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ABSTRACT

Polar ocean circulation is influenced by fluxes of salt and freshwater at the surface as ice freezes in one
location, is transported by the winds and currents, and melts again elsewhere. The motion of sea ice, moreover,
is strongly affected by internal stresses that arise from the mechanical strength of the ice cover. A simple sea-
ice dynamics model, allowing these effects to be included in large-scale climate studies, is presented. In this
model a cavitating fluid behavior is assumed whereby the ice pack does not resist divergence or shear, but does
resist convergence. While less realistic than other rheologies that include shear strength, this assumption has
certain advantages for long-term climate studies. First, it allows a simple and efficient numerical scheme, in
both rectangular and spherical coordinates, which is developed here along with a generalization to include shear
strength via the Mohr-Coulomb failure criteria. Second, realistic ice transport is maintained, even when the
model is driven by smoothed wind forcing—a feature that may be useful in coupled ice-ocean climate models
using mean monthly or mean annual winds. Finally, the lack of shear strength allows smooth flow past an
obstacle, making the scheme attractive for coupling to a global ocean circulation model using an artificial island
to avoid the mathematical singularity at the North Pole. Noteworthy, however, is the fact that the numerical
scheme developed here does not require an island at the pole, making the model equally suited for coupling to
a global atmospheric circulation model.

Three-year dynamic-thermodynamic simulations using observed forcing from 1981 to 1983 are performed
using the cavitating fluid model and a more complete viscous-plastic model for comparison. The thickness
buildup patterns, net ice growth, atmospheric heat flux, and total ice volume calculated by the cavitating fluid
model are very similar to the viscous-plastic model resuits; however, the cavitating fluid model substantially
overestimates local ice drift when compared to abserved buoy drift. A 3-year simutation using the spherical grid
version of the model, both with and without an artificial island at the pole, shows that the island has little impact
on the thickness buildup and ice transport. Overall, the cavitating fluid approximation is shown to be a useful
simplification, allowing essential feedbacks between ocean circulation and ice transport to be efficiently included
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in large-scale climate studies.

1. Introduction

The influence of the polar oceans on global climate
is substantially determined by the movement, extent,
and makeup of their ice covers. An ice cover provides
an effective insulating blanket, impeding the exchange
of heat between the atmosphere and ocean, and a rel-
atively reflective surface, reducing the incoming short-
wave radiation. The insulating effectiveness of an ice
cover is strongly dependent on its thickness, or more
precisely, since pack ice is composed of a variety of
thicknesses, on the areal fraction of each thickness. Of
particular importance is the fraction of open water (ice
of zero thickness) through which a large portion of the
heat exchange takes place. Ice transport can also have
an important effect, particularly on ocean circulation,
in that it allows ice to form in one location and melt
in another, thus creating a net imbalance of salt flux
at the ocean surface.
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A sea-ice cover is not a static, uniformly thick layer,
but rather is a constantly changing amalgam of open
water, thin first year ice, thick multiyear ice, and even
thicker ridged ice. Virtually any motion of the pack
will result in a redistribution of the amount of ice in
each of these categories; in particular, a deformation
event will transform thin ice into thick ice by ridging
and simuitaneously create areas of open water. The
exchange of heat between the ocean, ice, and atmo-
sphere may cause a decrease in thickness of all cate-
gories of ice, through melting, or an increase in thick-
ness, through freezing, with the increase of thickness
most pronounced for very thin ice or open water. Con-
siderable effort has been made to properly include these
thermodynamic processes in climate models (e.g.,
Maykut and Untersteiner 1971; Semtner 1976; Par-
kinson and Washington 1979). However, because
thickness buildup and open water formation are so
dominated by dynamic processes, the inclusion of some
sea-ice dynamics parameterization in climate models
is also necessary to allow for the potentially important
feedback between thermodynamic processes, ice trans-
port, and deformation.
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A second feature of the large-scale behavior of sea
ice is the observation that it is strongly resistant to con-
vergence and yet relatively free to diverge. This can be
understood by noting the similarity of pack ice to a
granular medium—a collection of discrete particles (ice
floes) separated by cracks and leads. Although this
granular analog more accurately describes the ice pack
at small scales, at large scales it is more convenient to
invoke the continuum hypothesis and describe the ag-
gregate behavior in terms of rheology (the mathemat-
ical description of deformation and flow under load).
It is this rheology that relates the change in structure
of an ice cover to the forces applied by winds and cur-
rents and is therefore the key to modeling ice dynamics.
Plastic rheologies have been used successfully in the
past (e.g., Coon et al. 1974; Hibler 1979, 1980) and
the sensitivity of ice drift to a number of different rhe-
ologies has been investigated by Ip et al. (1991).

The motivation for the present work is the devel-
opment of a sea-ice dynamics parameterization, which
retains most of the essential physics of large-scale drift,
is conceptually and computationally simple, and is well
suited to large-scale, crude resolution climate studies.
We note that the approach can be viewed as a refor-
mulation of the velocity correction method of Niki-
forov et al. (1967) and Parkinson and Washington
(1979) to approximate the so-called cavitating fluid
rheology. In this scheme, the ice pack is assumed to
have no shear strength which, although counterintui-
tive, has certain advantages: The model is very simple
to formulate and implement, and a more robust (and
realistic) circulation of the ice is maintained for wind
fields averaged over periods of days or weeks (Flato
and Hibler 1990). In addition, the large-scale thickness
buildup and heat transfer patterns calculated by this
model are very similar to the more complete viscous-
plastic model of Hibler (1979, 1980). As discussed in

more detail later, the velocity correction scheme de-

veloped here has the advantage over previous ad hoc
methods in that an attempt is made to conserve mo-
mentum and the resulting velocity field is consistent
with an internal ice pressure field, calculated simulta-
neously.

The aim of this paper is to present the numerical
formulation of the cavitating fluid rheology, both in
rectangular and spherical coordinates, and to dem-
onstrate its utility by incorporating the cavitating fluid
rheology into a complete dynamic-thermodynamic
sea-ice model and performing several 3-year simula-
tions of the Arctic ice cover. Comparison with observed
buoy drift and the more complete viscous-plastic model
of Hibler (1979) yields insight into the effects of this
simplified parameterization. In addition, an extension
of the numerical scheme to include shear strength via
a nonlinear shear viscosity (the Mohr-Coulomb rheol-
ogy) is briefly discussed.
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2. Model description
a. Governing equations

Following Hibler (1979), the momentum balance
for sea ice is described by the following vector equation

ma—al%=—mkau+ra+‘rw—mgVH+F
where the nonlinear momentum advection term has
been neglected, m is the mass of ice per unit area, u is
the ice velocity, ¢ is time, fis the Coriolis frequency,
k is the upward unit normal, 7, and 7,, are forces (per
unit area) due to air and water drag, respectively, g is
the acceleration due to gravity, H is the sea-surface
dynamic height, and F is the force (per unit area) due
to variations in internal ice stress. Note that here and
in the remainder of the paper, boldface characters rep-
resent vector quantities. The air- and water-drag stresses
are obtained from a simple quadratic formulation (e.g.,
McPhee 1975)

74 = C¥[U, cos¢ + k X U, sin¢]
7w = C¥[(U, — u) cosf + k X (U, — u) sinf]

where

(1)

(2)
(3)

C: =PaCa|Ual
ch = prwlUw - uI

and U, and U,, are the geostrophic wind and current
velocities, C, and C,, are wind and water-drag coeffi-
cients (taken to be 0.0012 and 0.0055, respectively);
¢ and 8 are wind and water turning angles (both of
which are taken to be 25°).

The internal ice-stress term depends on the particular
parameterization chosen to represent the relationship
between ice velocity (deformation) and the applied
forces. It is a particular approach to this parameteriza-
tion, the cavitating fluid rheology, and its numerical
formulation that is the main theme of the present
paper.

The cavitating fluid rheology attempts to capture
the most important aspects of sea-ice behavior while
remaining computationally simple. This is achieved
by making some simplifying assumptions regarding the
large-scale behavior of pack ice. The fundamental as-
sumption is that pack ice can be thought of as an ideal-
ized two-phase medium in which one phase (open wa-
ter) has no strength at all, while the other phase (ice)
is relatively rigid. This idealized medium has no shear
or tensile strength and so divergence is allowed to occur
freely causing only an increase in the area covered by
the open water phase (i.e., a reduction in compactness).
In compression, the medium has some resistance due
to the “rigid” phase. It should be noted that the ice
phase need not be completely rigid, but may have a
compressive strength beyond which convergence and
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thickening may occur. This compressive strength can
be considered a function of both the ice thickness and
compactness. As will be shown later, this idealized be-
havior is conveniently modeled numerically.

To put this rheology into the context of others that
have been used, it is useful to consider a plot of the
failure surface in principal stress space.! The cavitating
fluid failure surface in two dimensions plots simply as
a line in the third quadrant starting at the origin and
inclined 45° from the horizontal axis as shown in Fig.
1. The length of the line depends on the compressive
strength of the material with completely incompressible
behavior represented by a line extending to infinity.
This may be made more clear by comparison with the
elliptical yield curve used by Hibler (1979), which is
shown also in Fig. 1. Inside the ellipse, the material is
supposed to be rigid (although for numerical purposes
a very small amount of viscous creep is allowed in
practice ) while on the curve, plastic flow occurs subject
to the so-called “normal-flow rule.” This means that
the strain-rate vector is normal to the yield curve in a
coordinate system with principal stresses and principal
strain rates aligned. If one now imagines deforming the
ellipse such that the ratio of major to minor axes gets
larger and larger, one will obtain the cavitating fluid
behavior in the limit as the ratio goes to infinity. Keep-
ing the normal-flow rule in mind, this thought exper-
iment also shows that convergence and divergence can
occur only at the two endpoints of the cavitating fluid
line (compressive and tensile failure) while all other
points on the line represent incompressible, pure shear
behavior. The internal ice-stress term in Eq. (1) can
now be expressed simply as

F=-Vp (4)

where p is the internal ice pressure (equal to the mag-
nitude of the two principal stresses).

Perhaps the most important ramification of assum-
ing the aforementioned cavitating fluid behavior is that
shear strength is neglected. For the present, this sim-
plification can be thought of as heuristic and will be
shown to produce a reasonable sea-ice model for long-
term climate studies. The ramifications of this as-
sumption will be examined by comparison with a more
complete model and by comparison with large-scale
observations of buoy drift.

The essential features of the numerical scheme to
implement the cavitating fluid rheology are not new;
Nikiforov et al. (1967) used a similar scheme in their
model of nearshore ice flow in the east Siberian and
Chukchi seas. The basic idea is to start with free drift,

! The failure surface defines the stress states at which plastic flow
occurs; points within the surface represent rigid behavior, points on
the surface represent plastic flow, and points outside cannot be
reached.
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FiG. 1. Elliptical and cavitating fluid yield curves
in principal stress space.

that is, the ice velocity field calculated by ignoring ice
interaction, and then correct these velocities in a man-
ner that reflects the compressive strength of the pack
ice. In the model of Nikiforov et al. (1967), this cor-
rection was simply to remove the onshore component
of velocity when the compactness reached 100%. A
similar scheme was used by Parkinson and Washington
(1979) in a large-scale dynamic-thermodynamic sea-
ice model. In their scheme, the inward velocity com-
ponents at any computational grid cell were reduced
in an iterative fashion so that the compactness re-
mained at or below a specified amount. Flato and Hib-
ler (1990) showed that these schemes excessively damp
the velocity field by not conserving momentum and
presented a conservative method that approximately
solved the equations of motion. The numerical scheme
presented in section 2b preserves the spirit of these ad
hoc schemes in that it is a correction to free drift; how-
ever, the correction conserves momentum and yields
a complete solution to the equations of motion, which
is consistent with an internal ice pressure field. An im-
portant aspect of the present numerical scheme is that
the internal ice pressure is explicitly calculated. Aside
from providing a rationale for the velocity correction,
the pressure calculation can be used, in conjunction
with an assigned failure strength, to allow convergence
and so provide a mechanism for dynamic increase of
ice thickness.

b. Numerical scheme

Recalling the idealized cavitating fluid rheology dis-
cussed in section 2a, the ice pack is assumed to have
no shear or tensile strength, but does resist compression
via internal ice pressure. What we wish to calculate is
the velocity and pressure fields satisfying the equation
of motion (1) and the conditions that 1) p be zero if
there is a divergent component to the velocity field and
2) equal to the compressive strength if there is a con-
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vergent component. The theme here is to begin with
velocity and pressure fields, which satisfy the equation
of motion (1), and modify these fields in such a way
as to satisfy the above constraints. Of course the sim-
plest initial velocity field is the so-called free-drift ve-
locity, that is, the velocity field satisfying Eq. (1) with
p = 0 everywhere; however, the fact that any solution
to Eq. (1) can be used as the initial field will be useful
later on. We note that another approach to solving
these equations is to use a nonlinear bulk viscosity and
directly integrate the equations of motion. As discussed
below, this procedure will yield the same result but is
computationally much less efficient.

We begin by noting that, neglecting the acceleration
term, the equation of motion (1) can be written in the
following compact form,

—ou+pfkXu+7=Vp (5)
where a = C} cos@ and 8 = mf + C¥ sind; 7 is the
force vector of those terms in the momentum balance
that do not depend on u (namely, air drag, sea-surface
tilt, and water drag due to geostrophic ocean currents).
We now seek the corrected fields w + tiand p + p
(where ~indicates a correction) such that p + = 0
and

Vi(u+i)=0
Vi(u+i)=0
Vi(u+ii)<0

if p+p=0
if 0<p+ P <pPmax

if p+ P = Dma (6)
where pp.. is the maximum allowable pressure or ice
strength, and furthermore, these corrected fields satisfy
the equation of motion, namely,

—o(ut+ @)+ Bk X(u+i)+7=V(p+p). (7)

If we now subtract Eq. (5) from Eq. (7) and write
the result in component form, we can solve for the
velocity corrections in terms of the pressure correction
P and then obtain an equation for the j so that the
conditions on the divergence rate (6) can be satisfied.
However, for reasons that will be discussed shortly,
such a scheme is difficult to implement numerically.
On the other hand, if we approximate (7) by

~a(u+8)+ Bk Xu+7=V(p+p) %)

that is, assume the off-diagonal terms are constants
determined by the initial velocity field, the situation is
greatly simplified. (In fact, the off-diagonal terms will
be better approximated by imbedding the correction
scheme within the time-marching procedure as dis-
cussed later.) Now (5) can be subtracted from (8) to
give the following equation for the velocity correction,

-1
iil=— V5.
23

%)
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We now require an expression for j such that V- (u
+ 1) = 0. Thus, we obtain from (9),
V-(—I-Vﬁ)=V-u (10)
a
where we note that if « is constant, we have an equation
for the Laplacian of j in terms of the divergence rate
of the velocity field before correction. At this point it
appears that we have a very complicated situation in
which we require a solution to (9) and (10) subject to
the cavitating fluid conditions (6); however, in finite-
difference form the situation simplifies considerably
and an iterative, relaxation solution can be obtained.
Before proceeding with the finite-difference formu-
lation, some consideration must be given to the com-
putational grid. Two grid schemes commonly used in
problems of this kind are the Arakawa B and C grids.
The B grid was initially used (Flato and Hibler 1989,
1990) to be consistent with the ice dynamics model of
Hibler (1979) and many of the large-scale ocean cir-
culation models. It was found that, due to the Laplacian
form of Eq. (10), the B-grid formulation suffers from
an alternating grid point or “checkerboard” instability,
which is not present in the C-grid formulation. This is
discussed in more detail in appendix A. For this reason
the Arakawa C staggered grid formulation, depicted in
Fig. 2, will be used. An unfortunate side effect of this
choice is that calculation of the free-drift velocity field
requires an iterative relaxation solution (as opposed to
the simple algebraic solution possible in the B grid);
however, the free-drift solution scheme converges very
quickly and so does not add significantly to the overall
computational effort. It should be noted here that the
alternating gridpoint instability only becomes obvious
when completely incompressible behavior is modeled.
Therefore, in most cases the velocity and thickness
fields calculated by the B-grid model are very similar
to those of the C-grid version. A comparison of the
thickness fields calculated by both versions of the model
is made in appendix A.
The derivation that follows will use a rectangular
grid in a Cartesian coordinate system; the analogous

\j
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Arakawo B-Grid Arakawa C-Grid

FiG. 2. Computational grid cells showing location of vector and
scalar quantities. (a) Arakawa B grid, (b) Arakawa C grid.
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equations for a spherical grid are presented in appendix
B. In the C grid, the finite-difference form for the left-
hand side of Eq. (10) is

1. 1 1 N \
V- (; Vp) = Z‘)'C"E [-alTl,j (pi+2,j+1 - pi+l,j+l)

| .
- F (Pis1,je1 — Pi,j+1)]

ij

1 1 - .
+ _A? [m (Pi+1,j2 — Divr,j+1)

- Lx (ﬁi+1,j+1 - p~i+1,j):l (1 1)
(23 ij

where o is the coeflicient for the x-velocity component
and a?} is the coefficient for the y-velocity component.
The simplification now comes because we will be per-
forming a relaxation solution on the pressure field and
so at any point in the relaxation sweep, we will be in-
crementing p only at the i + 1, j + 1 location. Therefore,
only p;41 j+1 is nonzero and so, combining (10) and
(11), we get

o v 1 1 + 1
. . _ — .u — e
Dit1,j+1 Ax2 a{j e

1 1 1
+—— |+ .o(12
Ay? [a{j aj a1 ]} (12)

The concomitant velocity corrections for this grid cell
are given by the finite-difference form of (9) as

4= —1 iy jn
i o j Ax
i 1 Pivi
i+1,

g Ujyy,j Ax
5= 1 Di+i,j+1
1,7 aij Ay

I Pisy
~ _ ,j+1
Bi o1 = —— —bt (13)
;v Ay

Equations (12) and (13) give the corrections to be
added to the pressure and velocities at a grid cell such
that the divergence in the grid cell, calculated by

1 1

Veu= Ax (i1, — ui ) + Ay (vi,j+1
will be exactly zero.

Having now derived all the necessary equations, the
relaxation procedure for calculating cavitating fluid
pressure and velocity fields can now be outlined. The
basic idea is to begin with velocity and pressure fields
that satisfy Eq. (5) and then sweep through the com-
putational grid a number of times applying the appro-

—v;,;) (14)
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priate corrections grid cell by grid cell. The current
value of either velocity or pressure is the sum of the
initial value and all of the corrections that have been
applied. At a given grid cell, the first step is to calculate
the present divergence rate from Eq. (14) (note that if
the divergence rate is calculated using the most recent
values for u and v, we have the Guass-Seidel relaxation
scheme).? If the divergence rate is greater than zero
(i.e., diverging) and the pressure is also zero, then
nothing need be done (i.e., % =0, D = 0, and p = 0).
If, on the other hand, the divergence is negative (i.e.,
converging), the corrections of Eqs. (12) and (13) are
calculated and the velocity and pressure fields updated.
In addition, the following special cases need to be con-
sidered: 1) if the divergence is positive and the pressure
is finite either the correction based on (12) or p = —p
is applied, whichever is smaller in magnitude (this en-
sures that after correction either the pressure is finite
and the divergence is zero or the pressure is zero and
the divergence positive); 2) if the new pressure, p + p
is greater than p..., the pressure correction j = Pmax
— p and the concomitant velocity corrections must be
used (this ensures that the pressure never gets above
the specified ice strength).

Since the correction applied to one grid cell influ-
ences the divergence rate of all its neighbors, the cor-
rections must be applied in an iterative manner,
sweeping through the computational grid a number of
times until the change in velocity between one sweep
and the next is smaller than some specified tolerance.
It is useful to note that the above corrections applied
to a particular grid cell can only cause convergence in
neighboring grid cells and so, if the initial field is free
drift, case (1) will never be encountered. Also, if com-
pletely incompressible flow is to be modeled (i.e.,
DPmax —> 00 ), case (2) will never be encountered.

It is instructive here to consider briefly the special
case of Ax = Ay and «;; equal to a constant. In this
case, we note first that the sum of velocity magnitudes
over a grid cell is the same before and after correction
(except near boundaries), and so, in the limit of uni-
form thickness, the average momentum is conserved
by the correction. Moreover, Flato and Hibler (1990)
pointed out that in this case the correction also results
in a decrease in the sum of the velocities squared en-
suring convergence of the relaxation scheme. In the
more general case described above, these simple pre-
cepts no longer apply; nevertheless, the relaxation
scheme has always converged based on numerous tests.

The reason for approximating (7) by (8) is clear if
one considers that, in the C grid, the velocity in the
off-diagonal term of (7) would have to be calculated
from a four-point average, thereby eliminating the

2 Note that a Jacobi scheme in which (12) is computed using the
velocities from the previous step in the iteration, can also be used
and lends itself to implementation on massively parallel computers.
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possibility of simple pressure-velocity relationships like
Eq. (13). {(Note that in the B grid, the appropriate
pressure—velocity relationships are easy to find, how-
ever, the B grid is undesirable for the reasons discussed
earlier.) In addition, the pressure field calculated by
this approximate procedure is quite close to the final
pressure field, and so, an accurate solution can be ob-
tained by performing the correction procedure twice
for each time step, as discussed next.

It should be noted at this point that the solution
obtained by the present scheme has been verified by
comparison to a direct, forward Euler time-stepping
solution (Ip et al. 1991) similar to that used by Semtner
(1987). This is a much less efficient procedure, but
does give a solution with known accuracy. The cavi-
tating fluid correction scheme produces equilibrium
velocity fields that are within 1% of those produced by
the direct time-stepping scheme (Ip et al. 1991).

In order for the aforementioned cavitating fluid. al-
gorithm to be incorporated into a complete dynamic
sea-ice model it must be stepped forward in time. The
nonlinear water-drag terms in Eq. (3) (which appear
in the coefficients o and 8 in the preceeding section)
require a two-step time-stepping scheme like the mod-
ified Euler method. Since this requires calculating the
velocity and pressure fields twice for each time step, a
predictor—corrector scheme can be used for the off-
diagonal terms in the cavitating fluid procedure. In
other words, we can start with free drift and obtain the
corrected fields for the first step, calculate new drag
coeflicients based on this new velocity field, and then
calculate a “modified” free-drift field [ from (5)] using
these new drag coeflicients and the pressure field from
the first step. This modified free-drift field then becomes
the initial field to which the cavitating fluid correction
scheme is applied to obtain the final velocity and pres-
sure fields. (This is one reason for deriving the cavi-
tating fluid corrections with an arbitrary initial pressure
field.) This scheme is represented symbolically as fol-
lows:

—a(u)u 2 + Bu )k X w + 7 = Vp+i/2

us + ux+]/2
_a( uk+l

(15a)

2

K4 k+1/2
+ 3(1——2"———)1( X w12 4 7 = Vp*! (15b)

where u’ is the free-drift velocity field; superscript «
indicates the time step, and the arguments of « and 3
indicate the velocity magnitudes used to calculate the
nonlinear drag coefficient (3). This scheme works well
because the pressure field calculated in (15a) is very
close to the pressure field one obtains if the above
scheme is stepped forward many times without chang-
ing the forcing 7. It might also be noted here that the
free-drift velocity, u’, could be replaced by u* (and the
initial pressure field of zero replaced by p*), which
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might result in improved efficiency if the forcing is
slowly varying.

¢. Extension of cavitating fluid scheme to include
shear strength

Although the cavitating fluid scheme was developed
as a simple sea-ice dynamics parameterization in which
the lack of shear strength is a fundamental assumption,
the scheme can be generalized to include shear strength
via a nonlinear shear viscosity in a manner similar to
that of the viscous-plastic model of Hibler (1979). In
particular, the Mohr-Coulomb failure criterion, com-
monly used in soil mechanics, can be simulated with
results almost identical to the direct integration method
(Ip et al. 1991) but with much less computational ef-
fort.

The Mohr-Coulomb failure criterion is a linear re-
lationship between pressure and shear strength and
plots as two lines in principal stress space, as shown in
Fig. 3. In other words, increasing pressure produces
increasing shear strength. The angle between the two
failure lines is related to the more common “angle of
shearing resistance,” ¢, by the following definition:

. 8

Sing = tan 3
Unlike most soil-mechanics problems, the sea-ice case
is essentially a two-dimensional problem in which the
pressure cannot increase without bound; therefore, a
limiting pressure or “cap” must be placed on the yield
curve as shown in Fig. 3. As in the case of the elliptical
yield curve, stress states on the failure surface represent
plastic flow while stress states inside represent rigid be-
havior. In contrast to the elliptical yield curve however,
the normal-flow rule will not be applied to the Mohr-
Coulomb case since this would imply dilation for most
of the yielding stress states; rather, stress states on the
two limbs of the Mohr-Coulomb yield curve corre-
spond to pure shear deformation.

(16)

oy
A
Pmax
-t + > T,
Mohr - Coulomb
+ Pmox

/7
Cavitating Fluid

FiG. 3. Mohr-Coulomb failure envelope showing included angle,
4, and cavitating fluid yield curve for comparison.
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Recalling that the cavitating fluid scheme calculates
a velocity and pressure field based on no shear resis-
tance, one can imagine starting with such a solution,
calculating a shear strength at each location based on
the Mohr-Coulomb criterion, and applying an addi-
tional correction procedure to reduce the shear defor-
mation. This can be accomplished by introducing a
nonlinear shear viscosity at each point and performing
a relaxation solution based on these shear viscosities
and the pressure field from the cavitating fluid correc-
tion. The numerical details of the Mohr—Coulomb
model are given in appendix C, and some preliminary
results are given in section 3. It is not, however, the
purpose of this paper to investigate the effect of this
particular shear strength parameterization, but rather
to present the numerical method as an extension of
the cavitating fluid model.

d. Strength parameterization

The large-scale compressive strength of sea ice, Pmax,
can be parameterized in a number of ways depending
on the process being modeled. The simplest such pa-
rameterization is to ignore ice interaction altogether
and set pnax = O (i.e., free drift). The simplest param-
eterization that allows for ice interaction is to consider
the pack to be completely incompressible, that is,
Pmax —> oo. This is also not a particularly useful pa-
rameterization for long-term integrations because it
neglects the important process of dynamic thickness
buildup and, in addition, requires substantially more
computational effort than the case of a reasonable ice
strength. Perhaps the next simplest parameterization
1s to consider the ice pack to be incompressible if its
thickness exceeds some specified cutoff value while re-
maining free to converge for smaller thicknesses. Such
a scheme, when integrated for a several month period,
produces an ice cover that is nearly all at the cutoff
thickness and requires as much or more computational
effort than the more realistic parameterization dis-
cussed next. .

A more physical parameterization is that suggested
by Hibler (1979), which is

Pmax = D*h exp[—K(1 — 4)] (17)
where p* and K are empirical constants taken to be
27.5 kN m~2 and 20, respectively; A is the ice thickness
(m), and A is the compactness (or ice-covered area
fraction, a number between 0 and 1). The value for
p* was determined by Hibler and Walsh (1982 ) based
on comparisons with the observed drift of a Soviet ice
station, while K was chosen (Hibler 1979) to reproduce
the observation that pack ice with more than about
10% open water exhibits very little resistance to con-
vergence. ’
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e. Thermodynamic growth and advection

The solution of the momentum equation was dis-
cussed in some detail above, but we have yet to discuss
the continuity equations that, in the case of the two-
level model considered here, can be written as

oh
— = -=V-(uh) + G, (18a)
ot
04
B-Z—'—:—V-(uA)-i-GA (18b)

where G, and G4 are the thermodynamic growth rates
of ice and compactness, respectively. The thermody-
namic growth terms are modeled essentially the same
as Parkinson and Washington (1979), except that snow
cover is not explicitly included and there is a constant
oceanic heat flux, which is taken from the diagnostic
ice—ocean calculation of Hibler and Bryan (1987). The
thermodynamic calculations are discussed in more de-
tail in Hibler ( 1980, appendix B) and Hibler and Walsh
(1982). The advection terms are calculated using sim-
ple upstream differencing,

3. Simulation results
a. Computational grid and forcing fields

The numerical results described in this section were
obtained by applying the cavitating fluid model to a
160-km resolution Cartesian grid representing the
Arctic Ocean, Barents Sea, and parts of the Norwegian
and Greenland seas, as shown in Fig. 4. The time step
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FIG. 4. Computational grid used in simulations. Grid cells are 160
km square with cross-hatched cells indicating outflow boundaries.
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fluid; (d) cavitating fluid with compressive strength.

is 1 day. Lateral boundary conditions are “no slip” at
land boundaries (for the viscous-plastic model) and
free outflow to the North Atlantic, as described by Hib-
ler (1979) through the cross-hatched grid cells in the
figure. The model results presented make use of forcing
fields for the period January 1981-December 1983;
however, to ensure a reasonable initial state, the model
was allowed a 3-yr “spinup” period with a climatolog-
ical dataset.

The forcing fields for the climatological spinup pe-
riod were obtained from the following sources. The
wind fields are based on the NMC analysis of the
“FGGE” year, December 1978-November 1979, with
the mean replaced by twice the 30-yr mean of the 1951~
80 wind fields described by Walsh et al. (1985). This
gives a wind field with realistic daily variability yet pro-
duces mean circulation and thickness buildup repre-
sentative of climatology. (The idea here was simply to
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construct a wind field that produced a thickness field
similar to the long-term mean so as to provide a rea-
sonable initial condition for the simulations using the
observed wind fields from 1981 to 1983). The air tem-
perature and humidity data were taken from Crutcher
and Meserve (1970), and the radiation data was cal-
culated as in Parkinson and Washington (1979). The
average annual oceanic heat flux and the geostrophic
ocean currents (approximated by the average annual
surface currents) are from the diagnostic ice-ocean
calculation of Hibler and Bryan (1987). The 1981-83
dataset also uses this average annual heat flux, but the

F1G. 6. Monthly average velocity fields for March 1983; a vector
one grid cell long is approximately 0.1 m s™'; (a) viscous plastic
(elliptical yield curve); (b) cavitating fluid; (¢) Mohr-Coulomb.

wind fields were calculated from the NCAR surface-
pressure analysis and the thermodynamic fields from
the NASA analysis (J. Walsh, personal communica-
tion).

b. Velocity patterns and long-term drift

The results discussed in this section are meant to
iltustrate the effect of neglecting shear resistance in the
cavitating fluid velocity model on the velocity patterns
and ice transport. The thickness buildup and the feed-
back between dynamics and thermodynamics will be
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(b) monthly average ice outflow (Sv = 10° m?s~!) through the Fram Strait, for the period 1
January 1981 to 31 December 1983. Results for both daily varying and monthly averaged wind

forcing are shown.

examined in the following sections. Figure 5 illustrates
the main points here, showing monthly average velocity
and pressure fields for March 1983. The average free-
drift velocity field is shown in Fig. 5a. Of particular
note is the strong flow converging against the Canadian
Archipelago. The velocity field calculated by the in-

compressible cavitating fluid model in Fig. 5b illustrates
how the correction scheme removes this convergence
by “steering” the flow alongshore creating a double
gyre. It is interesting to also note the similarity between
this behavior and that of the Stommel (1948) ocean
model (wherein the curl produced by a latitudinally
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FIG. 8. Observed buoy tracks showing positions at the middle
of each month starting 15 June 1981.

varying wind field is manifested as an ocean gyre). In
fact, for a closed basin, the analogy between the in-
compressible cavitating fluid model and the Stommel
ocean model is exact, and the numerical scheme has
been tested in this context.

As the cavitating fluid model affects change on the
free-drift velocity field by adding internal ice pressure,
it is no surprise that the highest average pressures,
shown in Fig. 5¢, are in the Beaufort Sea region where
the most drastic alterations were required. Also of in-
terest is the magnitude of the monthly average pressures
required to resist all convergence—nearly 200 kN m™*
in places. Of course, daily values of ice pressure can
be larger still. When the ice is allowed a compressive
strength [Eq. (17)], these high pressures are not
reached, as shown in Fig. 5d, and so some convergence
remains.

The effect of neglecting shear strength in the cavi-
tating fluid is demonstrated by comparison with the
widely used Hibler (1979) viscous-plastic model, which
employs an elliptical yield curve with shear strength
equal to half of the compressive strength, as well as the
Mohr-Coulomb model discussed briefly in the previous
section and in appendix C. The compressive strength
parameterization [Eq. (17)] is used in all three models.
The average velocity fields for March 1983 (Figs.
6a,b, and c¢) show that the lack of shear resistance in
the cavitating fluid model results in a dramatically in-
creased ice circulation as compared to the viscous-
plastic model, and that the Mohr-Coulomb model has
a behavior intermediate between these two cases. The
increased ice transport is particularly pronounced in
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the Fram Straits outflow region between Greenland
and Spitsbergen. It appears that this enhanced outflow
is largely responsible for the somewhat lower ice vol-
ume in the cavitating fluid case discussed later.
Comparison of the cavitating fluid and viscous-plas-
tic models over the entire 3-year simulation period is
provided by the time series in Fig. 7. Figure 7a shows
a monthly averaged time series of the average velocity
magnitude in the Arctic basin for the two models for
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FIG. 9. Observed and computed buoy tracks for (a) buoy No.
3808 and (b) buoy No. 3809. Axes are labeled with computational
grid indices; therefore, the tick mark spacing is 160 km.
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TABLE 1.
Buoy drift Model drift Error radius

Model (km) {km) (km)
Viscous plastic 107.9 120.8 66.0
Cavitating fluid 107.9 146.6 74.1
Free drift 107.9 140.1 72.6
Incompressible 107.9 156.6 85.3
Mohr-Coulomb 107.9 139.0 65.2

both daily varying and monthly averaged wind forcing.

. During the summer months, when the ice strength is
low, the two models produce similar average velocities
(very close to free drift); however, during the high ice-
strength winter period, the cavitating fluid model does
not slow down nearly as drastically as the viscous-plas-
tic model. This seasonal cycle is also reflected in the
Fram Strait ice outflow time series in Fig. 7b. Over the
entire simulation period using daily forcing, the average
outflow for the viscous-plastic model was about 0.061
Sv (Sv=10%m?>s~") as compared to 0.077 Sv for the
cavitating fluid case (outflows for the monthly averaged
wind case were 0.021 and 0.055 Sv, respectively). The
Mohr-Coulomb model results are intermediate be-
tween the cavitating fluid and viscous-plastic results,
however, the effect of the shear strength parameter, ¢,
has not been investigated. Figure 7 illustrates one of
the most important features of the cavitating fluid
model for climate applications; namely, the lack of
shear strength allows a realistic ice circulation and out-
flow to be maintained even if smoothed wind forcing
is used. The shear strength in the viscous-plastic case,
on the other hand, provides more resistance than the
relatively weak smoothed wind field can overcome and
so motion virtually ceases.

It is instructive at this point to examine the model
ice drift a little more closely and make some compar-
isons with observed ice drift. The Arctic Buoy Program
maintains a number of data buoys on the Arctic ice
cover, several of which were active during the 1981~
83 period simulated here. Time series of the position
of these buoys were provided by the Glaciological Data
Center from data obtained by R. Colony (personal
communication ). Since the position of these buoys is
reported on a daily basis (with some gaps), they provide
a means of comparing observed ice drift to simulated
drift in a manner similar to that of Hibler and Walsh
(1982). Basically, the idea is to plot the position of the
buoy at the beginning of each month to get a drift track
for the buoy. A simulated drift track can be obtained
by finding the monthly average model velocity at the
buoy’s midmonth position, multiplying by the number
of seconds in the month to obtain a drift vector, and
by plotting these vectors head to tail starting at the
buoy’s initial position. Note that this is not the same
as a computed particle trajectory for a particle starting
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at the buoy’s location but rather a means of presenting
monthly drift vectors in a way that allows easy detection
of consistent trends in the model velocity field.

To perform this comparison, six buoys were chosen
(No. 3807, No. 3808, No. 3809, No. 3804, No. 3805,
and No. 3814) that became operational in June 1981.
The observed buoy drift tracks for these six buoys are
shown in Fig. 8. The first three buoys were operational
17 or 18 months while the last three buoys were op-
erational for 7 to 10 months. The monthly drift tracks
shown in Figs. 9a,b allow a comparison of the various
model drift tracks, including the free-drift and incom-
pressible cavitating fluid models, for two buoy cases.
Although the observed and computed drift tracks differ
markedly in some cases, it must be remembered that
even relatively small errors are magnified in this type
of comparison if the errors have a consistent bias. It
might be noted that over a long time period like this,
consistent errors in the ocean currents may have a
strong influence on the computed drift tracks. Since
the ocean currents are represented here by the annual
mean of a coupled ice-ocean model run with forcing
from 1979 (Hibler and Bryan 1987), such errors may
be the source of much of the error observed here.
Comparison of a large number of buoys with a more
complete coupled ice-ocean model would be a worth-
while study.

Some simple statistics allow a more objective com-
parison of the various models with observed buoy drift.
Table 1 shows the average observed monthly drift along
with the computed drift distance and the error radius
(the magnitude of the vector difference between the
observed and computed drift vectors). These results
show that on average the viscous-plastic model exhibits
drift magnitudes similar to those observed. This lends
some more support to the ice-strength parameter, p*,
deduced by Hibler and Walsh (1982) based on the
drift of a Russian ice station. The other models all show
somewhat excessive drift with the incompressible cav-
itating fluid performing the worst.

Another measure of the performance of the various
sea-ice models is provided by the correlation coeffi-
cients in Table 2. These correlation coefficients were
calculated by considering the x and y components of
the monthly buoy and model drift as complex time
series [e.g., see Jenkins and Watts (1968) for the ap-
propriate equations]. The results here indicate that

TABLE 2.

Model Correlation coefficient
Viscous plastic 0.841
Cavitating fluid 0.829
Free drift 0.821
Incompressible 0.795
Mohr-Coulomb 0.852
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FiG. 10. Calculated thickness fields for 1983: (a) viscous plastic, March; (b) viscous plastic, August;
(c) cavitating fluid, March; (d) cavitating fluid, August.

while all the models are well correlated with observed
buoy drift, the two models that include a shear strength
are significantly better correlated than those that do
not. One thing that is clear from the above comparison
is that correlation coefficients do not provide a partic-
ularly good measure of a model’s overall performance;
rather, it is the thickness buildup pattern that is most
important. This is especially true in the case of the
free-drift model wherein the drift correlation is not too
different from the cavitating fluid or viscous-plastic

models, yet the thickness buildup is completely un-
realistic.

c¢. Thickness buildup and ice edge comparisons

The main reason for including a sea-ice dynamics
model in large-scale climate studies is to allow the
feedback between dynamics and thermodynamics via
thickness buildup, lead formation, and ice transport.
It is therefore of interest to examine the performance
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of the cavitating fluid model by comparison with the
viscous-plastic model and observations of the ice edge.
The overall thickness buildup results are illustrated by
the thickness fields for the end of March and August
1983 in Fig. 10. (The 1983 fields were chosen here to
remove the effect of initial conditions on the thickness
buildup.) Despite the differences in magnitude, the
pattern of thickness buildup is broadly similar in both
cases and generally agrees with that observed (e.g., see
Bourke and Garrett 1987). In some places, the modeled
ice thickness is perhaps a bit low, but natural variability
(McLaren 1989) and the general paucity of data makes
thickness comparisons difficult at this time. It is ap-
parent from Fig. 10 that the ice in the Arctic basin is
somewhat thinner in the cavitating fluid case, due pri-
marily to the increased outflow through Fram Strait as
discussed above. This can be modified substantially by
adjusting the strength parameterization or by using
smoothed wind forcing. The average seasonal cycle of
ice volume in the Arctic basin over the 3-year simu-
lation period is illustrated in Fig. 11. Also shown here
is the ice volume calculated by a thermodynamics-only
sea-ice model in which the thickness buildup pattern
is roughly symmetrical around the pole (e.g., see Hibler
and Walsh 1982). The effect of dynamics on the ice
volume is twofold. First, the total volume is reduced
by outflow, and second, the seasonal cycle is amplified
due primarily to enhanced melting in summer caused
by the formation of leads.

The position of the ice edge is an important climatic

indicator that can be readily compared with model re-
sults as shown in Fig. 12. The observed ice edges were
obtained from Walsh (personal communication) and
represent the Naval Polar Oceanography Center’s
analyses, while the modeled ice edge is defined as the
20% compactness contour. The March ice edges com-
puted by both models are very similar and are some-
what farther south than those observed. On the other
hand, the ice edges computed for August are somewhat
north of the observed positions, particularly in the cav-
itating fluid case. This is likely due to the generally
thinner ice in the cavitating fluid simulation being more
readily melted in summer. The fact that the simulated
ice edges do not agree very well with those observed is
not too surprising since the ice-edge position is dom-
inated by heat flux from the ocean, which, in the mod-
els considered here, is a specified annual average value.
To properly simulate the ice-edge position and, more
importantly, its interannual variability, a coupled ice~
ocean model is a necessity (Hibler and Bryan 1987).

The seasonal cycle of total ice area and lead area
over the 3-year simulation period is shown in Fig, 13,
The total ice area in Fig. 13a shows very little inter-
annual variation as expected based on the preceeding
discussion. The lead area in Fig. 13b (leads being de-
fined as open water area in a grid cell with nonzero ice
thickness) does show some seasonal variability since
leads are formed primarily in response to wind patterns.
Also interesting to note here is the somewhat larger
lead area produced by the cavitating fluid model due
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F1G. 12. Comparison of observed and calculated ice-edge position (defined as the 20% compactness contour) for (a) observed, March;
(b) observed, August; (c) viscous plastic, March; (d) viscous plastic, August; (e) cavitating fluid, March; (f) cavitating fluid, August.

mainly to the more robust ice motion. We will return
to this point in the next section as it relates to the cal-
culated atmospheric heat flux.

d. Ice growth and heat flux

Polar pack ice plays an important role in moderating
heat exchange between the atmosphere and ocean as
well as providing a mechanism for lateral heat and salt
transport. The impact of the cavitating fluid assump-

tion on these processes will be discussed in this section
along with some points about the influence of ice dy-
namics on long-term oceanic circulation patterns.
The net ice growth over the 3-year simulation period
in Fig. 14 (shown as equivalent meters of ice growth)
demonstrates that the cavitating fluid assumption has
surprisingly little effect on the patterns of ice growth
and decay. Note that the actual heat flux to the at-
mosphere is augmented by the specified oceanic heat
flux in areas with no ice; however, the net growth
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FIG. 12. (Continued)

translates directly into salt flux to the ocean. The dashed
contours in the figure represents areas where there was
net ice melt over the year—solid lines represent net ice
growth. It is interesting that there was very little sea-
sonal variability of this pattern over the 3-year simu-
lation period, and so the patterns shown in Fig. 14 rep-
resent rather consistent trends. Of particular note are
the areas of net melt in the Beaufort and East Siberian
seas (indicating a net transport of ice into these regions
and a concomitant freshwater flux) and the prominant
areas of net ice growth in the Laptev and Kara seas
(indicating a net efflux of ice from these areas and a
salt flux into the ocean). Also visible is the net ice melt
in the Greenland Sea as the ice flowing out through
Fram Strait encounters the large oceanic heat flux in
this region.

These patterns of ice growth and melt and the con-
comitant salt fluxes are perhaps the most important
reason for including sea-ice dynamics in long-term
studies of climate and global change. The important
feedback effect of ice transport on oceanic circulation
is neglected if only the thermodynamic behavior of the
ice cover is modeled.

The overall seasonal behavior of the heat transfer
from the Arctic basin to the atmosphere is illustrated
by the 3-year average heat transfer plot in Fig. 15a.
This plot also contains the thermodynamics-only
model for comparison. The larger seasonal cycle in the
two models that include dynamics is due to the large
heat flux through leads. This point is further illustrated
by the plot of heat transfer through leads only in Fig.
15b. The larger seasonal swing in the cavitating fluid
case is due to the larger lead area discussed earlier,

which accentuates both melting and freezing. It is in-
teresting that on a cumulative basis, the atmosphere
experiences a net gain of heat from leads in the viscous-
plastic model and a net loss to leads in the cavitating
fluid model; however, this is almost exactly countered
by the increased growth of the generally thinner ice in
the cavitating fluid case so that, overall, the total heat
flux to the atmosphere is about the same in both cases.

4. Linear drag, spherical coordinates, and islands

A quadratic drag formulation requires a two-step
time-stepping scheme such as that described in section
2. A linear drag formulation eliminates this require-
ment and thus almost halves the computational effort.
In this case, only Eq. (15a) is used to step the velocity
forward in time (with « + replaced by « + 1). The
wind- and water-drag coefficients in (2) and (3) used
in the linear-drag formulation are C* = 0.01256 and
C* = 0.6524, respectively.? This linear drag, cavitating
fluid model is the same as that used by Flato and Hibler
(1990) except that the Arakawa C grid is used here.
Figure 16 shows the March 1983 thickness field cal-
culated by the linear drag, rectangular grid model and
can be compared to Fig. 10b. The effect of simplifying
the drag parameterization is to reduce the buildup
against the Canadian archipelago slightly. The differ-
ence is not too great and can likely be tolerated for

3 These coefficients were obtained by averaging the daily nonlinear
drag coefficients over the entire Arctic basin for a year (Flato and
Hibler 1990).
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F1G. 13. Time series of (a) area covered by ice and (b) area covered by leads (defined as
open-water area in a grid cell with nonzero ice thickness) in units of 10 km?.

climate modeling purposes in return for almost dou-
bling the computational speed.

While the rectangular grid model is useful for basin-
scale studies, a spherical grid is necessary in most large-
scale climate simulations. Figure 17 shows the grid
configuration for such a model in which the grid spac-
ing is 2° lat by 10° long. The cavitating fluid scheme

is useful in this case, not only when simplicity and
speed are important, but also when an artificial island
is used to eliminate the singularity at the pole. Shear
resistance in a more complete sea-ice rheology would
cause a severe restriction in ice outflow from the basin
and result in undesirable thickness buildup around the
artificial polar island, a fact confirmed by rectangular
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F1G. 14. Contours of net ice growth over 3-yr simulation period:
(a) viscous-plastic model; (b) cavitating fluid model. Contour interval
is 0.5 m and dashed lines represent negative values (i.e., regions of
net melt).

grid simulations. Some results will also be shown for
a spherical grid version of the model that does not have
an island at the pole, in which case the circular region
near the pole is treated as a special grid cell.

The spherical grid version of the cavitating fluid
model was developed using the equations described in
appendix B and the aforementioned linear wind and
water-drag formulations. Except for the change to
spherical coordinates, the model equations and imple-
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mentation are identical to the rectangular grid case and
so will not be repeated here. A complete documentation
of the linear drag, spherical grid model is available to
supplement the description provided in this paper
(Flato 1991). The same forcing fields as in the rectan-
gular grid case were used here and were simply inter-
polated to the spherical grid assuming an azimuthal
equidistant projection.

The velocity and thickness fields in Fig. 18 for the
model with an island at the pole show that although
the island presents an obstruction to the flow, the lack
of shear strength allows the ice to slip cleanly around
the obstruction with no local irregularities in the thick-
ness field. The spherical grid model with an island at
the pole will likely be useful in conjunction with large-
scale oceanic circulation models, which use an artificial
istand to avoid the mathematical singularity at the pole.
Atmospheric general circulation models, on the other
hand, have ways of handling the polar singularity, and
so, an ice model with an island is not as desirable in
this case. The mathematical simplifications that arise
from neglecting shear strength in the cavitating fluid
model allow the island to be replaced with a special
circular grid cell so that continuous thickness and ve-
locity fields can be computed near the pole.

The March 1983 thickness field calculated by the
spherical grid model with no island is shown in Fig.
19a and it differs little from that calculated by the model
with an island, confirming the finding that the cavi-
tating fluid model is affected little by this artificial ob-
struction. In both cases the monthly average velocity
field is very similar to that found in the rectangular
grid case, and the difference imposed by the artificial
polar island can only be seen when the velocity fields
are superimposed. Some differences do exist between
the rectangular and spherical grid thickness fields. This
is attributed mainly to the spatial smoothing of the
wind field during interpolation to the cruder resolution
spherical grid.

The outflow through Fram Strait calculated by the
two spherical grid models is compared to the rectan-
gular grid model in Fig. 20. The spherical grid models
differ little as expected from the above comparison of
the flow patterns and are in general agreement with
the rectangular grid model. The rectangular and spher-
ical grids only differ substantially in fall. This is a result
of using upstream differencing for advection, which
combines with the rather crude resolution in the spher-
ical grid case to keep the ice edge somewhat farther
south and hence allows substantial ice outflow to begin
earlier in the season.

5. Conclusions

The cavitating fluid rheology assumes that sea ice
has a compressive strength only and no resistance to
divergence or shear. This rheology and several attempts
at implementing it have been presented by others in
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the past. The contribution of the present paper is a produced when incompressible flow is to be modeled;
simple, consistent numerical procedure based on suc- otherwise, the two grid schemes produce almost iden-
cessive corrections to the pressure and velocity fields. tical results. The strength of the numerical scheme pre-
The Arakawa C-grid formulation was found to be su- sented here is its ease of implementation in either rec-
perior to the B grid due the the smoother pressure fields tangular or spherical coordinates and its computational
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FIG. 16. Thickness field for March 1983 calculated by the linear
drag, rectangular grid cavitating fluid model. Contour interval is 0.5
m.

efficiency when compared to a direct time-stepping in-
tegration (Semtner 1987; Ip et al. 1991).

A number of comparisons were made to the more
complete viscous-plastic rheology of Hibler (1979) by
conducting simulations of the entire Arctic ice cover
with real forcing from 1981 to 1983. These simulations

F1G. 17. Computational grid for spherical coordinate version of
cavitating fluid model. Grid spacing is 2° lat and 10° long. Cross-
hatched grid cells indicate outflow boundary conditions.
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FIG. 18. Thickness and velocity fields for March 1983 calculated
by spherical grid cavitating fluid model with an artificial island at
the pole: (a) thickness field, contour interval of 0.25 m; (b) velocity
field, vectors are plotted to the same scale as the rectangular grid
results in Fig. 6 to allow direct comparison.

showed that while the lack of shear strength in the cav-
itating fluid rheology increased the ice outflow through
the Fram Strait and the average Arctic basin ice velocity
in winter, the heat flux to the atmosphere and ice-edge
position were affected very little. The enhanced outflow
in the cavitating fluid case resulted in about 10% less
ice volume in the Arctic basin, however, the pattern
of thickness buildup differed little from the viscous-
plastic case. A limited comparison of modeled and ob-
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FI1G. 19. Thickness and velocity fields for March 1983 calculated by spherical grid cavitating fluid model with no island at the pole: (a)
thickness field, contour interval of 0.25 m; (b) velocity field, vectors are plotted to the same scale as the rectangular grid results in Fig. 6.

served buoy drift was also conducted, which showed
that while drift of the viscous-plastic, cavitating fluid,
Mohr-Coulomb, and free-drift models all correlated
well with observed monthly drift, the models that in-
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cluded shear strength correlated somewhat better. The
excessive drift in the cavitating fluid and Mohr-Cou-
lomb models could likely be reduced by appropriate
tuning of either the strength parameterization or drag

——— Spherical Grid with Island———-—  Rectangular Grid
Spherical Grid, no Island

[ ] 1 | ] 1 1 1 | 1 1 1 | 1 1

6 12 18 24 30
month

36

Fi1G. 20. Time series of monthly average ice outflow through Fram Strait (in Sverdrups) for
the two versions of the spherical grid model and a linear drag, rectangular grid version of the
cavitating fluid model for comparison.
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coefficients; however, this robust circulation was found
to be useful in cases where the wind field was smoothed
by time averaging.

A spherical grid implementation demonstrated an-
other useful characteristic of the cavitating fluid rheol-
ogy by producing reasonable ice thickness buildup even
with a large artificial island placed at the pole to avoid
the mathematical singularity. It is the lack of shear
strength that allows free slip past an obstruction, which
would otherwise give rise to pronounced thickness
buildup. An extension of the spherical grid model that
replaces the artificial island with a special circular grid
cell to avoid the polar singularity was also discussed,
with results that differed little from the island case.

Overall, the cavitating fluid rheology and the nu-
merical scheme presented here offer considerable
promise as a sea-ice parameterization in long-term,
crude resolution climate investigations with global at-
mospheric or oceanic circulation models due to its
simplicity and its ability to reproduce the dynamic—
thermodynamic feedback of a more complete sea-ice
model. The cavitating fluid model is less suited to de-
tailed studies of local ice drift where shear strength may
be important; however, the pressure field calculated by
the incompressible version of the model may be useful
in some contexts and an extension of the numerical
scheme to allow inclusion of a realistic shear strength,
via a nonlinear shear viscosity, is relatively straight-
forward.

APPENDIX A
Comparison of B-grid and C-grid Formulations

The Arakawa B-grid finite-difference formulation is
often used in large-scale sea-ice, ocean, and atmo-
spheric circulation models because of certain energy-
conserving properties ( Bryan 1969). One drawback to
this scheme is that the finite-difference form of the La-
placian of a scalar field is insensitive to alternating
gridpoint or “checkerboard” wave patterns superim-
posed on the true field. In cases of truly divergence-
free flow, this does not pose a problem for the pressure
field because it is not explicitly used in the calculations;
the common trick of taking the curl of the momentum
equation to eliminate the gradients of scalar functions
and computing the streamfunction rather than the ve-
locity field assures this. In the present case the pressure
field is a vital part of the calculation and it appears in
a Laplacian-like equation (10).

The Arakawa B-grid used by Flato and Hibler (1990)
was found to exhibit the aforementioned alternating
gridpoint wave pattern when incompressible flow was
modeled, although the effect was barely perceptible in
cases with a finite compressive strength. The Arakawa
C-grid is often used in cases where the pressure field
must be treated explicitly (e.g., tidal models) and has
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proven effective in suppressing this alternating grid-
point oscillation. What is apparent is that the overall
pressure-field pattern in the B-grid case is very similar
to the C-grid case, and so it appears that there may be
simply a wave pattern superimposed on the “correct”
pressure field. If a finite compressive strength is allowed,
much of the oscillation is removed. Indeed the Arctic
basin pressure and thickness buildup results for the
two versions of the model during year 3 of a simulation
using climatology forcing (Fig. A1) are very similar,
and so the alternating gridpoint oscillation may be
merely an annoyance.

APPENDIX B
Spherical Coordinate Formulation
a. Finite difference scheme with island at pole

In a spherical coordinate, Arakawa C-grid cell such
as that shown in Fig. B1, the divergence. in finite-dif-
ference form is given by

1 1

Vlu = —— ——
RCOS¢j+1/2 AX

(digr,j — i j)

1
+K‘;(v COS¢i’j+| - UCOS¢,‘J)] (Bl)
where R is the radius of the earth, ¢ is the latitude, A
is the longitude, and u and v are the longitudinal and
latitudinal components of the velocity. Following the
same derivation as for the rectangular case discussed
in the main text, the pressure correction is given by

p~i+l,j+l = "‘(V'u)RZ COS¢]'+1/2/

1 1 1
— +
[A>\2 [Oéfﬂ,j COSPiri2  QF; COS¢j+1/2]
1 ‘ .
+__[cos¢m +COSy¢,” (B2)

3
Ap” | o jr1 o,

and the velocity corrections by

4= —1 Dixt,j+1
ij =
aﬁ,—R COS¢]+\/2 AX
i _ 1 Dixi, 1
) =
TN ot R cosdi2 AN
5 = L D
" ai;R A
I Dy
~ S J4+1
Vi) = 55— —2— B3
i, a{j+1R A (B3)

The correction scheme proceeds exactly as in the
rectangular case, except that several relaxation sweeps
must be made through the grid cell rows nearest the
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FIG. Al. Comparison of pressure and thickness fields for March 1983 calculated by C-grid and B-grid versions of the cavitating fluid
model: (a) C-grid pressure field; (b) C-grid thickness field; (¢) B-grid pressure field; (d) B-grid thickness field. Contour intervals are 5 kN m™!
and 0.5 m.

pole for every sweep through the entire grid. The reason
for this is the relatively small change in meridional
velocity imposed by a pressure perturbation in the nar-
row grid cells near the pole and the concomitant slow
convergence of the relaxation scheme in this region.

b. Finite-difference scheme with no island at pole

The polar grid cell is sketched in Fig. B2 with the
meridional velocities all shown as positive. Although

the divergence rate at the pole is not really defined
mathematically it is obvious that the appropriate def-
inition for our purposes is

N
lepole = _2 Vi m
i=1

(B4)

where N is the number of longitude divisions and M
is the subscript for the latitude of the polar grid-cell
boundary. Having made this definition, the remainder
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Ax

F1G. B1. Computational grid cell for spherical grid version
of model showing location of vector and scalar quantities.

of the correction scheme is identical to the regular grid
cells. The individual velocity corrections are essentially
the same as those given above, namely,

_ 1 Dot
al yR A¢

<

(B5)

i,M

where P is the pressure correction applied to the
polar grid cell. The value of fyo required to make the
divergence zero is

AV

Vim
i=1

> L

y
i=1 O M

ﬁpole = RAQS

(B6)

z

For the simulation results below, the same grid config-
uration was used as in the case with an island at the
pole resulting in an oversized grid cell at the pole. This
is readily handled by using a different value of A¢ for
the corrections in Eqgs. (B5) and (B6) than in the cor-
rections to the normal grid cells. Advection is handled
in a straightforward manner with the change in thick-
ness in the polar grid cell calculated from the sum of
the fluxes across all of the boundary segments.
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APPENDIX C

Extension of Cavitating Fluid Scheme to Include
Shear Strength via Mohr-Coulomb Failure Criteria

The cavitating fluid rheology with its lack of shear
strength has some advantages for including sea-ice dy-
namics in climate models, as the results in the main
body of the text show. However, the numerical scheme
to implement the cavitating fluid rheology can be ex-
tended somewhat to include shear strength if desired.
The basic idea is to split the internal ice-stress tensor
into two parts: a pressure term calculated by the cav-
itating fluid scheme and a shear term calculated using
a nonlinear shear viscosity and the differencing scheme
developed by Ip et al. (1991). The shear viscosities are
chosen as in the Hibler (1979) viscous-plastic model
such that either the stress state satisfies a plastic yield
criterion or the deformation rate is negligibly small.
However, the normal-flow rule and elliptical yield curve
used by Hibler (1979) are replaced here by a Mohr-
Coulomb failure criterion.

Introducing a shear viscosity, the ice interaction
term, F, in Eq. (1) is given by

F=V-.o, (e}

o= 2n(&;, p) &y — nl€y, P)ewdy — pdy  (C2)

where ¢;; is the two-dimensional stress tensor, ¢; is the
strain rate tensor, 7 is the nonlinear shear viscosity
described below (an explicit function of ¢;; and p), and
6;;is the Kroneker delta function. Carrying out the dif-
ferentiation in (C1) and writing the strain rate in terms
of velocity gradients, the x component of F is given by

dgp 0 ou v a ou dv
Fo=——t+—lgl === |+ —|nl = +=}].
ax ax["(ax ay>] ay["(ay 6x>]
(C3)

The last two terms in (C3) have the following finite-
difference form

ox dx Jdy AXx AXx

5] du v

dy

1
4Ay

The y component is obtained in an analogous manner.
Note that the shear viscosities are defined at the same
grid locations as the thickness and pressure.

1 1
= [17(5 + &) = 4_A_y (Mivt ot + Wi jer M2 + Mivr,ja2)

= —— (Mg, 01 T Mijrr + i+ 77i+1,j)[

d ou dv\|_ 1 Uiv1,j— Uij  Vijr1 — Vi 1 Wi = Wi-1,;  Vioy 1 — Vi1
ol L i | Sk AT v el -
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(C4)

Ui j+e1 — Ui j  Vijrr
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Ay

4 2o ;y”““’f } . (C5)

The shear viscosities are chosen at each location such
that either the Mohr-Coulomb yield criterion is sat-
isfied or the deformation rate is negligibly small (i.e.,
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FiG. B2. Special polar grid cell for spherical grid version of model
with no artificial island at pole. Indicies # and m refer to the zonal
and meridional location in the grid with N being the number of grid
cells in the zonal direction and M the number of grid cells in the
meridional direction.

a small amount of viscous creep is used to approximate
rigid behavior). The Mohr-Coulomb yield criterion is
commonly used in soil mechanics and is simply a linear
relationship between the shear and normal stress at
failure. In the sea-ice case, the pressure is limited by
the assumed compressive strength, and so the Mohr-
Coulomb failure surface does not extend to infinity
but rather has a “cap” as shown in Fig. 4. Mathemat-
ically, this yield condition is given by

(01 + 02) sing = (01 ~ 02) (C6)
where ¢ is a parameter, the so-called angle of internal
friction. Note that p = (¢, + 02)/2 and since the prin-
cipal stress and strain directions are assumed to coin-
cide, the appropriate shear viscosity is given by

. [psing
n= mln[~ ) nmax}
€ T €

where nmax 1S a specified maximum viscosity that de-
termines the point at which the shear strain rate is neg-
ligibly small.

Now, given a pressure field calculated by the cavi-
tating fluid scheme, the shear viscosities at every point
in the grid are determined by Eq. (C7). The velocity
field satisfying the equation of motion (1) can be found
by relaxation, taking the diagonal terms in (C4) and
(C5) to the left-hand side of the equation. Of course
the resulting velocity field will not necessarily satisfy
the cavitating fluid conditions relating pressure to di-

(C7)
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vergence rate, and so one might wish to iterate a few
times to get a solution that satisfies both the cavitating
fluid conditions and the Mohr-Coulomb conditions.
In the simulation results discussed in the main body
of the paper, the shear and pressure correction schemes
were repeated twice for both steps in the modified Euler
time step with 9. = 10'% and ¢ = 24°,
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