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Real world ocean rogue 
waves explained without the 
modulational instability
Francesco Fedele1,2, Joseph Brennan3, Sonia Ponce de León3, John Dudley4 & Frédéric Dias3

Since the 1990s, the modulational instability has commonly been used to explain the occurrence of 
rogue waves that appear from nowhere in the open ocean. However, the importance of this instability 
in the context of ocean waves is not well established. This mechanism has been successfully studied in 
laboratory experiments and in mathematical studies, but there is no consensus on what actually takes 
place in the ocean. In this work, we question the oceanic relevance of this paradigm. In particular, we 
analyze several sets of field data in various European locations with various tools, and find that the main 
generation mechanism for rogue waves is the constructive interference of elementary waves enhanced 
by second-order bound nonlinearities and not the modulational instability. This implies that rogue 
waves are likely to be rare occurrences of weakly nonlinear random seas.

According to the most commonly used definition, rogue waves are unusually large-amplitude waves that appear 
from nowhere in the open ocean. Evidence that such extremes can occur in nature is provided, among others, 
by the Draupner and Andrea events, which have been extensively studied over the last decade1–6. Several phys-
ical mechanisms have been proposed to explain the occurrence of such waves7, including the two competing 
hypotheses of nonlinear focusing due to third-order quasi-resonant wave-wave interactions8, and purely disper-
sive focusing of second-order non-resonant or bound harmonic waves, which do not satisfy the linear dispersion 
relation9,10.

In particular, recent studies propose third-order quasi-resonant interactions and associated modulational 
instabilities11,12 inherent to the Nonlinear Schrödinger (NLS) equation as mechanisms for rogue wave forma-
tion3,8,13–15. Such nonlinear effects cause the statistics of weakly nonlinear gravity waves to significantly differ from 
the Gaussian structure of linear seas, especially in long-crested or unidirectional (1D) seas8,10,16–19. The late-stage 
evolution of modulation instability leads to breathers that can cause large waves13–15, especially in 1D waves. 
Indeed, in this case energy is ‘trapped’ as in a long wave-guide. For small wave steepness and negligible dissipa-
tion, quasi-resonant interactions are effective in reshaping the wave spectrum, inducing large breathers via non-
linear focusing before wave breaking occurs16,17,20,21. Consequently, breathers can be observed experimentally in 
1D wave fields only at sufficiently small values of wave steepness20–22. However, wave breaking is inevitable when 
the steepness becomes larger: ‘breathers do not breathe’23 and their amplification is smaller than that predicted 
by the NLS equation, in accord with theoretical studies24 of the compact Zakharov equation25,26 and numerical 
studies of the Euler equations27,28.

Typical oceanic wind seas are short-crested, or multidirectional wave fields. Hence, we expect that nonlinear 
focusing due to modulational effects is diminished since energy can spread directionally16,18,29. Thus, modulation 
instabilities may play an insignificant role in the wave growth especially in finite water depth where they are fur-
ther attenuated30.

Tayfun31 presented an analysis of oceanic measurements from the North Sea. His results indicate that large 
waves (measured as a function of time at a given point) result from the constructive interference (focusing) of 
elementary waves with random amplitudes and phases enhanced by second-order non-resonant or bound non-
linearities. Further, the surface statistics follow the Tayfun32 distribution32 in agreement with observations9,10,31,33. 
This is confirmed by a recent data quality control and statistical analysis of single-point measurements from fixed 
sensors mounted on offshore platforms, the majority of which were recorded in the North Sea34. The analysis of 
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an ensemble of 122 million individual waves revealed 3649 rogue events, concluding that rogue waves observed 
at a point in time are merely rare events induced by dispersive focusing. Thus, a wave whose crest height exceeds 
the rogue threshold2 1.25Hs occurs on average once every Nr ~ 104 waves with Nr referred to as the return period 
of a rogue wave and Hs is the significant wave height. Some even more recent measurements off the west coast 
of Ireland35 revealed similar statistics with 13 rogue events out of an ensemble of 750873 individual waves and 
Nr ~ 6 · 104.

To date, it is still under debate if in typical oceanic seas second-order nonlinearities dominate the dynamics of 
extreme waves as indicated by ocean measurements31,33, or if third-order nonlinear effects play also a significant, 
if not dominant, role in rogue-wave formation. The preceding provides our principal motivation for studying 
the statistical and physical properties of rogue sea states and to investigate the relative importance of second and 
third-order nonlinearities. We rely on WAVEWATCH III hindcasts and High Order Spectral (HOS) simulations 
of the Euler equations for water waves36. In our study, we consider the famous Draupner and Andrea rogue waves 
and the less well known Killard rogue wave35. The Andrea rogue wave was measured by Conoco on 9 November 
2007 with a system of four Teledyne Optech lasers mounted in a square array on the Ekofisk platform in the North 
Sea in a water depth d =​ 74 m4,5. The metocean conditions of the Andrea wave are similar to those of the Draupner 
wave measured by Statoil at a nearby platform (d =​ 70 m) on 1 January 1995 with a down looking laser-based 
wave sensor37. The Killard wave was measured by ESB International on 28 January 2014 by a Waverider buoy off 
the west coast of Ireland in a water depth d =​ 39 m. In Table 1 we summarize the wave parameters of the three 
sea states in which the rogue wave occurred and we refer to the Methods section for definitions and details. As 
one can see, the actual crest-to-trough (wave) heights H and crest heights h meet the classical criteria2 H/Hs >​ 2 
and h/Hs >​ 1.25 to qualify the Andrea, Draupner and Killard extreme events as rogue waves. The remainder of 
the paper is organized as follows. First, the probability structure of oceanic seas is presented33 together with the 
essential elements of Tayfun’s32 second-order theory for the wave skewness and Janssen’s8 formulation for the 
excess kurtosis of multidirectional seas29. Then, we present and compare second-order and third-order statistical 
properties of the three rogue sea states followed by an analysis of the shape of the largest waves and associated 
mean sea levels. In concluding, we discuss the implications of these results on rogue-wave predictions.

Probability structure of oceanic seas
Non-resonant and resonant wave-wave interactions cause the statistics of weakly nonlinear gravity waves to  
significantly differ from the Gaussian structure of linear seas8,10,16–18,38. The relative importance of ocean non-
linearities and the increased occurrence of large waves can be measured by integral statistics such as the wave 
skewness λ3 and the excess kurtosis λ40 of the zero-mean surface elevation η(t):

λ η σ λ η σ= = − ./ , / 3 (1)3
3 3

40
4 4

Andrea Draupner Killard

Significant wave height Hs [m] 10.0 11.2 11.4

Dominant wave period Tp [s] 14.3 15.0 17.2

Mean zero-crossing wave period T0 [s] 11.6 12.1 14.0

Mean wavelength L0 [m] 209 219 268

Depth d [m], k0d 74, 2.23 70, 2.01 58, 1.36

Spectral bandwidth ν 0.35 0.36 0.37

Angular spreading σθ 0.37 0.39 0.34

Parameter σ ν= θR /22 240 0.56 0.59 0.42

Benjamin Feir Index BFI in deep water8 0.24 0.23 0.18

Depth factor αS
40 0.31 0.36 0.04

Tayfun NB skewness λ3,NB
41 0.159 0.165 0.145

Mean skewness λ3 from HOS simulations 0.141 0.146 0.142

Maximum NB dynamic excess kurtosis λ d
40, max

29 2.3 · 10−3 2.1 · 10−3 2.7 · 10−4

Janssen NB bound excess kurtosis λ NB
b

40,
45 0.065 0.074 0.076

Mean excess kurtosis λ40 from HOS simulations 0.041 0.032 −​0.011

Janssen NB setdown STNB/Hs
45, predicted HOS setdown 0.12, 0.08 0.1, 0.11 0.1, 0.07

Maximum crest height h/Hs: observed, numerical 1.63, 1.71 1.55, 1.54 1.44, 1.57

Maximum crest-to-trough (wave) height H/Hs: observed, numerical 2.30, 2.51 2.10, 2.23 2.00, 2.28

Maximum trough-to-crest (wave) height H/Hs: observed, numerical 2.49, 2.67 2.15, 2.09 2.32, 2.29

Table 1.   Wave parameters and various statistics of the simulated sea states labelled Andrea, Draupner 
and Killard. The Killard rogue wave occurred on a water depth of 39 m, however the hincast input spectrum 
could only be computed at an averaged water depth of 58 m. Statistical parameters are from an ensemble of 50 
HOS simulations of sea states. We refer to the Methods section for the definitions of the wave parameters. Note 
that two wave heights are given for each wave: the zero-downcrossing value (crest to trough) and the zero-
upcrossing value (trough to crest).
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Here, overbars imply statistical averages and σ is the standard deviation of surface wave elevations. Here and 
in the following we refer to the Methods section for the definitions of the wave parameters and details.

The skewness coefficient represents the principal parameter with which we describe the effects of second-order 
bound nonlinearities on the geometry and statistics of the sea surface with higher sharper crests and shal-
lower more rounded troughs9,32,33. The excess kurtosis comprises a dynamic component due to third-order 
quasi-resonant wave-wave interactions and a bound contribution induced by both second- and third-order 
bound nonlinearities,9,10,32,33,39,40. In order to compare the relative orders of nonlinearities, we consider the char-
acteristic wave steepness μm =​ kmσ, where km is the wavenumber corresponding to the mean spectral frequency 
ωm

32.

Return period of a wave whose crest height exceeds a given threshold
To describe the statistics of rogue waves, we consider the conditional return period Nh(ξ​) of a wave whose crest 
height exceeds the threshold h =​ ξ​Hs, namely

ξ =
> ξ

=
ξ

N
h H P

( ) 1
Pr[ ]

1
( )

,
(2)h

s

where P(ξ​) is the probability of a wave crest height exceeding ξ​Hs. Equation (2) implies that the threshold ξ​Hs, 
with Hs =​ 4σ​, is exceeded on average once every Nh(ξ​) waves.

For weakly nonlinear random seas, the probability P can be described by the (third-order) TF, (second-order 
Tayfun) T or (linear Rayleigh) R distributions. In particular33,
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where ξ​0 follows from the quadratic equation µξ = ξ + ξ20 0
232. Here, the wave steepness μ =​ λ3/3 is of O(μm) and 

it is a measure of second-order bound nonlinearities as it relates to the skewness of surface elevations9. The rela-
tionship λ3 =​ 3μ is originally due to Tayfun31, who derived it for narrowband nonlinear waves that display a ver-
tically asymmetric profile with sharper and higher crests and shallower and more rounded troughs. As such this 
sort of asymmetry is also reflected in a quantitative sense in the skewness coefficient λ3 of surface elevations from 
the mean sea level. Although the relationship was thought to be appropriate to only narrowband waves, Fedele & 
Tayfun9 have more recently verified that it is also valid for broadband waves. In simple terms, μ =​ λ3/3 serves as a 
convenient relative measure of the characteristic crest-trough asymmetry of ocean waves. For narrowband (NB) 
waves in intermediate water depth, Tayfun41 derived a compact expression that reduces to the simple form 
λ3,NB =​ 3μm in deep water32 (see Methods section for details). The parameter Λ​ in Eq. (3) is a measure of 
third-order nonlinearities as a function of the fourth order cumulants of the wave surface33. Our studies show that 
it is approximated by Λappr =​ 8λ40/3 (see Methods section). For second-order seas, hereafter referred to as Tayfun 
sea states42, Λ =​ 0 only and PTF in Eq. (3) yields the Tayfun (T) distribution32
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For Gaussian seas, μ =​ 0 and Λ =​ 0 and PTF reduces to the Rayleigh (R) distribution

ξ = − ξ .P ( ) exp( 8 ) (5)R
2

We point out that the Tayfun distribution represents an exact result for large second order wave crest heights 
and it depends solely on the steepness parameter defined as μ =​ λ3/39. In the following, we will not dwell on wave 
heights43,44 as our main focus will be the statistics of crest heights in oceanic rogue sea states.

Excess kurtosis
For third-order nonlinear random seas the excess kurtosis

λ λ λ= + (6)d b
40 40 40

comprises a dynamic component λ d
40 due to nonlinear quasi-resonant wave-wave interactions8,40 and a Stokes 

bound harmonic contribution λ b
40

45. Janssen45 derived a complex general formula for the bound excess kurtosis. 
For narrowband (NB) waves in intermediate water depth, the formula is more compact (see Eq. (A23) in45 and 
Methods section). In deep water it reduces to the simple form λ µ λ= =18 2NB

b
m NB40,
2

3,
2 40,45,46 where 

λ3,NB =​ 3μm
9,32,33. As for the dynamic component, Fedele29 recently revisited Janssen’s8 weakly nonlinear formula-

tion for λ d
40. In deep water, this is given in terms of a six-fold integral that depends on the Benjamin-Feir index 

BFI and the parameter σ ν= θR /22 2, which is a dimensionless measure of the multidirectionality of dominant 
waves, with ν the spectral bandwidth and σθ the angular spreading40,47. As waves become 1D waves R tends to 
zero. Note that the R −​ values for the three rogue sea states in Table 1 range from 0.4 to 0.6.

For deep-water narrowband waves characterized by a Gaussian type directional spectrum, the six-fold integral 
can be reduced to a one-fold integral, so that the dynamic excess kurtosis is computed as29

∫λ
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where ωm is the mean spectral frequency, ν the spectral bandwidth, = −i 1 and Im(x) denotes the imaginary 
part of x. In the focusing regime (0 <​ R <​ 1) the dynamic excess kurtosis of an initially homogeneous Gaussian 
wave field grows, attaining a maximum at the intrinsic time scale τ ν ω= =t R1/ 3c m c

2 . Thus, the sea state  
initially deviates from being Gaussian, but eventually the excess dynamic kurtosis tends monotonically to zero as 
energy spreads directionally, in agreement with numerical simulations48. The dynamic excess kurtosis maximum 
is well approximated by29

λ
π

≈
−
+

≤ ≤BFI b R
R bR

R3
(2 )

1 , 0 1,
(8)

d
40, max
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2
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where π=R 3 3 /40
3 (which corrects a misprint in29) and b =​ 2.48. In contrast, in the defocusing regime (R >​ 1) 

the dynamic excess kurtosis is always negative. It reaches a minimum at tc and then tends to zero over larger peri-
ods of time. In summary, the theoretical predictions indicate a decaying trend for the dynamic excess kurtosis 
over large times in multidirectional wave fields (R >​ 0).

In unidirectional (R =​ 0) seas, energy is ‘trapped’ as in a long wave-guide. An initially homogeneous Gaussian 
wave field evolves as the dynamic excess kurtosis monotonically increases toward an asymptotic non-zero value 
given by λ π= BFI3 /(3 3 )NLS

d
40,

2  from Eq. (8)49. Clearly, wave energy cannot spread directionally, and 
quasi-resonant interactions induce nonlinear focusing and large breather-type waves initiated by modulation 
instability16,17,20–23,50. However, realistic oceanic wind seas are typically multidirectional (short-crested) and 
energy can spread directionally. As a result, nonlinear focusing due to modulational instability effects dimin-
ishes16,18,29,51 or becomes essentially insignificant under realistic oceanic conditions29. Indeed, the large excess 
kurtosis transient observed during the initial stage of evolution is a result of the unrealistic assumption that the 
initial wave field is homogeneous Gaussian whereas oceanic wave fields are usually statistically inhomogeneous 
both in space and time. Further, for time scales t tc, starting with initial homogeneous and Gaussian condi-
tions becomes irrelevant as the wave field tends to a non-Gaussian state dominated by bound nonlinearities as the 
total kurtosis of surface elevations asymptotically approaches the value represented by the bound 
component52,53.

These results and conclusions hold for deep-water gravity waves. The extension to intermediate water depth 
d readily follows by redefining the Benjamin-Feir Index as α=BFI BFIS S

2 2 40,54, where the depth factor αS 
depends on the dimensionless depth kmd, with km the wavenumber corresponding to the mean spectral fre-
quency (see Methods section). In the deep-water limit αS becomes 1. As the dimensionless depth kmd decreases, 
αS decreases and becomes negative for kmd <​ 1.363 and so does the dynamic excess kurtosis. For the three rogue 
sea states under study, depth factors are less than 1 and given in Table 1 together with the associated BFI and R 
coefficients. From Eq. (8), the maximum dynamic excess kurtosis is of O(10−3) for all three sea states and thus 
negligible in comparison to the associated narrowband (NB) bound component λ NB

b
40,  of O(10−2) (see Methods 

section). Hereafter, this will be confirmed further by a quantitative analysis of High Order Spectral (HOS) simu-
lations of the Euler equations36.

Results
At present, whether second-order or third-order nonlinearities play a dominant role in rogue-wave formation 
is a subject of considerable debate. Recent theoretical results clearly show that third-order quasi-resonant inter-
actions play an insignificant role in the formation of large waves in realistic oceanic seas29. Further, oceanic evi-
dence available so far31,33,34 seems to suggest that the statistics of large oceanic wind waves are not affected in any 
discernible way by third-order nonlinearities, including NLS-type modulational instabilities that attenuate as 
the wave spectrum broadens24. Indeed, extensive analyses of storm-generated extreme waves do not display any 
data trend even remotely similar to the systematic breather-type patterns observed in 1D wave flumes10,31,33,34. 
However, third-order bound nonlinearities may affect both skewness and kurtosis as they shape the wave surface 
with sharper crests and shallower troughs.

In the following we will compare second and third-order nonlinear properties of the sea states where the 
Draupner, Andrea and Killard rogue waves occurred, using HOS simulations of the Euler equations36. To do so, 
we first use WAVEWATCH III to hindcast the three rogue sea states. The respective directional spectra S(ω, θ) 
are shown in Fig. 1. These are used to define the initial wave field conditions for the HOS simulations–see the 
Methods section.

Second-order vs third-order nonlinearities.  The time evolutions of skewness and excess kurtosis of the 
three simulated rogue sea states are shown in Fig. 2. Initially, the two statistics undergo a brief artificial transient 
of O(10) mean wave periods during which nonlinearities are smoothly activated by way of a ramping function55 
applied to the HOS equations. Following this stage, we do not observe the typical overshoot beyond the Gaussian 
value as seen in wave tank measurements and simulations8,16,17,50. In contrast, both statistics rapidly reach a steady 
state as an indication that quasi-resonant wave-wave interactions due to modulation instabilities are negligible in 
agreement with theoretical predictions29. Indeed, the large-time kurtosis is mostly Gaussian for all the three sea 
states and there are insignificant differences between second-order and third-order HOS simulations. Further, 
Fig. 2 shows that the narrowband predictions slightly overestimate the observed simulated values for skewness 
and excess kurtosis. This is simply because narrowband approximations do not take into account the directional-
ity and the finite bandwidth of the spectrum.

Our main conclusion is that second-order bound nonlinearities mainly affect the large-time skewness λ3 
whereas excess kurtosis is smaller since it is of λO( )3

2 39,40 (see also Methods section). Clearly, second-order effects 
are the dominant factors in shaping the probability structure of the random sea state with a minor contribution of 
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excess kurtosis effects. Such dominance is seen in Fig. 3, where the HOS numerical predictions of the conditional 
return period Nh(ξ​) of a crest exceeding the threshold ξ​Hs are compared against the theoretical predictions based 
on the linear Rayleigh (R), second-order Tayfun (T) and third-order (TF) models from Eq. (3). In particular, Nh(ξ​) 
follows from Eq. (2) as the inverse 1/P(ξ​) of the empirical probabilities of a crest height exceeding the threshold ξ​
Hs. An excellent agreement is observed between simulations and the third-order TF model, which is nearly the 
same as the second-order T model. This indicates that second-order effects are dominant, whereas the linear 
Rayleigh model underestimates the empirical return periods.

For both second- and third-order nonlinearities, the return period Nr of a wave whose crest height exceeds 
the rogue threshold 1.25Hs is nearly 2 · 104 for the Andrea, Draupner and Killard sea states. Oceanic rogue wave 
measurements34 indicate that the rogue threshold for crest heights is exceeded on average once every Nr ~ 104 
waves. Similarly, recent measurements off the west coast of Ireland35 yield Nr ~ 6 · 104. In contrast, in a Gaussian 
sea the same threshold is exceeded more rarely and on average once every 3 · 105 waves.

Figure 1.  WAVEWATCH III hindcast directional wave spectra S(ω, θ) used as input for the HOS 
simulations. Here, ω is the angular frequency and θ the direction in degrees. (Left) Andrea, (center) Draupner, 
(right) Killard. The spectra have been normalized with respect to spectral peak values.

Figure 2.  Time evolution of skewness λ3 and excess kurtosis λ40 for (left) Andrea, (center) Draupner 
and (right) Killard sea states; HOS second-order (black solid), HOS third-order (red solid) averages and 
theoretical predictions of the narrowband Tayfun skewness and Janssen excess bound kurtosis (blue solid, 
see Eq. (9) in Methods Section). 95% confidence bands (dashed) are also shown. Time is normalized by the 
mean wave period Tm. The statistical parameters are estimated from an ensemble of 50 HOS simulations. 
The initial artificial transients are excluded from the ensemble averages as they are the result of a ramping 
function55 applied to the HOS equations to smoothly activate nonlinearities. See Methods section for details and 
definitions of wave parameters.
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Note that all three rogue waves have crest heights that exceed the threshold 1.5Hs. This is exceeded on average 
once every 5 · 105 waves in second- and third-order seas and extremely rarely in Gaussian seas, i.e. on average once 
every 6 · 107 waves. This implies that the three rogue wave crest events are likely to be rare occurrences of weakly 
second-order random seas, or Tayfun sea states42. Our results clearly confirm that rogue wave generation is the 
result of the constructive interference (focusing) of elementary waves enhanced by second-order nonlinearities in 
agreement with the theory of stochastic wave groups proposed by Fedele and Tayfun9, which relies on Boccotti’s43 
theory of quasi-determinism43. Our conclusions are also in agreement with observations9,10,31,33.

Comparison of the profiles of three rogue waves.  For all three rogue sea states under study, the 
largest wave observed in the HOS simulations is now compared against the actual rogue wave measurements. 
Figure 4 compares the actual wave profiles (thin solid line) with the largest second-order (thin dotted-dashed 
line) and third-order (thick solid line) simulated waves. While there are small differences between the two orders, 
second-order nonlinearities are sufficient in predicting the observed profiles with sufficient accuracy.

In the same figure, the simulated mean sea level (MSL) below the crests is also shown. The estimation of the 
MSL follows by low-pass filtering the measured time series of the wave surface with frequency cutoff fc ~ fp/2, 
where fp is the frequency of the spectral peak56. Note that the time series must be long enough and contain at 
least ~200 waves for a statistically robust estimation of wave-wave interactions. In shorter time series, a set-up is 
observed as a manifestation of the large crest segment that extends above the adjacent lower crests. The HOS sim-
ulations give approximately the same MSL for both second- and third-order nonlinearities predicting a setdown 
below the large crests as expected from theory57. However, the observed Draupner set-up (thin line) is not repro-
duced by our HOS numerical simulations (see Fig. 4). We also note that the HOS MSL is close to the narrowband 
prediction STNB (see Table 1 and Methods section for definitions). The actual MSL for Andrea is not available, and 
buoy observations give neither a set-up nor a set-down for Killard.

Taylor et al.58 reported that for the Draupner wave the hindcast from the European Centre for Medium-Range 
Weather Forecasts shows swell waves propagating at approximately 80 degrees to the wind sea. They argued that 
the Draupner wave may be due to the crossing of two almost orthogonal wave groups in accord with second-order 
theory. This would explain the set-up observed under the large wave56 instead of the second-order set-down 
normally expected57. Note that the angle between the two dominant sea directions lies outside the range ~20–60 
degrees where modulation instability is enhanced59.

Further studies and a high resolution hindcast of the Draupner sea state are needed to clarify if it was a 
crossing-seas situation as our WAVEWATCH III hindcast spectrum does not indicate so. Concerning the disa-
greement for the Draupner wave on the set-up, we have conducted numerical HOS experiments where the input 
spectrum consists of two identical JONSWAP type crossing sea states at 90 degrees. And we indeed found a 
set-up. As a matter of fact, whether one obtains a set-up or a set-down depends on the angle between the crossing 
seas. As the angle increases, the set-down turns into a set-up – see Fig. 5. However, we still find that second-order 
effects are dominant and third-order contributions on skewness and kurtosis, mainly due to bound nonlinearities, 
are negligible.

Our results are in agreement with the recent numerical simulations by Trulsen et al.42 of the crossing sea state 
encountered during the accident of the tanker Prestige on 13 November 2002. Puzzled by the literature on cross-
ing seas states, they checked whether the fact that the accident occurred during a bimodal sea state with two wave 

Figure 3.  Crest height scaled by the significant wave height (ξ) versus conditional return period (Nh) for 
the (left) Andrea, (center) Draupner and (right) Killard rogue sea states: HOS numerical predictions (◻)  
in comparison with theoretical models (T = second-order Tayfun (light solid lines), TF = third-order 
(red solid lines) and R = Rayleigh distributions (dark dashes)). Confidence bands are also shown (light 
dashes). Nh(ξ​) is the inverse of the exceedance probability P(ξ​) =​ Pr[h >​ ξ​Hs]. Horizontal lines denote the rogue 
threshold 1.25Hs

2.
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systems crossing nearly at a right angle increased or not the chance of encountering a rogue wave. They concluded 
that the wave conditions at the time of the accident were only slightly more extreme than those of a Gaussian sea 
state, and slightly less extreme than those of a second-order Tayfun sea state32.

Discussion
Since the 1990s, modulational instability11,12 of a class of solutions to the NLS equation has been proposed as a 
mechanism for rogue wave formation3,8,13–15. The availability of exact analytical solutions of 1D NLS breathers13 via 
the Inverse Scattering Transform60 enormously stimulated new research on rogue waves. In particular, it has been 
found that in 1D wave fields, the late-stage evolution of modulation instability leads to large waves in the form 
of breathers13–15. Indeed, in such situations energy is ‘trapped’ as in a long wave-guide, and quasi-resonant inter-
actions are effective in inducing large breathers via nonlinear modulation before wave breaking occurs16,17,20,21. 
However, rogue waves in the form of breathers can be observed experimentally in 1D waves only at sufficiently 
small values of wave steepness (~0.01–0.09)20–22. Indeed, wave breaking is inevitable for wave steepness larger 
than 0.1: ‘breathers do not breathe’23, and their amplification is smaller than that predicted by the NLS equation, 
as confirmed by numerical simulations27,28.

Clearly, typical oceanic wind seas are short-crested, or multidirectional wave fields and their dynamics is more 
‘free’ than the 1D ‘long-wave-guide’ counterpart. Indeed, energy can spread directionally and as a result nonlin-
ear focusing due to modulational instability is diminished16,18,29. Our results suggest that in typical oceanic fields 
third-order nonlinearities do not play a significant role in the wave growth.

Furthermore, we found that skewness effects on crest heights are dominant in comparison to bound kurtosis 
contributions and statistical predictions can be based on second-order models32,33,61. Thus, rogue waves are likely 
to be rare occurrences resulting from the constructive interference (dispersive and directional focusing) of ele-
mentary waves enhanced by second order nonlinear effects in agreement with observations9,10,31,33 and with the 
theory of stochastic wave groups9. This theory about the mechanics of wave groups shows that they can be thought 
of as genes of a non-Gaussian sea dominated by second-order nonlinearities, when interested in the dynamics of 
large surface displacements. The space-time evolution of wave crests during an extreme event can be seen in the 
Supplementary Video S1 of the simulated Killard rogue wave sea state analyzed in this paper. We anticipate that 
our results may motivate similar analysis of waves over a wider distribution of heights using extensive data sets34.

Methods
Wave parameters.  The significant wave height Hs is defined as the mean value H1/3 of the highest one-third 
of wave heights. It can be estimated either from a zero-crossing analysis or more easily from the wave omnidirec-
tional spectrum ∫ω ω θ θ=

πS S( ) ( , )d
0

2  as Hs ≈​ 4σ, where σ = m0  is the standard deviation of surface eleva-
tions, mj =​ ∫​S(ω)ωjdω are spectral moments and S(ω, θ) is the directional wave spectrum.

The dominant wave period Tp =​ 2π/ωp refers to the frequency ωp of the spectral peak. The mean zero-crossing 
wave period T0 is equal to 2π/ω0, with ω = m m/0 2 0 . The associated wavelength L0 =​ 2π/k0 follows from the linear 
dispersion relation ω = gk k dtanh( )0 0 0 , with d the water depth. The mean spectral frequency is defined as 
ωm =​ m1/m0

32 and the associated mean period Tm is equal to 2π/ωm. A characteristic wave steepness is defined as 
μm =​ kmσ, where km is the wavenumber corresponding to the mean spectral frequency ωm

32. The following quan-
titites are also introduced: qm =​ kmd, Qm =​ tanhqm, the phase velocity cm =​ ωm/km, the group velocity cg =​ cm[1 +​ 2qm/
sinh(2qm)]/2. The spectral bandwidth ν = −m m m( / 1)0 2 1

2 1/2 gives a measure of the frequency broadening. The 

Figure 4.  Third-order HOS simulated extreme wave profiles (red thin solid), second-order HOS profiles 
(blue thin solid) and mean sea levels (MSL) (thin dashed) versus the dimensionless time t/Tp for (left) 
Andrea, (center) Draupner and (right) Killard waves. For comparisons, measurements (thick solid) and 
actual MSLs (thin solid) are also shown. Note that the Killard MSL is insignificant and the Andrea MSL is not 
available. Tp is the dominant wave period (see Methods section for definitions).
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angular spreading is estimated as σ = − +θ a b m(2(1 / ))2 2
0

1/2, where ∫ ∫ θ ω θ ω θ=
π ∞a d dScos( ) ( , )

0

2

0
 and 

∫ ∫ θ ω θ ω θ=
π ∞b d dSsin( ) ( , )

0

2

0
62. Note that ω ω ν= +1m0

2.
The parameter Λ =​ λ40 +​ 2λ22 +​ λ04 is a measure of third-order nonlinearities and is a function of the fourth 

order cumulants λnm of the wave surface η and its Hilbert transform η̂33. In particular, λ η η σ= −ˆ / 122
2 2 4  and 

λ η σ= −ˆ / 304
4 4 . In practice, Λ is usually approximated solely in terms of the excess kurtosis as Λappr =​ 8λ40/3 by 

assuming the relations between cumulants49 λ22 =​ λ40/3 and λ04 =​ λ40. These, to date, have been proven to hold for 
linear and second-order narrowband waves only39. For third-order nonlinear seas, our numerical studies indicate 
that Λ ≈​ Λappr within a 3% relative error in agreement with observations19,63.

The wave steepness μ =​ λ3/3 relates to the wave skewness λ3 of surface elevations. For narrowband (NB) waves 
in intermediate water the wave skewness41 and bound excess kurtosis45

λ µ α λ µ β γ α λ β γ
α

= + ∆ = + + + ∆ =




+

+
+ ∆






6 ( ), 24 ( 2( ) ) 4
3

1
2( )

,
(9)

NB m NB
b
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2 2

3,
2

2

where

α β γ
α

=
−

=
+ −

= − ∆ = −
−




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


−
+






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2
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2 3

6

2 2

2 2

2

with =c gdS  the phase velocity in shallow water. The wave-induced set-down or mean sea level variation below 
a crest of amplitude h is STNB =​ Δ​h2 45. In deep water,

λ µ λ µ λ= = = .3 , 18 2 (11)NB m NB
b

m NB3, 40,
2

3,
2

Figure 5.  Upper row: crossing directional wave spectra S(ω, θ) computed using two identical JONSWAP 
spectra with Draupner spectral properties. Lower row: extreme wave profiles simulated with third order 
HOS (red lines) and second order HOS (black lines). In addition, the corresponding mean sea levels are shown 
(dashed lines). The mean sea levels are scaled by three for emphasis. Crossing angles from left to right: π/2, π/4, 
and π/8. Note that for the final case, the relatively small crossing angle results in the spectrum appearing to 
contain only one dominant peak.
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Note that Eq. (9) are not valid in small water depth as second and third-order terms of the associated Stokes 
expansion can be larger than the linear counterpart (see Eq. (A18) in45). To be valid, the constraints αμm ≤​ 1 and 
βμm/α ≤​ 1 must hold. And indeed they are satisfied for the three rogue sea states under study. The depth factor 
αS depends on kmd through of a lengthy expression, which is not reported here for the sake of simplicity – see 
Janssen and Onorato54.

Brief description of WAVEWATCH III and hindcast validation.  WAVEWATCH III62,64 is a third gen-
eration wave model developed at NOAA/NCEP that solves the spectral energy action balance equation with 
a source function representing the wind input, wave-wave interactions and the wave energy dissipation due 
to diverse processes. The configuration of the model was set to solve the balance equation from a minimum  
frequency of 0.0350 Hz up to 0.5552 Hz for 36 directional bands and 30 frequencies. A JONSWAP spectrum was 
set as an initial condition at every grid point. We used the wind input fields from the NOAA Climate Forecast 
System Reanalysis (CFSR)64.

Higher Order Spectral Method.  The HOS method is a numerical pseudo spectral method to solve the 
Euler equations governing the dynamics of incompressible fluid flow at a desired level of nonlinearity. In par-
ticular, the time evolution of the free surface of the fluid, η(x, y, t), and the associated velocity potential ψ(x, y, t) 
evaluated on the free surface are obtained. The method was independently developed in 1987 by Dommermuth & 
Yue36 and West et al.65. Within the present work, West et al.’s version is employed. Tanaka66 provides a thorough 
description of the method.

Initial conditions for the potential ψ and surface elevation η are obtained from the directional spectrum as an 
output of WAVEWATCH III. In the wavenumber domain, the Fourier transform η̂ k( ) of η is constructed as S(k)
exp(iβ), where β is normally distributed over [0, 2π]. Similarly, the Fourier transform ψ̂ k( ) of ψ is obtained via 
linear wave theory, and finally an inverse Fourier transform is applied. The numerical simulation is performed 
using 1024 ×​ 1024 Fourier modes and over a time scale µ−~T T O/ ( )m m

2 , where μm represents a characteristic 
wave steepness defined above. A low-pass filter is applied to avoid numerical blow-up.

Finally, we note that the use of the WAVEWATCH III model combined with HOS simulations may prove 
useful in assessing recently proposed techniques for rogue wave predictability based on chaotic time series anal-
ysis67,68 and third-order probabilistic models of unexpected wave extremes69.
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