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Stereo video techniques are effective for estimating the space–time wave dynamics over an area of the
ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical
content is richer than that of time series data retrieved from point wave probes. We present an applica-
tion of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of
gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula,
in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs
sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that
exploits the entire data image set providing a global space–time imaging of the sea surface, viz. simulta-
neous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea
surface both in space and time. Analysis of the WASS measurements show that the sea surface can be
accurately estimated in space and time together, yielding associated directional spectra and wave statis-
tics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is
able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to sec-
ond order nonlinearities, and the observed shape of large waves are fairly described by theoretical models
based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space–time extremes
of the observed stationary sea states, viz. the largest surface wave heights expected over a given area dur-
ing the sea state duration. The WASS analysis provides the first experimental proof that a space–time
extreme is generally larger than that observed in time via point measurements, in agreement with the
predictions based on stochastic theories for global maxima of Gaussian fields.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The statistics and spectra of ocean waves are typically
estimated from time series of the wave surface displacements re-
trieved from wave gauges at a fixed point P of the ocean. However,
the limited information content of point measurements does not
allow accurate predictions of the space–time wave dynamics over
a given area around P and the associated wave extremes. Only at
large spatial scales, Synthetic Aperture Radar (SAR), or Interfero-
metric SAR (INSAR) provides sufficient resolution for measuring
waves longer than 100 m (see, e.g., Dankert et al., 2003). At smaller
scales, video techniques are effective to correctly estimate the
space–time dynamics and associated spectral properties (see,
for example, Holland and Holman, 1997; Holland et al., 1997;
Benetazzo, 2006). In particular, stereo cameras can be exploited
to retrieve both spatial and temporal data whose statistical content
is richer than that of a time series retrieved from wave gauges
(Fedele et al., 2011b; Gallego et al., 2011; Benetazzo et al., 2012).
In practice, stereo-pairs are acquired simultaneously and the
geometry of the stereo system is defined so to minimize errors
due to sea surface specularities (Jahne, 1993). Epipolar methods
are traditionally used for the reconstruction of the water surface
(Ma et al., 2004; see also Benetazzo, 2006), and recently varia-
tional-based techniques have been proposed to solve for the stereo
problem (see for example, Gallego et al., 2011). In particular, epipo-
lar-based techniques consist in finding pixel correspondences in
the two synchronized images by a pixel-by-pixel-based search that
is computationally expensive. Instead, variational-based ap-
proaches infer the waveform of the ocean surface as a minimizer
of a composite energy functional that combines a photometric
matching term along with regularization terms involving the
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smoothness of the unknowns. The desired ocean surface shape is
the solution of a partial differential equation derived from the opti-
mality conditions of the energy functional (Gallego et al., 2011).

Only in the last two decades or so, stereo imaging has become
suitable for applications in oceanography. In particular, directional
spectra of short gravity waves were estimated from stereo-pairs by
Shemdin et al. (1988) and Banner et al. (1989). Benetazzo (2006)
has proposed and tested a Wave Acquisition Stereo System (WASS)
for field measurements at the coast, and more recently Bechle and
Wu (2011) have studied coastal waves over areas �3 m2 using a
trinocular system (Wanek and Wu, 2006). Kosnik and Dulov
(2011) have estimated sea roughness from stereo images and de
Vries et al. (2011) have presented a stereo analysis of waves in
the surf zone over an area of �1000 m2.

In this work, we present two applications of WASS for stereo mea-
surements of gravity waves in the northern Adriatic Sea, off the Ven-
ice coast, and near the southern seashore of the Crimean peninsula,
in the Black Sea. The reminder of this paper is organized as follows.
We first provide an overview of the WASS deployments at the Italian
and Crimean sites and then briefly discuss the image processing be-
hind the stereo reconstruction of the wave surface using epipolar
and variational techniques. In particular, we present a variational
approach that exploits the entire space–time data image set provid-
ing a simultaneous reconstruction of a time-ordered stack of spatial
snapshots of the surface in order to guarantee continuity of the sea
surface both in space and time. Then, we evaluate directional spectra
and the time wave statistics at a given point is compared against the-
oretical models. Finally, we investigate the properties of space–time
extremes of the observed sea states, viz. the largest surface wave
heights expected over a given area during the sea state duration.
2. WASS deployments and data acquisition

In June 2009 WASS was deployed at the oceanographic tower
Acqua Alta located in the Northern Adriatic Sea, 10 miles off the
coastline of Venice, in 16 meters deep waters. Video measurements
were acquired in three experiments carried out during the period
2009–2010 to investigate both space–time and spectral properties
of oceanic waves (Fedele et al., 2011a,b; Benetazzo et al., 2012). To
maximize the common field of view of the two cameras, i.e., stereo
pairs, WASS was deployed at approximately 12.5 m above the
mean sea level on the third floor of the platform (see Fig. 1, left).
In such a setting, the stereo pairs cover a common trapezoidal area
of approximately 1100 m2, with sides of length 30 m and 100 m,
respectively, and a width of 100 m. The deployed WASS system in-
cludes two BM-500GE JAI digital cameras (2456 � 2058 CCD active
pixels with a square cell size of 3.45 lm � 3.45 lm, and a 8-bit
based dynamical range) and an acquisition workstation (Fig. 1,
center). The cameras are set at 2.5 m apart and they mount 5-
mm focal length low distortion lenses (21-mm equivalent focal
length in a 35-mm film camera). Camera synchronization is at-
Fig. 1. (Left) deployed WASS at Acqua Alta, (center) workstation
tained by an external trigger that allows different frame acquisi-
tion rates (5, 10, and 15 Hz) and the delay is kept within 1 ms as
required for wave measurements (Holthuijsen, 1983). A dedicated
Giga Ethernet device and high performance Hard Drives are used to
manage digital image data transfer rate up to 75 Megabyte/s. The
calibration of the WASS system is performed by means of standard
image analysis techniques (Ma et al., 2004). These exploit a given
known reference (for example, a chess-board) to estimate internal
parameters such as lens focal length, principal point and distortion,
i.e., lens angular aberration as well as external parameters, which
yield the reciprocal position of the two cameras with respect to a
fixed reference world system. In this work we will elaborate the
stereo data acquired during Experiments 2 and 3, viz. 21000 and
9000 snapshots, respectively. Both experiments were conducted
during North-Eastern wind (namely Bora) conditions with mean
wind speed and significant wave height equal to (9.6 m/s,
1.09 m) and (17.9 m/s, 2.16 m) for Experiments 2 and 3, respec-
tively (see Benetazzo et al., 2012).

In October 2009, another WASS was also mounted 12 meters
above the mean sea level on the research platform of the Marine
Hydrophysical Institute of Ukraine, located in Katsiveli, at the
southern tip of the Crimean peninsula, between Sevastopol and
Yalta (see Fig. 1, right). At the platform the water depth is approx-
imately 30 m. For this experiment we deployed a couple of JAI CM-
200 GE digital cameras (1624 � 1236 CCD active pixels with a
square cell size of 4.40 lm � 4.40 lm, and an 8-bit based dynam-
ical range), set 2.5 m apart and with 5-mm lenses (25-mm equiva-
lent focal length). The system was oriented to the East-South-East,
with moderate sun reflections in the morning, and was operated at
an acquisition frequency of 10 Hz producing 21000 pairs of images.
We analyzed 6000 pairs of a sea state with significant wave height
�0.26 m and wind speed �7.5 m/s. The internal and external cam-
era parameters and geometry of the stereo pair were calibrated
using the standard procedures mentioned above. The resulting im-
aged and processed areas were approximately 50 � 50 m2 and
15 � 15 m2, respectively. The pixel footprint of the imaged area
gives an estimate of WASS resolution on the horizontal plane,
which is approximately 40 mm and 20 mm for Acqua Alta and Cri-
mean experiments, respectively. In the epipolar method, the use of
a sub-pixel detection algorithm did improve the resolution by a
factor 5–10 (see Benetazzo et al., 2012; Nobach and Honkanen,
2005). As regard to vertical resolution, the WASS system is intrinsi-
cally a high-resolution system, because the Z-coordinate is a con-
tinuous function of both left and right image coordinates as well
as internal/external parameters. On the other hand, the accuracy
in measuring the wave surface elevation is defined for a given
WASS configuration (see Benetazzo, 2006; Benetazzo et al., 2012),
and it was estimated equal to 0.01 m and 0.04 m for Acqua Alta
and Crimean experiments respectively. At the present stage of
WASS development, specular reflections restricted the application
of stereo methods to conditions with limited sun glitter. The
acquired stereo sequences satisfy this condition. A solution
and cables, and (right) deployed WASS at the Crimean site.
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accounting for the sun position with respect to the stereo system
could alleviate this drawback, but it is beyond the goal of this
study. To remove unwanted spikes (outlier) from disparities we
used the algorithm described in Goring and Nikora (2002). We
found that WASS estimates of wave parameters fairly agree with
those from standard wave gauge instruments available at Acqua
Alta (see Benetazzo et al., 2012).

Acqua Alta stereo data were processed using epipolar methods
and the reconstructed wave surface displacements were validated
against gauge measurements available at the tower (Benetazzo
et al., 2012). Crimean data were processed using a technique based
on variational methods, combining the stereo disparity method in
(Alvarez et al., 2002) with the enforcement of temporal coherence
in (Gallego, 2011, Ch. 7), as discussed in the next section below.
Studies are in progress to compare the performance of epipolar
against variational methods for both data sets and they will be dis-
cussed elsewhere.
Fig. 2. Crimean experiment. Slices of the space–time tangential disparity. Grayscale
encoded, from dark (low) to white (high). The mean disparity over all snapshots has
been removed to better visualize the oscillating patterns in the disparity due to the
wave displacement caused by wind waves. Long axis is time t. The grid, of size
257 � 257 � 1025 points, in the image-time domain corresponds to a physical
space–time volume of size 20 � 15 m2 by 102.5 s.
3. Stereo processing

Given stereo images in favorable acquisition conditions, it is
possible to recover the three-dimensional (3-D) structure of the
scene (shape of the ocean surface) using computer vision tech-
niques. Following the classical image-based (bottom-up) approach,
the 3-D reconstruction problem is split in two: the establishment
of point correspondences across images (stereo-matching) and
depth recovery (triangulation or back-projection of point matches).
The first sub-problem is more difficult than the second. Epipolar
geometry is exploited to guide the search of point matches, i.e.,
the establishment of a disparity map between images (see, for
example, Ma et al., 2004).

In traditional methods, correspondences are established by
maximization of some cross-correlation photometric score along
epipolar lines. This enforces at most one-dimensional (1-D) conti-
nuity of the disparity map (along the epipolar lines). The dense dis-
parity method (Alvarez et al., 2002) focuses on solving the stereo
matching problem for surfaces that can be represented as depth
maps from one of the cameras by minimization of a cost functional
in a variational framework. This enforces continuity of the solution
(disparity map) in the full two-dimensional (2-D) image domain.
Variational methods provide a solid mathematical framework that
improves the robustness of the reconstruction against image noise
and other error sources (Gallego et al., 2011). Inspired by the dense
disparity method, we develop a cost functional with a data fidelity
term (which measures the photometric mismatch between trans-
ferred image intensities according to a candidate disparity func-
tion) and a smoothing term (regularizer) in the only unknown of
the problem: the tangential disparity map. We further extend this
method to enforce continuity of the solution not only in space but
also in time (Gallego, 2011, Ch. 7), considering a cost functional
whose data fidelity term is the sum of the snapshot-wise data
fidelity terms and whose regularizer comprises penalties on the
temporal derivatives of the tangential disparity:

EdataðkÞ ¼
1
T

Z
T

Z
X

1
2
ðI1ðx1; tÞ � I2ðx2; tÞÞ2dx1dt ð1Þ

and

EsmoothðkÞ ¼
1
T

Z
T

Z
X

1
2
krkk2dx1dt: ð2Þ

Here, I1 and I2 are the acquired video data by both cameras,
k (x1,t) is the tangential disparity map for all snapshots and 5k is
the spatio-temporal gradient of the tangential disparity. Coordi-
nates x1 and x2 are 2-D vectors that refer to corresponding loca-
tions in images 1 and 2, respectively. Point x2 is obtained from x1
via formula x2 = x1 + d(k), where d(k) is the disparity. We also
incorporate a parameter that controls the relative amount of tem-
poral coherence with respect to the spatial one. The necessary opti-
mality condition of the above cost functional is given by the Euler–
Lagrange (EL) equation
aDkþ ðI1ðx1; tÞ � I2ðx2; tÞÞð@I2ðx2; tÞ=@kÞ ¼ 0 ð3Þ
and homogeneous Neumann boundary conditions, where the above
Laplacian Dk comprises second order derivatives in space–time. The
partial differential equation (PDE) is solved via the steady state of a
gradient descent method in the unknown function. The PDE is dis-
cretized using finite differences and it is numerically solved via 3-D
multigrid methods (Briggs et al., 2000; Trottenberg, 2000), which
are the standard numerical tools to solve non-linear elliptic bound-
ary value problems such as the one considered here. Hence, this
method consists of simultaneous estimation of the disparity maps
for all snapshots in a sequence (see Fig. 2). Note that this is not
an extension of the variational approach of Gallego et al. (2011),
which directly computes the surface of the ocean without using a
disparity map.

The proposed method was applied to a sub-sampled version of
the images (by a factor of 4 in both spatial dimensions) to be able
to process a significant group of snapshots simultaneously using a
dual-core desktop computer (4097 snapshots). A disparity map
with 2572 points was chosen (Fig. 2 shows a portion of 1025 snap-
shots of the reconstructed disparity). Given the disparity maps, it is
straightforward to compute the depths of the corresponding 3-D
points and their heights with respect to an average plane via trian-
gulation (see Hartley and Sturm, 1997).

In simple words, both epipolar and variational methods yield
the stereo reconstruction of the wave surface as a four dimensional
(4-D) manifold Z = g(X, T, t) defined on a 3-D space–time volume V
with sides Xmax = 35 m, Ymax = 35 m and tmax � 30 min along X, Y
and t, respectively. As an example, horizontal and vertical projec-
tions of the wave surface manifold are shown in Fig. 3 from the
elaboration of Crimean data.

In the following, we will estimate directional spectra from the
reconstructed wave surface and the observed wave extremes in
space–time will be compared against theoretical models based
on Euler Characteristics (Adler, 1981, 2000; Adler and Taylor,
2007).



Fig. 3. Crimean experiment: horizontal (right) and vertical (left) slicing of the space–time surface height volume V. Spatial resolution: 10 cm. Covered area: 20 � 15 m2.
Processed area (inside the trapezoid): 152 m2.
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4. Directional spectra

Video data were collected by WASS during three field campaigns
at Acqua Alta in 2009–2010. The three experiments cover a broad
range of wave height conditions as discussed in Fedele et al.
(2011a,b) and Benetazzo et al. (2012). WASS estimates were com-
pared against reference point time series measurements provided
by wave gauge instruments available at Acqua Alta. Such compari-
son was done by first selecting a virtual point probe within the
reconstructed area and then extracting the associated time series
of the stereo reconstructed wave surface displacements. Given
the wave time series, various statistical and spectral properties of
waves were computed and compared against those from Acqua Alta
instruments. We refer to Fedele et al. (2011b) and Benetazzo et al.
(2012) for such comparisons, which provide evidence that the
accuracy of WASS measurements is comparable to that of more tra-
ditional wave instruments.

From the stereo data acquired in Experiment 2 at Acqua Alta
(21000 snapshots at 10 Hz over an area of �1100 m2) the direc-
tional spectrum is estimated using a modified version of the MAT-
LAB� DIWASP v1.3 toolbox (Johnson, 2004) for the Extended
Maximum Entropy Principle (EMEP, see Hashimoto et al., 1994).
Note that this technique estimates only few directional Fourier
coefficients of the directional spreading function from time series
extracted at a limited number of virtual probes. Thus, for multi-
modal or complex directional spectra of the sea state EMEP has
some limitations and the characterization of the directional
spreading may be affected by noise. For Acqua Alta, the polar rep-
resentation of the estimated S(f, h) via EMEP is reported in Fig. 4.

The analysis of Crimean data is done using the variational dispar-
ity approach presented in Section 3, which provides the simulta-
neous reconstruction of the wave surface both in space and time.
The estimate of the frequency spectrum S(f) is reported in Fig. 5
(left), which shows an inertial range as f�4 in agreement with weak
wave turbulence (Zakharov, 1999). Above 1 Hz the increased spec-
tral slope is due to noise and the f�5 Phillips’ regime is not observed
(Phillips, 1958, 1977; Newell and Zakharov, 2008). Clearly, the sea
state includes both a swell and wind wave components with peak
periods at 6 s and 3 s, respectively. In the right panel of the same Fig-
ure we report a kx-slice of the wave number-frequency spectrum
S(kx, ky, f), kx and ky being the wave numbers along X and Y respec-
tively (see also Krogstad and Trulsen, 2010). Note that the observed
dispersion pattern deviates from the theoretical dispersion curve
(dash line) with no current, viz., ky = (2pf)2/g due to the Doppler-
shift caused by underwater currents. Their speed is estimated as
�0.2 m/s by matching the theoretical wave-current dispersion
curve (solid line) with the observed trend, and we refer to Fedele
et al. (2011b) and Benetazzo et al. (2012) for a more detailed descrip-
tion of the estimation method. We also observe the signature of sec-
ond-order harmonics due to the nonlinearity of the wave field, viz.
the weak green line structure over the dispersion relation branch
with positive Doppler shift in frequency. The directional spectrum
estimated using the EMEP method is shown in Fig. 6. In agreement
with the frequency spectrum of Fig. 5 we observe both swell and
wind wave components as incident waves toward the platform as
well as some noise due to the abovementioned limitations of the
EMEP estimator. Note also a reflected wave component due possibly
to diffraction effects of the tower.
5. Time extreme value analysis

In this section we elaborate on the statistics of the largest waves
expected at a given point of the imaged area in time, hereafter
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referred to as time extremes. We consider the stereo-imaged wave
surface acquired from Experiment 2 at Acqua Alta data, and we re-
fer to Benetazzo et al. (2012) for the analysis of the video data ac-
quired in Experiments 1 and 3. Consider the ensemble of the time
series of the stereo reconstructed wave displacements extracted at
several virtual probes. The time series are filtered above 1.1 Hz to
remove noise, with variations of the wave variance less than
0.5%. The expected maximum wave height Z(N) = < Hmax/r > of N
observed waves can then be easily estimated from the wave
ensemble. According to Gumbel (1958), its theoretical value is gi-
ven by (see also Tayfun and Fedele, 2007)

ZðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðc0NÞ=c1

q
þ ce

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 logðc0NÞ

p ; ð4Þ
where ce ffi 0.5772. For the Rayleigh (R) model the coefficients
c0 ¼ 1, c1 ¼ 1=8, and for the Boccotti (B) model (Boccotti, 2000)

c0 ¼ ð1þ bÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð1� aÞ

q
c1 ¼ 0:25=ð1� aÞ ð5Þ

with a ¼ �w�, b ¼ 1: Here, the parameter w⁄ depends upon the first
minimum of the wave covariance and r is the standard deviation of
the wave surface. In particular, the average value over the time ser-
ies ensemble is w⁄ � 0.66. Data are compared against R and B in
Fig. 7. As one can see, R overestimates the observed expected max-
imum wave heights as expected, because it does not account for
bandwidth effects as B does (see also Boccotti, 2000; Benetazzo
et al., 2012). Finally, we observe that the Stokes–Miche upper bound
(Michell, 1893)
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H
r 6

2p
7

tanhðkdÞ
kr ð6Þ

is not violated by the largest waves observed at the different virtual
probes as shown in Fig. 8. Here, H is the crest-to-trough height of a
wave with wavenumber k = 2p/Lm, Lm being the wavelength
associated to the mean wave period Tm via the linear dispersion
relation.
6. Expected shape of large waves

Hereafter we will compare the observed waveform of large
waves against their expected theoretical shape (Lindgren, 1970;
Boccotti, 2000). Consider among the observed waves, those with
large crest-to-trough amplitudes a = H/r� 1. For dominant second
order nonlinearities, the shape of these large waves tends, for a� 1,
to the deterministic form (Fedele, 2005, 2008; Tayfun and Fedele,
2007)

< gðtÞja > ¼ a
2

wðtÞ � wðt � T�Þ
1� wðT�Þ þ la2

8
wðtÞ � wðt � T�Þ

1� wðT�Þ

� �2
(

� ŵðtÞ � ŵðt � T�Þ
1� wðT�Þ

" #2
9=
;; ð7Þ

where w(t) is the normalized wave covariance, ŵðtÞ its Hilbert trans-
form, and T⁄ is the abscissa of the first absolute minimum of w (Boc-
cotti, 2000). The wave steepness can be estimated directly from
data via time averages as l = < g3 > , where < 	 > denotes expecta-
tion. A statistically stable estimate for l can be defined from the
moments of the wave spectrum as (Fedele, 2009; Fedele and Tay-
fun, 2009)

la ¼ lmð1� mþ m2Þ; ð8Þ
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where m is the spectral bandwidth given by m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0m2=m2

1 � 1
q

,
where mj are the spectral moments and lm is the steepness for nar-
rowband waves, viz. lm ¼ rx2

m=g, with xm ¼ m1=m0 as the mean
up-crossing frequency (Tayfun, 1986). The observed values for these
parameters for Exp. 2 at Acqua Alta are given by l = 0.080,
lm = 0.090, la = 0.069 and m = 0.52, respectively. Further, if we de-
fine C and T as the crest and trough amplitudes of the same wave,
given a� 1, the conditional ratio C/T is given by

fC=TjH ¼ ag ¼ 1þ 2cZ
1� 2cZ


 1þ lað1þ 2cZÞ=4
1� lað1� 2cZÞ=4

; ð9Þ

where Z is Gaussian with mean zero and unit variance and

c ¼ 1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ wðT�Þ

2

r
: ð10Þ

Fig. 9 shows a fair agreement between the observed shape of
large waves and the theoretical expected form (7) (l = lm = 0.09
and w(T⁄) = �0.66). Further, Fig. 10 shows that the observed condi-
tional ratio agrees well with the associated theoretical expected
value from (9). Consider now among the observed waves, those
with large crest amplitudes n = h/r� 1. Their shape tends to

< gðtÞjgð0Þ ¼ n >¼ n1wðtÞ þ
ln2

1

2
½w2ðtÞ � ŵ2ðtÞ�; ð11Þ

where n ¼ n1 þ ln2
1=2 (Tayfun and Fedele, 2007; Fedele, 2008, 2009;

Fedele and Tayfun, 2009). Fig. 11 shows a comparison between the
observed shape of the wave with the largest crest and the respective
theoretical expected wave profile from (11). Clearly, WASS stereo
imaging is able to capture typical features of the wave surface, espe-
cially the crest-to-trough asymmetry due to second order nonlin-
earities, and observations are in fair agreement with theoretical
models.

7. Space–time extreme value analysis

Recently some authors (Krogstad et al., 2004; Forristall, 2006,
2007) carried out numerical simulations of Gaussian and non-
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Fig. 9. Acqua Alta, Experiment 2: Observed shape of large waves (dash line) given the crest-to-trough height H in [7r, 8r] and respective stability bands, and theoretical
expected wave profile of Eq. (7) (solid line).
Gaussian seas to show that the maximum surface height over a gi-
ven area of the ocean is generally larger than that observed in time
via point measurements. Indeed, in short-crested seas the surface
time series gathered at the given location tends to underestimate
the true actual wave surface maximum that can occur over a given
region of area A around a point P. The probability that the group
passes at its apex through P is practically null, because large waves
travel on top of wave groups. The large crest height recorded in
time at P is simply due to the dynamical effects of a wave group
that focuses nearby that location within or outside A forming a lar-
ger wave crest. Only in narrow-band sea states, point measure-
ments are exact in predicting such maximum, which is expected
to be the same at any point in space. However, realistic oceanic
conditions are generally short-crested and extremes over an area
are larger than those measured at a fixed point because point-
probe measurements are not able to detect true maxima of short
crested seas. As pointed out by Baxevani and Richlik (2004), the
occurrence of an extreme in a Gaussian field is analogous to that
of a big wave that a surfer searches for and always finds, because
he moves around a large area instead of waiting at a fixed location
for the big wave to occur. Indeed, if he spans a large area the
chances to encounter the largest crest of a wave group increase,
in agreement with the findings of the recent European Union ‘Max-
Wave’ project (Rosenthal and Lehner, 2008).

The prediction of spatial extremes is relevant in offshore engi-
neering: the design of the air gap under the deck of fixed offshore
structures should be based on the largest wave surface height over
the rig’s area footprint. The underestimation of the design height
may be the cause of localized damages sometimes observed on
the lower decks of platforms after storms (Forristall, 2006, 2007).

In the following, we will show that WASS measurements allow
for a complete statistical analysis of wave extremes exploiting Ad-
ler’s Euler Characteristics (Adler, 1981; see also Piterbarg, 1995).
Drawing from Fedele et al. (2011a,b) and Fedele (2012) we first
consider wave surface maxima that occur over a given area at a
fixed instant of time (space extremes) and then extend the analysis
to global maxima over an area during the sea state duration
(space–time extremes).
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Fig. 10. Acqua Alta, experiment 2: Observed conditional averages of C/T (solid line) given the crest-to-trough height H and the associated theoretical expected values from Eq.
(9) (dash line).
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Fig. 11. Acqua Alta, experiment 2: Observed shape of large waves (dash line) given the crest amplitude h in [3.75r, 4.5r] and respective stability bands, and theoretical
expected wave profile of Eq. (11) (solid line).
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7.1. Space extremes

Consider a 2-D snapshot g(x, y) of the wave surface at a given
time t over a given rectangular region A of dimensions lx and ly
as that shown in Fig. 12 from Experiment 3 at Acqua Alta. The
excursion set Ug,h = {(x, y) e A:g(x, y) > h} is the portion of A over
which g is above the threshold h (see Fig. 13). For this set, the Euler
characteristic EC is defined as the difference between the number
of connected components and holes of the given set. If the thresh-
old is low, then EC counts the number of holes in the given set. If
the threshold is high, then all the holes tend to disappear and
the EC counts the number of connected components, or local max-
ima of the wave surface. For weakly nonlinear wave surfaces, the
expected value of the EC is given by (Adler, 1981; Worsley, 1995;
Adler and Taylor, 2007, see also Fedele et al., 2011a,b; Fedele,
2012)

< ECðnÞ >¼ ECaðn1Þ þ ECbðn1Þ þ PrfZ > n1g; ð12Þ

where

ECa ¼ ~M2n1 expð�n2
1=2Þ; ECb ¼ ~M1 expð�n2

1=2Þ: ð13Þ

Here,< 	 > denotes expectation, n = h/r is a normalized thresh-
old amplitude which satisfies n ¼ n1 þ l=2n2

1; and Z is Gaussian
with zero mean and unit variance. Further,



Fig. 12. Acqua Alta, experiment 3: selected region A of the wave surface elevation
map (height in millimeters).

Fig. 13. Acqua Alta, experiment 3: Excursion set (black region) of the normalized
wave surface g/r, that is the portion of domain A over which g > 1.7r. Note that, as
the threshold increases the excursion set is the union of isolated regions delimiting
the local maxima of the wave surface.
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~M2 ¼
ffiffiffiffiffiffiffi
2p
p lxly

LxLy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

xy

q
; ~M1 ¼

lx

Lx
þ ly

Ly
ð14Þ

are the average number of ‘waves’ over the area A and along the
perimeter P, respectively, and Lx and Ly are the mean wavelength
along two orthogonal directions x and y, respectively. Note that
the wave parameters in (12)–(14) can be expressed solely in terms
of the moments of the directional spectrum (see Appendix). The ECb

term in (12) will be referred to as a boundary correction because it
is important when the excursion set touches the boundary/perime-
ter of the region A (Worsley, 1995). Adler (1981) and Adler and Tay-
lor (2007) have shown that the probability that the global
maximum of a random field g exceeds a threshold h is well approx-
imated by the expected EC of the excursion set Ug,h, provided the
threshold is high. Indeed, as the threshold h increases, the holes
in the excursion set disappear until each of its connected compo-
nents includes just one local maximum, and the EC counts the num-
ber of local maxima. For very large thresholds, the EC equals 1 if the
global maximum exceeds the threshold and 0 if it is below. Thus,
heuristically the ECðUg;hÞ of large excursion sets is a binary random
variable with states 0 and 1, from which follows that the probability
of exceedance of the normalized global maximum nmax = gmax/r of g
over A is given, for n� 1, by

Prfnmax > ng ¼ PrfECðUg;hÞ ¼ 1g ¼< ECðnÞ > : ð15Þ

Further, according to Gumbel (1958) the expected value of nmax

is given by

< nmax >¼ hN þ
l
2

h2
N þ ce

1þ lhN

hN �
~M2

~M2hNþ ~M1

; ð16Þ

where hN satisfies ð ~M2hN þ ~M1Þ expð�h2
N=2Þ ¼ 1. If ~M1 ¼ 0, the Tay-

fun–Piterbarg model is recovered (Krogstad et al., 2004).
Fig. 14 reports the time variation of the estimated expected

maximum <gmax> from Eq. (16) computed both with and without
boundary corrections ( ~M1–0 and ~M1 ¼ 0 respectively). The two
expectations slightly differ by 5–6%. Clearly, these estimates are
larger than the maximum height expected solely along the bound-
ary of A. Note also that the observed maximum height over the en-
tire area A is bounded by the theoretical expected values from Eq.
(16).

Further, we estimated the EC for each of the reconstructed snap-
shots of the wave surface (9000 in total). The associated observed
expected EC value is reported in Fig. 15 together with the respec-
tive stability bands. Good agreement with their theoretical expec-
tation (12) is found over small-to-moderate thresholds if the
boundary corrections ECb are accounted for. Their effects tend to
monotonically diminish at large thresholds as an indication that
very large extremes most likely occur within the area A and not
on the boundary. This is consistent with the small differences
noted in Fig. 14 between the expected values of the maximum
height estimated with and without boundary corrections. Further,
from Fig. 16 it is also clear that the asymptotic EC-based exceed-
ance probability of the wave surface maximum (valid for
g > 2.5r) deviates from both the Rayleigh and Tayfun-Fedele mod-
els (see also Fedele et al., 2011a: Fedele et al., 2011b; Fedele, 2012).
This provides evidence that the expected maximum surface height
estimated over the imaged area is considerably larger than the ex-
pected maximum crest at a single point in space.

7.2. Space–time extremes

In the following we will investigate the extreme value statistics
of the largest amplitude of the wave surface g over a given area and
time duration. To do so, consider the sequence fn1; n2; . . . ; nNg of
the instantaneous normalized maximum n(t) = gmax(t)/r of g ob-
served over a region of the field of view of area A at the generic
time t. As a reference statistics consider that of the expected max-
imum crest height Cb(N) of N waves whose parent statistical distri-
bution follows the general law

Pðh > zÞ ¼ zb
1 expð�z2

1=2Þ;b P 1; ð17Þ

where the linear amplitude z1 satisfies the Tayfun quadratic equa-
tion z ¼ z1 þ lz2

1=2 (Tayfun, 1986, see also Fedele, 2009) to account
for second order nonlinearities. In this case, the expected maximum
crest height depends upon the parameter b and it is given, accord-
ing to Gumbel (1958), by

CbðNÞ ¼ hN þ
l
2

h2
N þ ce

1þ lhN

hN � b=hN
; ð18Þ

where hN satisfies hb
Nexpð�h2

N=2Þ ¼ 1=N. For b = 0 the Tayfun model
is recovered, as it should be. The 2-D and 3-D Tayfun–Piterbarg
models (Krogstad et al., 2004) are obtained for b equal to 1 and 2,
respectively. The expected maximum nmax(N) over N snapshots is
computed according to the Gumbel statistics CbðNÞ of Eq. (18) and
it is compared against the observed expected maximum wave ele-
vation in Fig. 17 (data from Acqua Alta, Experiment 2). As the area
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increases, the observations deviate from the 1-D Tayfun model stay-
ing between the 2-D and 3-D Tayfun–Piterbarg statistics. Note that
the surface maximum estimates over the smallest area
(A = 3 � 10�3 m2) are practically those observed at a given point,
and hereafter referred to as nmax,p. Indeed, in this case the mean
wavelength Lm is much larger than the length A1/2 of the area’s side.
Clearly, as the area increases, so does the expected areal maximum
nmax. For example, nmax � 1.34nmax,p over the area A � 534 m2. More
rigorous stochastic models can be applied to describe space–time
extremes and their expected values (Piterbarg, 1995; Adler and
Taylor, 2007). Indeed, the wave surface can be modeled as a 3-D
homogeneous Gaussian random field g(x, y, t) over a space–time
volume X of dimensions lx, ly and D respectively. According to
Fedele (2012), in a Gaussian sea state of duration D the expected
maximum wave surface height nmax ¼ �gmax=Hs over the area A = lxly
is given, according to Gumbel (1958), by

nmax ¼ f0 þ
ce

16f0 � F 0 ðf0Þ
Fðf0Þ

; ð19Þ

where Hs is the significant wave height of the sea state, the prime
denotes derivative and f0 satisfies
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FðfÞexpð�8f2Þ ¼ 1 ð20Þ

with

FðfÞ ¼ 16M3f
2 þ 4M2fþM1: ð21Þ

Here, M3, M2 and M1 are the average number of 3-D, 2-D and 1-
D waves that can occur in the space–time volume spanned by the
area A during D. They all depend upon the directional wave
spectrum and are given in Appendix A. The expected maximum
crest height nmax,p at a given point follows from Eq. (19) setting
M3 = M2 = 0. Thus, we can also estimate the ratio between the ex-
pected surface maximum nmax and that at a point, viz. nmax,p, as
function of the area A. For example, in Fig. 18 we report the ratio
r = nmax/nmax,p observed from WASS measurements of the surface
height (just one realization), which fairly agree with the theoretical
estimates based on Eq. (19). In particular, r � 1.36 for A = 534 m2 in
agreement with the predictions of Fig. 17.

8. Conclusions

As a video observational technology, WASS is able to infer the
space–time dynamics of oceanic states. To do so, stereo techniques
based on the epipolar geometry and variational methods are
exploited to obtain 3-D reconstructions of the sea surface map in
time. By just elaborating time series of reconstructed wave surface
displacements extracted at virtual point probes, we showed that
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the observed shape of large waves is predicted by stochastic mod-
els based on the theory of quasi-determinism of Boccotti (2000).
The estimated steepness of such large crests suggest that they do
not violate the Stokes–Miche upper limit. Furthermore, a statistical
analysis of the reconstructed spatial snapshots based on Adler’s
Euler Characteristics revealed that the maximum wave surface
height over an area during a given duration (space–time extreme)
is larger than that expected at a given point in space (time ex-
treme). If the area is large enough compared to the mean wave-
length, a space–time extreme most likely coincides with the crest
of a focusing wave group that passes through the area. Clearly,
the presented work demonstrates for the first time that the
space–time wave statistics can be obtained from stereo video
imaging and that existing stochastic theories of wave extremes
agree with measurements.
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Appendix A

For space–time extremes, the coefficients in Eqs. (19)–(21) are
given by (see, for example, Fedele, 2012)

M3 ¼ 2p D
T

XY
LxLy

axyt

M2 ¼
ffiffiffiffiffiffiffi
2p
p

DX
TLx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

xt

p
þ DY

TLy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

yt

q
þ XY

LxLy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

xy

q� �
;

M1 ¼ D
T
þ X

Lx
þ Y

Ly
:

ðA1Þ

which depend upon mean wave period �T , mean wavelengths in X
and Y directions, Lx and Ly, viz.

T ¼ 2p
ffiffiffiffiffiffiffiffiffiffi
m000

m002

r
; Lx ¼ 2p

ffiffiffiffiffiffiffiffiffiffi
m000

m200

r
; Ly ¼ 2p

ffiffiffiffiffiffiffiffiffiffi
m000

m020

r
ðA2Þ

and

axyt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

xt � a2
yt � a2

xy þ 2axtaytaxy

q
: ðA3Þ

Here, mijk are the moments of the directional spectrum S(f, h) gi-
ven by

mijk ¼
Z Z

ki
xkj

yf kSðf ; hÞdfdh: ðA4Þ

For space extremes (D = 0 and axt ¼ 0, ayt ¼ 0, axyt ¼ 0) from
(A.1) the parameters ~M1 and ~M2 in Eq. (14) are recovered.
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