). We can also mention some work on a
generalization of the algorithm so that it becomes kernel-independent (Anderson
1992). This kind of research should lead to black-box implementations of the
FMA. Nevertheless, applications often require specific implementations in order
to get the best efficiency.

The fast algorithm can be used alone to solve Laplace’s equation, but it can
also be associated with an integral representation of this equation. The
discretization then leads to a linear system with matrix–vector products of an
iterative solver that can be accelerated by the FMA. Rokhlin (1985) applied this
idea to the equations of potential theory. After Rokhlin, the technique has spread
in various areas for different kinds of discretization, in particular for BEM
(Grama et al. 1999; Darve 2000).

Applications in fluid mechanics seem to be rather sparse compared to other
fields. However, there are several possibilities to use the FMA for incompressible
flows: potential flow equations as first suggested by Rokhlin (1985), but also
Stokes flow (Gómez & Powert 1997; Mammoli & Ingber 2000; Kropinski 2001),
vortex methods (Pringle 1994; Scorpio & Beck 1996) and the possibility to come
as a component of Navier–Stokes solvers via generalized Helmholtz decompo-
sition (Brown et al. 2003). Water-wave computations with multipole-accelerated
codes also exist. Korsmeyer et al. (1993) applied the FMA with a BEM through a
Krylov-subspace iterative algorithm. Following Rokhlin’s ideas, they designed a
modified multipole algorithm for the equations of potential theory. First
developed for electrostatic analysis, their code has been generalized to become
Proc. R. Soc. A (2006)
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Figure 1. Computational domain. The free surface Gf ðtÞ is defined at each time-step by the position
vector xðtÞ. Lateral boundaries are denoted by Gr1 and Gr2. The bottom Gb is defined by
zZKhðx; yÞ. Use is made of the Cartesian coordinate system ðx; y; zÞ and of the local curvilinear
coordinate system ðs;m;nÞ defined at the point xðtÞ of the boundary.
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a fast Laplace solver, which subsequently has been used for potential flows. They
got an efficient model but the global accuracy was limited by the use of low-order
elements. Scorpio & Beck (1996) studied wave forces on bodies with a multipole-
accelerated desingularized method, and thus did not use boundary elements to
discretize the problem. Neither did Graziani & Landrini (1999) who used the
Euler–McLaurin quadrature formula in their two-dimensional model. We show in
§4 how the FMA can be inserted in the numerical wave tank designed by Grilli
et al. (2001) in order to get a more efficient tool. Numerical experiments are
carried out in §5 to show the accuracy and the improved efficiency of the new
model. Future possibilities of the model are discussed. Finally, the conclusion
sums up the characteristics of the accelerated model.
2. The numerical wave tank

The main aspects of the numerical wave tank are presented in this section. We
focus on the points dealing with building the fast algorithm. Details of the
method can be found in Grilli et al. (2001) or in Fochesato (2004). The goal is to
compute gravity surface waves under the assumptions that the fluid is
incompressible, inviscid and that the flow is irrotational. The numerical method
follows the general scheme developed by Longuet-Higgins & Cokelet (1976): a
linear boundary-value problem for the velocity potential is solved at each time-
step and the nonlinear free-surface boundary conditions are used to update in
time the geometry and the velocity potential.
(a ) Mathematical formulation

The computational domain is shown in figure 1. Equations for fully nonlinear
potential flows with a free surface are summarized later. The fluid velocity is
expressed as uZVf with fðx; y; z; tÞ the velocity potential. The continuity
Proc. R. Soc. A (2006)



2719A fast method for free-surface waves
equation in the fluid domain is Laplace’s equation for the velocity potential:

DfZ 0: ð2:1Þ
The three-dimensional free space Green’s function is defined as

Gðx;x lÞZ
1

4pjrj ;
vG

vn
ðx;x lÞZK

1

4p

r$n

jrj3
; ð2:2Þ

where jrjZ jxKx l j is the distance from the source point x to the collocation
point x l (both are on the boundary) and n is the normal vector pointing out of
the fluid. The notation vG=vn represents the normal derivative, i.e. vG=vnZ
VG$n. Green’s second identity transforms Laplace’s equation (2.1) into a BIE on
the boundary GZGr1gGr2gGbgGf of the fluid domain:

aðxlÞfðxlÞZ
ð
GðtÞ

vf

vn
ðxÞGðx; x lÞKfðxÞ vG

vn
ðx;x lÞ

� �
dG; ð2:3Þ

where aðx lÞ is proportional to the solid exterior angle made by the boundary at
the collocation point x l .

The kinematic and dynamic boundary conditions on the free surface are
written in a mixed Eulerian–Lagrangian form:

Dx

Dt
ZVf; ð2:4Þ

Df

Dt
ZKgzC 1

2
Vf$Vf; ð2:5Þ

where x is the position vector of a fluid particle on the free surface, g the
acceleration due to gravity and D=Dt the material derivative. The lateral
boundary Gr1ðtÞ is either fixed or moving. In the first case, the potential is
specified on the free surface in order to determine the initial perturbation. In the
second case, waves are generated by a wave maker with specified motion and
velocity. An absorbing piston can also be used at the opposite boundary. Along
the fixed parts of the boundary, including the bottom that can be defined by an
arbitrary shape, the no-flow condition vf=vnZ0 is prescribed.
(b ) Time integration

There are several possibilities for time integration. For example, Xue et al.
(2001) used a fourth-order Adams–Bashforth–Moulton integrator coupled with a
fourth-order Runge–Kutta scheme. As in Grilli et al. (2001), second-order
explicit Taylor series expansions are used to find the new position and the
potential on the free surface at time tCdt. Zeroth-order coefficients are given by
the geometry and the solution of the BIE (2.3) at time t. First-order coefficients
are then directly obtained from the boundary conditions (2.4) and (2.5). The use
of second-order terms leads to a better accuracy of the time scheme, but it
requires more information than is available. Indeed, the corresponding
coefficients depend on the spatial and temporal derivatives of the velocity
potential. On one hand, tangential derivatives are computed by high-order
interpolation on a sliding 5!5 grid (Fochesato et al. 2005). On the other hand,
the pairs ðvf=vt; v2f=vt vnÞ are computed by solving another integral equation
Proc. R. Soc. A (2006)
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on the boundary similar to (2.3). There are therefore two different linear systems
to solve at each time-step. In the following, we only describe the case of the
velocity potential, since the numerical solution is identical for both.

The time-step dt is adapted at each time as a function of the minimum distance
between two nodes on the free surface and a constant Courant number C0. Grilli
et al. (2001) found an optimal value of roughly 0.45 for C0. The time-stepping
scheme presents the advantage of being explicit, and the use of spatial derivatives
along the free surface provides a better stability of the computed solution.
(c ) Spatial discretization

The integral equations are solved by BEM. The boundary is discretized into N
collocation nodes and M high-order elements are used to interpolate in between q
of these nodes. Within each element, the boundary geometry and the field
variables are discretized using polynomial shape functions Njðx;hÞ, where ðx;hÞ
denote the intrinsic coordinates of the reference element:

xðx;hÞZ
Xq
jZ1

Njðx;hÞxj ; ð2:6Þ

fðx; hÞZ
Xq
jZ1

Njðx; hÞfj ; and
vf

vn
ðx; hÞZ

Xq
jZ1

Njðx;hÞ
vfj

vn
: ð2:7Þ

Here, jZ1;.; q denotes a node within an element. The chosen elements are the
so-called middle-interval-interpolation elements, which provide C2 continuity in
between elements. They are quadrilaterals with cubic shape functions defined
using the four nodes of the element and also all the neighbouring nodes in each
direction, for a total of qZ16 nodes.

The integrals on the boundary are converted into a sum on the elements, each
one being calculated on the reference element Gx;h. The curvilinear change of
variables x/ðx; hÞ leads to a Jacobian matrix J i for the ith element. The
discretized form of the integrals in (2.3) can thus be written asð
G

vf

vn
ðxÞGðx;xlÞdGZ

XM
iZ1

ð
Gx;h

Xq
jZ1

vf

vn
ðxjÞNjðx;hÞGðxðx;hÞ;xlÞjJ iðx;hÞjdx dh

( )
;

ð
G

fðxÞ vG
vn

ðx;x lÞdGZ
XM
iZ1

ð
Gx;h

Xq
jZ1

fðxjÞNjðx;hÞ
vG

vn
ðxðx;hÞ;x lÞjJ iðx;hÞjdx dh

( )
:

The associated discretized BIE leads to a sum on the N boundary nodes,

aðxlÞfðxlÞZ
XN
jZ1

KD
lj

vf

vn
ðxjÞKKN

lj fðxjÞ
� �

; ð2:8Þ

where lZ1;.;N and KD
lj ;K

N
lj are Dirichlet and Neumann global matrices,

respectively. According to the boundary type on which lies the current node, the
potential, or its normal derivative, is either specified by a boundary condition or
is an unknown of the problem.
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2721A fast method for free-surface waves
The matrices are built with the numerical computation of the integrals on the
reference element. When the collocation node does not belong to the integrated
element, a standard Gauss–Legendre quadrature method is used. When it
belongs to the element, special methods are needed to take into account the
singularities in the evaluation of Green’s functions. Some of the regular integrals
can be nearly singular because of the accumulation of nodes. An adaptive
technique that is based on recursive subdivisions is needed.

The matrices are then modified to take into consideration two specific aspects
of the solution. First, the rigid mode technique is used to avoid a purely
geometric calculation of solid angles at nodes of the discretized boundary.
Besides, it improves the conditioning of the linear system. Numerically, it
consists of imposing

aðxlÞCKN
ll ZK

XN
jZ1ðslÞ

KN
lj ; l Z 1;.;N ; ð2:9Þ

so that diagonal terms are directly substituted in the discretized system. Finally, it
avoids the computation of the singular diagonal coefficient of the Neumann matrix
KN

ll . The second point is related to edges. Indeed, boundary conditions and normal
directions are in general different on intersecting parts of the boundary, such as the
free surface (or the bottom) and lateral boundaries. Consequently, edges are
represented by two or three numerical nodes in the model. Therefore, more
equations are needed for each additional node. They are obtained from the
continuity of the potential. Only the free surface has specified potential values,
represented below with horizontal bars. On the other boundaries it is unknown:

(i) fðxn2ÞZfðxn1Þ if n1 belongs to the free surface,

(ii) fðxn2ÞZfðxn1Þ if n1 belongs to lateral or bottom boundaries,

where n1 is the main node number for which a BIE is solved (the main node is the
one which appears first in themesh numbering), and n2 is either a double or a triple
node number. The continuity of vf=vt is imposed similarly. From the
implementation point of view, lines in the matrix corresponding to the BIE for
multiple nodes are replaced by these compatibility conditions.

Let GD and GN denote the boundaries with, respectively, Dirichlet and
Neumann conditions. The linear system can finally be described as follows:

(i) If xl2GD and is a simple node or the first of multiple nodes,

X
j2GN

KN
lj fðxjÞK

X
j2GD

KD
lj

vf

vn
ðxjÞZ

X
j2GN

KD
lj

vf

vn
ðxjÞK

Xjsl

j2GD

KN
lj
�fðxjÞC

Xjsl

j2G

KN
lj
�fðxlÞ:

ð2:10Þ
(ii) If xl2GN and is a simple node or the first of multiple nodes,

Xjsl

j2GN

KN
lj fðxjÞK

Xjsl

j2G

KN
lj fðx lÞK

X
j2GD

KD
lj

vf

vn
ðxjÞZ

X
j2GN

KD
lj

vf

vn
ðxjÞK

X
j2GD

KN
lj
�fðxjÞ:

ð2:11Þ
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(iii) If x l is a multiple node (it is necessarily on GN in our case),

fðx lÞZfðxmainðlÞÞ if xmainðlÞ2GD; fðxlÞKfðxmainðlÞÞZ 0 if xmainðlÞ2GN;

where xmainðlÞ denotes the location of the main node number.
The linear systems resulting from the two BIE are full and non-symmetric.

Assembling the matrix as well as performing the integrations accurately are time-
consuming tasks. They are done only once at each time-step, since the samematrix
is used for both systems. Solving the linear system is another time-consuming task.
Even with the GMRES algorithm with preconditioning, the computational
complexity isOðN 2Þ, which is the same as the complexity of the assembling phase.

This is not sufficient for large problems. In order to accelerate the
computations, we inserted the FMA. First, it reduces directly the complexity
of the problem to nearly OðNÞ. Second, the matrix is no longer built. Far away
nodes are placed in groups, so less time is spent in numerical integrations and
memory requirements are reduced. Third, the hierarchical structure involved in
the algorithm automatically gives the distance criteria for adaptive integrations.
Finally, it gives a way to parallelize the method. The last two are left for future
work and are not treated here. However, a serial implementation in the existing
numerical wave tank leads to significant improvements as shown in §5.
3. The fast multipole algorithm

The fast multipole algorithm (FMA) of Greengard & Rokhlin (1987) provides a
way to compute all pairwise interactions in large sets of particles. Rather than
describing precisely the algorithm, we briefly present below the main components
of the method (Beatson & Greengard 1997). Let us consider a sum of the form

uðxiÞZ
XN
jZ1

Kðxi;yjÞwj ; ð3:1Þ

where xi and yj are points in R
3 and K an interaction kernel. Direct evaluations

of such sums at N target points xi require OðN 2Þ operations. The FMA deals
with interacting systems represented by a kernel K that can be expressed as a far
field expansion in which the influence of source and evaluation points is
separated. It is valid for a point O close to y and far from x:

Kðx; yÞz
Xp
kZ1

fkðOxÞjkðOyÞ; ð3:2Þ

where the notation Ox means x–O. Thus, uðxiÞ can be computed in two steps.
First, one computes the moments,

MkðOÞZ
XN
jZ1

jkðOyjÞwj : ð3:3Þ

Then, one evaluates uðxiÞ at each given point xi via the formula

uðxiÞz
Xp
kZ1

MkðOÞfkðOxiÞ: ð3:4Þ
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Consequently, the amount of required work is OðNpÞ, where p is the number of
terms kept in the summation (3.2). This estimate is based on the far field
expansions and is therefore related to only one part of the distribution of
particles. For particles that are close to each other, direct computations of the
interactions are necessary. This is the principle of the method.

However, in order to be really effective and achieve an almost linear
complexity, this idea must be associated with an algorithmic treatment: a
hierarchical subdivision of space. At the top level of the tree is a cube containing
the whole set of particles. The cube is cut into eight children cubes to create the
first level. The tree is built recursively until a number of levels is reached. Then,
one can work mainly in terms of the cells of the octree rather than the particles.
In fact, one considers the contributions of groups of particles belonging to a same
cell. The regular partitioning automatically gives distance criteria to determine
the cells for which it is possible to use the multipole expansions. Therefore,
interaction lists are created for each cell. Interactions between well-separated
pairs can then be computed by multipole expansions.

In that case, the machinery for far away particles must be initiated. The
application of the above principle gives rise to an OðN logðNÞÞ implementation.
In order to reduce the complexity even further, one has to apply another
technique for the evaluation phase. Indeed the use of local expansions, similar to
the multipole ones, makes it possible to place particles in groups for this
evaluation phase. If we have an expansion for a point Q close to x,

fkðOxÞz
Xp
lZ1

alðQxÞbkl ðOQÞ; ð3:5Þ

then the potential uðxiÞ can be evaluated only with locally dependent terms:

uðxiÞz
Xp
lZ1

alðQxiÞLlðQÞ; LlðQÞz
Xp
kZ1

MkðOÞbkl ðOQÞ: ð3:6Þ

In order to relate spatially both expansions, translation formulae are required.
Each expansion depends on an origin which is the centre of the current cell. First,
the moments (3.3) are computed at each cell of the finest level. Then, a
translation formula allows to climb the tree, the multipole expansions being
transported to the centre of the parent cell ðO0Þ:

MkðO 0ÞZ
Xp
lZ1

MlðOÞgk
l ðOO0Þ; ð3:7Þ

where gk
l is obtained through the available expansion,

jkðO0yÞZ
Xp
lZ1

jlðOyÞgk
l ðOO0Þ: ð3:8Þ

The contribution of a distant group of nodes to a local group is computed by the
formula (3.6), which converts the multipole expansion into a local expansion Ll .
The translation formula for local expansions allows to go down the tree. Back at
the finest level, local expansions are evaluated giving the contribution of all
distant nodes.
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All these expansions depend on the kernel K. For Laplace’s equation, Green’s
functions are expanded into spherical harmonics. It is important to note here
that the FMA offers the advantage over other fast methods that any accuracy
can be specified a priori through the choice of the number of terms p in the
multipole approximation.
4. Application of the FMA to the BEM

The FMA could be used by itself to solve Laplace’s equation. But it is better to
keep the BEM to discretize the problem since the accuracy of the BEM is well
recognized. Then, the FMA comes as an additional approximation that makes
the computations more efficient. What is difficult in the classical BEM, even
with the GMRES algorithm, is to solve the full linear system that comes from
the discretized integral equation involving Green’s function, and to assemble
the resulting matrix. The idea is to replace every matrix–vector product in the
GMRES algorithm by an evaluation with the FMA. This avoids assembling the
matrix and reduces the complexity to nearly OðNÞ (N is the number of nodes on
the boundary of the domain).
(a ) Expansions

As for the integration of Laplace’s equation, the application of the multipole
algorithm in our case is based on expansions of Green’s function into spherical
harmonics. Given an origin O, a point x l far away from the origin and a source
point x near the origin such that OxZðr;a;bÞ and Ox lZðr; q;fÞ in spherical
coordinates, Green’s function can be expanded as

Gðx; xlÞz
1

4p

Xp
kZ0

Xk
mZKk

rkYKm
k ða;bÞY

m
k ðq;fÞ
rkC1

: ð4:1Þ

Here, the functions YGm
k are the spherical harmonic polynomials (omitting a

scaling factor as in Greengard 1988),

YKm
k ða; bÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkKjmjÞ!
ðkC jmjÞ!

s
P

jmj
k ðcos aÞeKimb; kR0; jmj%k; ð4:2Þ

defined by the associated Legendre polynomials,

Pm
k ðxÞZ

ðK1Þm

2kk!
ð1Kx2Þm=2 d

kCmðx2K1Þk

dxkCm
; kR0; 0%m%k: ð4:3Þ

One has an expansion similar to (4.1) for vG=vnðx; xlÞ. Consequently,
the integral equation (2.3) occurring in the surface wave model for the pairs
Proc. R. Soc. A (2006)
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ðf; vf=vnÞ (the pairs ðvf=vt; v2f=vt vnÞ are treated similarly) becomes

aðx lÞfðx lÞz
ð
G

vf

vn
ðxÞ 1

4p

Xp
kZ0

Xk
mZKk

rkYKm
k ða; bÞY

m
k ðq;fÞ
rkC1

(

KfðxÞ 1

4p

Xp
kZ0

Xk
mZKk

v

vn
ðrkYKm

k ða; bÞÞY
m
k ðq;fÞ
rkC1

)
dG: ð4:4Þ

The double sum can be taken outside of the integral so that

aðxlÞfðxlÞz
1

4p

Xp
kZ0

Xk
mZKk

Mm
k ðOÞY

m
k ðq;fÞ
rkC1

; ð4:5Þ

where Mm
k ðOÞ is the moment at O:

Mm
k ðOÞZ

ð
G

vf

vn
ðxÞrkYKm

k ða;bÞKfðxÞ v

vn
ðrkYKm

k ða;bÞÞ
� �

dG: ð4:6Þ

The expansions are valid at a given origin O that represents the point at which
the contributions are placed together. In the algorithm, it is the centre of the cell
in which the expansion is known to be valid.

(b ) Near interactions

For the cells that are near neighbours, the programme calls a routine for the
BEM analysis. The integrations are the same as in the former model, except that
they are not performed at each collocation node. The integrations on each
element of the cells belonging to this interaction list are added and evaluated at
each collocation node.

(c ) Far away interactions

First, a BEM analysis has to be performed to compute the moments

Mm
k ðOÞZ

XM
iZ1

ð
Gx;h

Xq
jZ1

vf

vn
ðxjÞNjðx; hÞrkYKm

k ða;bÞjJ iðx; hÞjdx dh
( )

K
XM
iZ1

ð
Gx;h

Xq
jZ1

fðxjÞNjðx; hÞ
v

vn
ðrkYKm

k ða;bÞÞjJ iðx; hÞjdx dh
( )

: ð4:7Þ

In this case, rkYKm
k ða;bÞ plays the role of Gðx; xlÞ. But the numerical

integrations are similar. The main question is to know whether there is a
singularity. Unlike Green’s function, the spherical harmonics are not singular.
However, the normal derivative of the spherical harmonics brings in an apparent
singularity that could generate numerical errors. Fochesato (2004) showed that
this singularity can be removed by writing the spherical harmonics differently.
The boundary-element discretization only appears in the computation of the
moments. Therefore, the translation of a multipole expansion, the conversion to
a local expansion, the translation of a local expansion and the local expansion
itself are all the same as in the original work by Greengard (1988) (see Fochesato
2004 for more details).
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(d ) Storage and specific points

All the ingredients of the former numerical code that were related to the
discretization matrix must be adapted. For example, the storage of coefficients
that are needed for multiple use is now done cell by cell. The rigid mode
technique was applied to the former model in order to compute the factors aðx lÞ
of the BIE. Recall that it improves the conditioning of the system and avoids the
integration of the singular diagonal coefficient of the Neumann matrix. Since the
matrix is no longer available, the implementation must be adapted. In the former
model, the technique was applied a priori by substituting lines according to
equation (2.9). Now we apply it after the matrix–vector product, by correcting
the resulting vector. The sum of the off-diagonal terms is seen as a matrix–vector
product with the constant vector composed of ones. Then the vector is multiplied
by fðx lÞ, which is either a specified value (Dirichlet condition) or an estimated
value (Neumann condition) since an iterative method is used. Therefore, the
rigid mode technique appears in the linear systems (2.10) and (2.11) as

C
Xjsl

j2G

KN
lj !1

 !
�fðx lÞ on the RHS; K

Xjsl

j2G

KN
lj !1

 !
fðx lÞ on the LHS;

depending on the location of the node x l . The new product is performed by the
fast algorithm, using the stored Neumann coefficients as seen earlier.

The treatment of the edges also led to a modification of the coefficient matrix.
The implementation of double and triple nodes was done a priori, replacing lines
by the compatibility conditions. In the adapted fast BEM, these continuity
relations impose values of the resulting vector. So, once the solution of the
matrix–vector product is obtained by the FMA, a routine explicitly acts on the
resulting vector to force the continuity of the potential at double/triple nodes.

Finally, note that the GMRES algorithm, which is partly at the intersection
between the BEM and the FMA, is necessarily adapted. First, calls to a specific
routine replace the matrix–vector products. But since the matrix is no longer
available, the preconditioning must be adapted too. SSOR (symmetric successive
over-relaxation) preconditioning is still used but the matrix is different. The
FMA is well suited to a geometric strategy for the sparse approximate matrix
(Carpentieri et al. 2001). The near interacting coefficients of the matrix are still
available and can be used for that purpose. Therefore, we store these coefficients
in a sparse matrix during the near interaction phase in order to use the former
preconditioning.
5. Results

Preliminary results obtained with the original model without the FMA were
given by Grilli et al. (2001). The original numerical wave tank was further
validated by Grilli et al. (2002) and Guyenne & Grilli (2006), with an emphasis
on physical implications of the results. Grilli et al. (2002) compared favourably
model results on tsunami generation by underwater landslides to laboratory
experiments, while Guyenne & Grilli (2006) investigated the surface and internal
kinematics of the shoaling and overturning of solitary waves. In this section,
results obtained with the new algorithm are compared with those obtained with
Proc. R. Soc. A (2006)
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Figure 2. Overturning of a steep solitary wave with a plunging jet. The solitary wave comes from
the far field and propagates over a sloping ridge. The discretization used in the three-dimensional
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the classical BEM. New results are presented as well. Our aim is to show that the
same global accuracy is achieved with much less computing time.

The application considered by Grilli et al. (2001) is used first to perform the
comparative study. It involves the overturning of a solitary wave over a sloping
bottom with a transverse modulation that focuses the energy and leads to a
plunging jet. The model has been shown to reproduce with high accuracy the
initiation of the breaking jet. Therefore, it is natural to use that example to test
the accelerated method. The maximum depth hmax is used as unit length. The
unit time is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hmax=g

p
. The numerical wave tank is of length 19 and width 4 (or 8).

It is bounded by solid boundaries. The initial wave is a steep solitary wave of
amplitude 0.6. Figure 2 shows a zoom of the wave overturning on the three-
dimensional bottom. The accuracy of the new solution is then compared to that
of the former solution (without FMA). Moreover, the global stability is
monitored in order to get the smallest number of multipole terms that is needed
to get the same breaking jet as before. The computing times are also reported for
several grids. The computations have been realized on an Intel Pentium 4
processor. Its main characteristics are 2.2 GHz for the CPU and 1 Go of memory.

For the application under consideration, the various parameters of the BEM
code are fixed. The number of integration points is 10 by direction in order
to ensure sufficient accuracy to obtain the breaking jet. Two parameters of the
FMA must be specified with great care: the degree of the multipole expansion and
the number of levels in the hierarchical subdivision. The first one determines the
accuracy of the new approximation, but also influences the computing time. The
second one mainly acts on the efficiency. One expects the algorithm to be more
efficient for more subdivided domains. But then the manipulation of the tree
structure becomes a big task and reduces the benefits of the algorithm. For most of
our computations, five levels turned out to be optimal. For very coarse meshes,
four levels were used and for larger systems, a sixth or higher level was required.
(a ) Accuracy

As shown in §4, the FMA is based on truncated multipole expansions. They
are another approximation in the model and the first comparison consists in
verifying that the new results approach the former ones when the number of
Proc. R. Soc. A (2006)
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multipole terms increases. For that purpose we compute the first linear system
for two grids (i.e. two different levels of accuracy). The first one is a very coarse
grid with four elements in each direction (4!4!4 grid) for a total of 150 nodes.
Then, a more realistic grid is used: 40!10!4 with 1422 nodes. The consistency
of the multipole approximation inside the numerical wave tank is checked by
comparing point by point the solution obtained with both methods. The
maximum relative and absolute errors are plotted as a function of the number of
multipole terms in figure 3.

In each case, we get an almost straight line on a logarithmic scale; thus the
convergence is nearly exponential. However, we note that the relative errors are
greater than the absolute ones, particularly for the finer grid. The new
approximation deals with far away interactions. That way, small coefficients of
the influence matrix are approximated with less accuracy than the larger ones.
Consequently, small values which are very close to zero lead to large relative
errors. Only absolute errors are relevant here, because the values of interest are
of order unity and we are not specifically aiming at getting high accuracy in the
tail of the solitary wave where the values are close to zero. This confirms the
consistency of the accelerated method with regard to the classical one.

The fast algorithm comes as an additional approximation in the model. What
is important is not only that the accelerated method matches the former one, but
also that the global accuracy and numerical stability properties remain the same.
The only available diagnostic tool consists of following the evolution of volume
and energy as a function of time. Indeed these quantities must be constant since
there are no sources or sinks. The relative errors with regard to their initial value
give a good indication on the accuracy and the stability of the computed solution.
Big errors or oscillatory variations must lead to a loss in accuracy.

As shown in figure 2, the overturning of a solitary wave is simulated on a
60!40!4 grid and eight multipole terms are used in the FMA. Figure 4 shows
the evolution of the volume and energy relative errors for both methods. The
curves are very close. The computations are done in two steps. First, the shoaling
of the solitary wave is obtained on the whole domain. Then, a regular regridding
is applied at tz6 on a reduced domain around the wave. That way, the spatial
discretization is finer and is allowed to go further in the development of the
Proc. R. Soc. A (2006)
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plunging jet. This regridding explains the jump in the volume and energy curves.
The gradual increase of these errors corresponds to the formation of the plunging
wave, which has propagated along the basin. To confirm this conclusion, figure 5
shows the slices in the middle of the tank for both solutions at two different
times, after the regridding. Within graphical accuracy, there is no difference
between them.

Since the accelerated model is able to accurately simulate highly nonlinear
wave phenomena, let us now consider the efficiency. The first question to answer
is whether one can get such solutions with fewer multipole terms. That is to say,
once the accuracy of the BEM code is given, what is the smallest value for p
which leads to the same global accuracy? For this 60!40!4 grid, one can keep
only six terms in the multipole expansions instead of eight. The errors on the
Proc. R. Soc. A (2006)



Table 1. Comparison of computing time with and without the use of the fast multipole algorithm as
a function of the number of nodes. (The value pZ8 is used in the FMA.)

grid number of nodes time with FMA (s) time without FMA (s)

40!10!4 1422 45 41
50!20!4 2862 120 390
50!40!4 5102 250 1258
60!40!4 6022 329 1852

C. Fochesato and F. Dias2730
volume and the energy are of the same order but they do not follow exactly the
same curves as in figure 4. The plunging jet is obtained, but there is a difference
in the wave elevation and the back of the wave is slightly oscillatory. With finer
grids, the accuracy of the BEM is improved. If we keep the same parameter
values for the FMA, the errors due to the multipole approximation may become
dominant. So it may be necessary to modify them in order to get the same global
accuracy.
(b ) Efficiency

Suppose that the best parameter set for the FMA is known. The computing
times for various discretizations are recorded in table 1. The comparisons are
made for the computations until the first linear system is solved. The values for
one time-step are not exactly the same. Indeed, if the computing time for one
time-step is measured as the ratio between the total computing time and the
number of time-steps, one obtains for instance 49 s per time-step with the FMA
versus 62 s without for the grid with 1422 nodes, and 320 versus 1835 s for the
grid with 6022 nodes. So even for the coarse grid with 1422 nodes, the FMA gives
better values. For the 60!40!4 grid with 6022 nodes, a reduction of the
computing time by a factor close to six is obtained.

These results have been obtained for some prescribed values of the BEM
parameters, such as the number of integration points. Using less integration
points reduces the time spent in the regular integrations. This is true for both
methods but, since with the FMA less integrals are computed, the difference in
time is less significant. However, the reduction of the complexity is conserved.
For any value of the integration parameters, it is almost linear for large N (see
figure 6 where the computing times are plotted versus the number of nodes for
five integration points per direction instead of 10). The complexity of the
accelerated method becomes linear above roughly 4000 nodes.
(c ) Discussion and future improvements

The memory requirements of the former BEM code make it practically
impossible to increase further the number of nodes to discretize the boundary.
Thus the comparison stops here. However, the new model avoids the storage of
most of the N!N matrices. In fact, the only one that remains is the
preconditioning matrix. It is a sparse matrix and an adapted storage is under
investigation. Anyhow more memory is available than before to do computations
over larger grids.
Proc. R. Soc. A (2006)
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The error analysis of the classical FMA is well known. But to our knowledge, a
rigorous analysis of the BEM for a mixed Dirichlet–Neumann BIE with a
piecewise smooth boundary has yet to be given (see Beale et al. 1996; Beale 2000;
Hou & Zhang 2002 for convergence results on BIEM for time-dependent, three-
dimensional, doubly periodic water waves). The use of particular techniques
makes the analysis even more complicated. So it is not appropriate to use the
analysis of the FMA for the choice of the number of multipole terms, since we
have no access a priori to the error made in the BEM approximation. We must
apply empirical techniques that are application dependent. However, it will be
interesting to be able to adjust each successive approximation to the global order
of accuracy of the method: this will reduce the computing time for the desired
accuracy.

Examples of computations performed with the new model are shown in
figures 7 and 8. The motivation for the example shown in figure 8 was given by
the Gold Coast artificial reef designed for coastal protection and surfing (Black
2000). All the computations presented in this paper correspond to scalar
implementations. In fact, the old model has a vectorized implementation for
which the computing time is reduced on a supercomputer. The new model could
also be vectorized, but since the set of nodes has been divided into cells, the
vector operations concern smaller arrays. Therefore, a vectorized implemen-
tation would be interesting only for a sufficiently large number of nodes by cell.

The FMA has been constantly improved since its discovery. But it is not
obvious that much further gain can be expected for the level of accuracy needed
in the numerical wave tank. However, a parallel implementation can bring a
significant speed-up for any grid.
6. Conclusion

The three-dimensional numerical wave tank developed by Grilli et al. (2001) and
validated by Guyenne & Grilli (2006) solves potential flow equations with a free-
surface, and can describe accurately physical aspects of nonlinear waves over a
complex bottom topography and wave focusing. However, more complex
phenomena require finer and finer discretizations so that the OðN 2Þ complexity
of the code, where N is the number of nodes on the boundary of the domain, is too
Proc. R. Soc. A (2006)
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restrictive. To relax this constraint, the FMA has been combined with the BEM
through the use of an iterative solver. This rapid algorithm has been designed to
compute faster the mutual interactions of a set of particles. For far away
particles, contributions can be grouped together through the use of multipole
expansions. Moreover, a hierarchical subdivision of space leads to a real
reduction of the complexity of the problem. The inclusion of the algorithm in the
numerical wave tank means replacing each matrix–vector product by a call to
the FMA. However, this is a non-trivial task and several failures have been
reported in the past. The BEM analysis for well-separated nodes leads to new
Proc. R. Soc. A (2006)
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integrals for which great care is taken in order to avoid apparent singularities.
Particular features of the model must also be taken into account for the
implementation, such as the rigid mode technique, the double nodes and the need
to store some information that was included in the influence matrix. The
resulting combined methods give a more efficient model even for coarse
discretizations. Several improvements are still possible. The available distance
criteria from the hierarchical subdivision can be used to apply adaptive
integrations. Since the accurate numerical integrations are the main time-
consuming task, appropriate choices of the number of nodes for the quadrature
according to the distance between nodes should improve the method even
further. Finally, even though the FMA is particularly efficient for a large number
of nodes, the use of a parallel version will be a valuable improvement for any size
of discretization. That way, finer grids and larger domains could be considered to
give new insights into free-surface problems.
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