
Generated using the official AMS LATEX template—two-column layout. FOR AUTHOR USE ONLY, NOT FOR SUBMISSION!

J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

Are rogue waves really unexpected?

FRANCESCO FEDELE∗

School of Civil and Environmental Engineering, School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA, USA.

ABSTRACT

We present a third-order nonlinear model for the statistics of unexpected waves drawing on the work
of Gemmrich and Garrett (2008). The model is verified by way of Monte Carlo simulations of Gaussian seas
and comparisons to oceanic measurements. In particular, the analysis of oceanic data suggests that both skew-
ness and kurtosis effects must be accounted for to obtain accurate predictions. As a specific application, the
unexpectedness of the Andrea and WACSIS rogue wave events is examined in detail. Observations indicate
that the crests of these waves have nearly the same amplitude ratio h/Hs ∼ 1.6, where Hs is the significant
wave height. Both waves appeared without warning and they were nearly two-times larger than the surround-
ing O(10) waves, and thus unexpected according to Gemmrich and Garrett (2008). The model developed here
predicts that the two rogue waves are stochastically similar as they occur on average once every 104 waves.
Further, the maximum crest height actually observed is nearly the same as the threshold h106 ∼ 1.62Hs ex-
ceeded by the 1/106 fraction of largest crests. These results imply that rogue waves are likely occurrences of
unexpected events in weakly nonlinear random seas.

1. Introduction

A rogue wave is a wave whose crest-to-trough height is
at least 2.2 times the significant wave height Hs or whose
crest height exceeds 1.34Hs, where Hs = 4σ and σ is the
standard deviation of the surface elevation (Dysthe et al.
2008). Evidences given for the occurrence of such waves
in nature include the Draupner and Andrea events. In par-
ticular, the Andrea wave was measured on November 9
2007 by a LASAR system mounted on the Ekofisk plat-
form in the North Sea in a water depth of d = 74 m (Mag-
nusson and Donelan 2013). The Draupner freak wave was
measured by Statoil at a nearby platform in January 1995
(Haver 2001).

The Andrea wave occurred during a sea state with sig-
nificant wave height Hs = 4σ = 9.2 m, mean period T0 =
13.2 s and wavelength L0 = 220 m. Its crest height is h =
1.63Hs = 15 m and the crest-to-trough height H = 2.3Hs =
21.1 m. In the last decade, the properties of the Draupner
and Andrea waves have been extensively studied (Dysthe
et al. 2008; Osborne 1995; Magnusson and Donelan 2013;
Bitner-Gregersen et al. 2014; Dias et al. 2015). Further,
observations of such large extreme waves show that they
tend to extend above the surrounding smaller waves with-
out warning and thus unexpectedly. Further, both waves
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were twice as high as the immediately preceding as well
as following groups of waves.

In describing the unexpectedness of wave extremes,
Gemmrich and Garrett (2008) define as unexpected a wave
α-times larger than a set of one-sided (preceding) waves
or two-sided (preceding and following) waves (see Fig. 1).
By means of Monte Carlo simulations of typical oceanic
sea states characterized by the JONSWAP spectrum, they
estimated that a wave with height at least twice that of any
of the preceding 30 waves (corresponding to 21 peak peri-
ods in their simulations) occurs once every 7×104 waves
on average, giving a return period of 8 days if the peak pe-
riod of the waves is 10 s. Also unexpected crest heights are
more probable than unexpected wave heights as the return
period is 4 days (∼ 3.5×104 waves) for linear waves and
2 days (∼ 104 waves) if second order bound nonlinearities
are accounted for.

The preceding studies provide the principal motivation
here to consider a theoretical model for describing unex-
pected waves and their rogueness. In particular, we in-
troduce a new statistics for the prediction of unexpected
waves that accounts for both second- and third-order non-
linearities. First, we present analytical solutions for the re-
turn period of unexpected waves and associated uncondi-
tional and conditional averages for crest and wave heights.
Then, the conceptual framework is validated by way of
Monte Carlo simulations of Gaussian seas and the theoret-
ical predictions are compared to oceanic measurements.
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FIG. 1. WACSIS measurements: the observed largest crest height is α = 2 -times larger than the crests of the one-sided (two-sided) Na ∼ 50 (180)
waves. Wave parameters Hs = 4.16 m, Tm = 6.6 s, depth d = 18 m (Forristall et al. 2004).

As a specific application here, we capitalize on the numer-
ical simulations of the Andrea sea state (Bitner-Gregersen
et al. 2014; Dias et al. 2015) and examine the unexpected-
ness of the Andrea wave in detail. Summary and conclu-
sions follow subsequently.

2. Statistics of unexpected waves

Drawing on Tayfun and Fedele (2007), the exceedance
probability distribution of wave crests characterized by
third-order nonlinearities is described by

P(x) = exp
(
−

x2
0

2

)[
1+

Λ

64
x2

0
(
x2

0 −4
)]

, (1)

where x = h/σ is the crest amplitude h scaled by the stan-
dard deviation σ and x0 follows from the quadratic equa-
tion (Tayfun 1980)

x = x0 +
µ

2
x2

0.

Here, the Tayfun wave steepness µ = λ3/3 relates to the
skewness of surface elevations (Fedele and Tayfun 2009)
and the parameter

Λ = λ40 +2λ22 +λ04 (2)

is a measure of third-order nonlinearities as a function of
the fourth order cumulants λnm of the wave surface η and
its Hilbert transform η̂ (Tayfun and Fedele 2007). Draw-
ing on Mori and Janssen (2006), we assume the following
relations between cumulants

λ22 = λ40/3, λ04 = λ40, (3)

which, to date, have been proven to hold for second-order
NB waves only (Tayfun and Lo 1990). Then, Λ can be

approximated in terms of the excess kurtosis λ40 by

Λappr =
8λ40

3
, (4)

which will be used in this work. Then, Eq. (1) reduces to a
modified Edgeworth-Rayleigh (MER) distribution (Mori
and Janssen 2006). For realistic oceanic seas the kurto-
sis λ40 is mainly affected by bound nonlinearities (Fedele
2015b,a).

Consider now a time interval τ during which Nw = τ/Tm
waves occur on average, where Tm is the mean zero-
upcrossing period. Define the event E of an unexpected
wave whose crest is α-times larger than the surrounding
Na waves. We assume that neighboring waves are stochas-
tically independent. Then, in a sample of Na + 1 succes-
sive waves it is irrelevant what wave is the unexpected
wave larger than the surrounding waves. Indeed, any wave
in the sample could be ”p-sided” unexpected, i.e. α-times
larger than the previous m waves and following Na −m
waves, with m = 1, ...Na/2 and p = Na/m. For instance,
the last wave in the sample could be larger than the pre-
ceding (one-sided) Na waves (m = Na and p = 1), or the
central wave could extend above the preceding and follow-
ing (two-sided) m = Na/2 waves (p = 2 and Na even) (see
Fig. 1). Clearly, the statistics of one- and two-sided unex-
pected waves, or more generally the p-sided statistics are
the same if stochastic independence of successive waves
holds. On this basis, the fraction of waves n(x;α,Na) that
have a dimensionless crest height ξ = h/σ within the in-
terval (x,x+dx) and that is α-times larger than any of the
surrounding Na waves is given by

n(x;α,Na)dx =
[
1−P

( x
α

)]Na
p(x)dx, (5)
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where P(x) is the exceedance probability given in Eq. (1)
and

p(x) =−dP
dx

(6)

is the pdf of x. Then the probability that the crest height ξ

is in (x,x+dx) follows as

ph(x;α,Na)dx =
n(x;α,Na)dx

n(α,Na)
, (7)

where n(α,Na) is the mean number of waves whose crest
height is α-times larger than the surrounding Na waves,
namely

n(α,Na)=
∫

∞

0
n(x;α,Na)dx=

∫
∞

0

[
1−P

( x
α

)]Na
p(x)dx.

(8)
By definition, the return period R or the average time in-
terval between two consecutive occurrences of the unex-
pected event E is

R(α,Na) =
τ

Nwn(α,Na)
=

NwTm

Nwn(α,Na)
=

Tm

n(α,Na)
. (9)

Since Tm is the mean wave period, E occurs on average
once every NR waves where

NR(α,Na) =
1

n(α,Na)
. (10)

The associated mean crest height of a wave α-times larger
than the surrounding Na waves follows from Eq. (7) as

hα,Na = σ

∫
∞

0
xph(x;α,Na)dx. (11)

We rely on a quantile-type approach to describe rare oc-
currences of unexpected waves. In particular, we consider
the threshold hq,α,Na exceeded with probability q by an un-
expected crest height h α-times larger than the surround-
ing Na waves. This satisfies

Ph(hq,α,Na/σ ;α,Na) = q (12)

where
Ph(x;α,Na) =

∫
∞

x
ph(s;α,Na)ds (13)

is the exceedance probability from Eq. (7). The condi-
tional mean h

∣∣h > hq,α,Na follows by integration by parts
as

hq,α,Na = hq,α,Na +
σ

q

∫
∞

hq,α,Na

Ph(x;α,Na)dx. (14)

In applications, we will use numerical integration to solve
for the above statistical quantities. For comparison pur-
poses, we also consider the standard statistics hmax,n, hn
and h1/n for crest heights (Tayfun and Fedele 2007). In

particular, hmax,n is the mean maximum crest height of a
sample of n waves, namely

hmax,n = σ

∫
∞

0
[1−P(x)]n dx, (15)

which can be approximated via Gumbel-type asymp-
totics (see, for example Tayfun and Fedele (2007); Fedele
(2015a)). The threshold hn is exceeded by the 1/n frac-
tion of largest crest heights and it satisfies P(hn) = 1/n.
The conditional mean h1/n, given h > hn then follows by
definition from

h1/n = hn +σn
∫

∞

hn

P(x)dx. (16)

One can show that hmax,n is always smaller than h1/n and
they tend to be the same as n increases (Tayfun and Fedele
2007). It is straightforward to check that hn (h1/n) coin-
cides with hq,α,Na (hq,α,Na ) for q = 1/n and α = 1.

A statistical interpretation of the preceding is as fol-
lows. An unexpected wave whose crest height is α-times
larger than the surrounding Na wave crests occurs on aver-
age once every NR waves. At a probability level of q and
from a sample population of NR/q waves, only a smaller
set of 1/q waves is unexpected. All the unexpected crests
will be larger than the mean hα,Na and only one crest in the
set exceeds the threshold hq,α,Na . For example, an unex-
pected Gaussian wave whose crest height is α = 2-times
larger than the surrounding Na = 40 waves occurs on av-
erage once every NR = 105 waves (see Fig. 1). The mean
crest amplitude h2,40 ∼ 1.1Hs and the threshold exceeded
with probability q= 1/10 is h1/10,2,40 ∼ 1.3Hs (see Fig. 2).
This means that in a sample of NR/q = 106 waves a set
of 1/q = 10 waves are unexpected. All the waves in this
set have crests that exceed 1.1Hs, but only one wave crest
exceeds 1.3Hs. Further, hq=1/10,2,40 is close to h106 , the
threshold exceeded by the 1/106 fraction of largest crests.
This suggests that in general hα,Na is nearly the same as the
threshold hNR/q exceeded by the q/NR fraction of largest
crests, as confirmed later via comparisons to oceanic data.

The corresponding linear statistics follow by setting
µ = 0 and Λ = 0 in Eq. (1). These will hereafter be dif-
ferentiated with the superscript L, namely as h

(L)
α,Na , h(L)q,α,Na

and h
(L)
α,Na .

Similar statistics for the crest-to-trough height y = H/σ

of unexpected waves follow by replacing the crest ex-
ceedance probability P in Eq. (1) with the generalized
Boccotti distribution (Alkhalidi and Tayfun 2013)

PH(y) =c0 exp
(
−1

4
y2

1+ψ∗

)
×
[

1+
Λ

64
y2

1+ψ∗

(
y2

4(1+ψ∗)
−2
)]

,

(17)
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FIG. 2. Unexpected crest heights in Gaussian seas: empirical one-
sided (thin dashed lines) and two-sided (thin solid lines, Na even) un-
expected wave statistics versus predicted theoretical return period NR
in number of waves (thick solid lines) of a wave whose crest height is
α-times larger than the surrounding Na waves for increasing values of
α = 1.2,1.3,1.5,2 and 2.5. Sea state parameters: JONSWAP spectrum,
mean period Tm ∼ 5 s, spectral bandwidth ν = 0.35, Boccotti parameter
ψ∗ = 0.65 and simulated ∼ 106 waves.

where

c0 =
1+ ψ̈∗√

2ψ̈∗ (1+ψ∗)
,

and ψ∗ = ψ(τ∗) is the absolute value of the first min-
imum of the normalized covariance function ψ(τ) =

η(t)η(t + τ)/σ2 attained at τ = τ∗ and ψ̈∗ the corre-
sponding second derivative (Boccotti 2000). The corre-
sponding unexpected wave statistics will be referred to as
Hα,Na and Hq,α,Na .

In the following, we will not dwell that much on unex-
pected wave heights, but our main focus will be the statis-
tics of unexpected crests in typical oceanic sea states.

3. Verification and comparisons

a. Monte Carlo simulations

We performed Monte Carlo simulations of a Gaussian
sea described by the average JONSWAP spectrum for a
total of ∼ 106 waves. Fig. 2 shows the empirical return
period NR = R/Tm in number of waves of both one-sided
(thin dashed line) and two-sided (thin solid line) unex-
pected wave crests as a function of the surrounding Na
waves for different values of α (Na is even for the two-
sided statistics). The two statistics are roughly the same
with two-sided unexpected waves slightly less frequent
than the one-sided waves. A fair agreement with the the-
oretical predictions indicates that the stochastic indepen-
dence of waves holds approximately.

Shown in Fig. 3 are the empirical statistics of mean crest
heights and quantiles in comparison to the theoretical pre-
dictions. In particular, from the left panel of the figure we
note that the mean crest height of two-sided unexpected

waves is slightly smaller than the that of one-sided waves,
especially as α increases. Nevertheless, both the statistics
are in fair agreement with the theoretical predictions. Sim-
ilar conclusions hold also for the threshold h(1/10,α,Na)
and conditional mean h(1/10,α,Na) shown in the other
two panels of the same figure.

Finally, as regard to unexpected crest-to-trough heights,
the present theoretical model fairly predicts the empirical
wave height statistics from simulations as clearly seen in
Fig. 4.

b. Oceanic observations

We will analyze two data sets. The first comprises 9 h of
measurements gathered during a severe storm in January,
1993 with a Marex radar from the Tern platform located in
the northern North Sea in a water depth of d = 167 m. We
refer to Forristall (2000) for further details on the data set,
hereafter referred to as TERN. The second data set is from
the Wave Crest Sensor Intercomparison Study (WACSIS)
(Forristall et al. (2004)). It consists of 5 h of measurements
gathered in January, 1998 with a Baylor wave staff from
Meetpost Noordwijk in the southern North Sea (average
water depth d = 18 m). Tayfun (2006) and Tayfun and
Fedele (2007) elaborated both data sets and provided ac-
curate estimates of statistical parameters, especially skew-
ness and fourth-order cumulants which will be used in this
work.

As regard to the WACSIS measurements, the left panel
of Fig. 5 compares the theoretical nonlinear return period
NR = R/Tm (solid line) of unexpected wave crests α-times
larger than the surrounding Na waves, linear predictions
(dash lines) and the WACSIS empirical one-sided (+) and
two-sided (�, Na even) statistics for α = 1.2,1.5 and 2.
The right panel of the same figure shows similar compar-
isons for TERN. Two-sided unexpected waves are slightly
less frequent than one-sided waves but both are close to
the theoretical predictions, indicating that the assumption
of stochastic independence of waves holds approximately.
It is noticed that nonlinearities tend to increase the return
period of unexpected waves and so their unconditional and
conditional means. In particular, Fig. 6 compares the pre-
dicted nonlinear (solid line) and linear (dash line) mean
crest heights h(α,Na) and h

(L)
(α,Na) versus the WACSIS

empirical one-sided statistics (squares) for α = 1.2 and
1.5 (from the left, first and second panels respectively).
The predicted nonlinear threshold h(1/10,α,Na) (solid
thin line) and conditional mean h(1/10,α,Na) (solid thick
line) are compared against observations (squares) in the
third and fourth panels of the same figure. The same com-
parisons for TERN are shown in Fig. 7. Clearly, linear
predictions underestimate the observed crest amplitudes
and nonlinearities must be accounted for to obtain reliable
statistics of unexpected waves. Note that the empirical
statistics tend to deviate from the theoretical predictions
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FIG. 3. Unexpected crest heights in Gaussian seas: empirical one-sided (thin dashed lines) and two-sided (thin dashed lines, Na even) unexpected
wave statistics versus theoretical predictions (thick solid lines) of the (left) mean crest height hα,Na , (center) threshold h1/10,α,Na and (right)
conditional mean h1/10,α,Na of a wave whose crest height is α-times larger than surrounding Na waves for α = 1.5,2, and 2.5. Sea state parameters:
JONSWAP spectrum, mean period Tm ∼ 5 s, spectral bandwidth ν = 0.35, Boccotti parameter ψ∗ = 0.65 and simulated ∼ 106 waves.
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spectrum, mean period Tm ∼ 5 s, spectral bandwidth ν = 0.35, Boccotti parameter ψ∗ = 0.65 and simulated ∼ 106 waves.

for large values of α and Na. In particular, for both TERN
and WACSIS we could not produce statistically stable es-
timates of extreme values for Na > 10 when α > 1.5 or
q < 1/10 due to the limited number of waves in the time
series (O(103) waves in comparison to the 106 waves of
the simulated Gaussian seas). Nevertheless, the agreement
between the theory and observations is satisfactory.

4. How rogue are unexpected waves?

WACSIS observations indicate that the actual largest
crest is nearly α = 2-times larger than one-sided (two-
sided) Na ∼ 50 (60) waves (see Fig. 1). From Eq. (11) the-
ory predicts that an unexpected wave with a crest height 2-
times larger than that of any of surrounding Na = 60 waves
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Hs = 4.16 m, Tm = 6.6 s, depth d = 18 m (Forristall et al. 2004). Statistical parameters, such as skewness and kurtosis, are taken from Tayfun
(2006); Tayfun and Fedele (2007).

occurs once every NR = 105 waves (see the left panel of
Fig. 8). Its mean amplitude is nearly 1.43Hs and smaller
than the mean maximum crest height hmax,NR = 1.55Hs
of NR waves and conditional mean h1/NR = 1.59Hs of the
1/NR fraction of largest crest heights (see the center panel
of Fig. 8). These averages underestimate the actual crest
amplitude hobs ∼ 1.62Hs observed (dashed horizontal line
in the plots). The nature of such extreme value can be
described using quantiles. From Eq. (12), hobs nearly co-

incides with hq=1/10,α=2,Na=60 (see left panel of Fig. 8),
the threshold exceeded with probability 1/10 by the crest
height of an unexpected wave 2-times larger than sur-
rounding 60 waves. Thus, in a sample of NR/q = 106

waves on average we expect 1/q = 10 unexpected waves
and their crest height is 2-times larger than the surround-
ing 60 waves as their occurrence is once every NR = 105

waves. Among the 10 unexpected waves, only one will
have a crest that exceeds hobs. This is also nearly the same
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1.6 ; predicted nonlinear threshold h1/10,α,Na (solid thin line) and conditional mean h1/10,α,Na (solid thick line) versus observed one-sided statistics
(squares) for (III panel) α = 1.2 and (IV panel) 1.6. The horizontal line denotes the observed maximum crest height 1.27Hs. Wave parameters
Hs = 9.08 m, Tm = 10.2 s, depth d = 167 m (Forristall 2000). Statistical parameters, such as skewness and kurtosis, are taken from Tayfun (2006);
Tayfun and Fedele (2007).

as the threshold h106 exceeded by the 1/106 fraction of
largest crests (see left panel of Fig. 8). These studies sug-
gest that unexpected waves are rogue and rare occurrences
of weakly nonlinear random seas (see also Fig. 9 for the
WACSIS case of α = 1.5). Similar conclusions can be
drawn for TERN (see Fig. 10).

Finally, from Fig. 11 we conclude that there is fair
agreement between the theoretical predictions and the ob-
served statistics of unexpected wave heights.

5. The Andrea rogue wave and its unexpectedness

As a specific application of the present theoretical
framework, the unexpected wave statistics of the 2007 An-
drea rogue wave event is examined. Observations indi-
cate that the large extreme appeared without warning and
it was nearly two-times larger than the surrounding O(30)
waves (see Fig. 12 in Magnusson and Donelan (2013)).
For the hindcast Andrea sea state and from the the left
panel of Fig. 12, theory predicts that a wave with a crest
height at least twice that of any of surrounding Na = 30
waves occurs on average once every NR = 104 waves.
Its mean amplitude is nearly 1.25Hs and lower than the
mean maximum crest height hmax = 1.36Hs of NR waves
and conditional mean h1/NR = 1.4Hs of the 1/NR fraction
of largest crest heights (see the center panel of the same
Figure). As for WACSIS (see the center panel of Fig.
8), these averages underestimate the actual crest ampli-
tude hobs ∼ 1.63Hs observed at a point near the Ekofisk
site. This nearly coincides with hq=1/100,α=2,Na=30 and the
threshold h106 exceeded by the 1/106 fraction of largest

crests, as clearly seen in the right panel of Fig. 12. Thus, in
a sample of NR/q = 106 waves only one of the 1/q = 100
waves α = 2-times larger than the surrounding 30 waves
exceeds hobs.

6. Concluding remarks

A third-order nonlinear model for the statistics of unex-
pected waves is presented. Our data analysis and predic-
tions indicate that the Andrea and WACSIS rogue wave
events are stochastically similar. They appeared unex-
pected without warning and with crest heights two-times
larger than the surrounding O(10) waves. According to
the developed statistical model, such extremes occur on
average every 104 waves and the observed actual max-
imum crest height is nearly the same as the threshold
h106 ∼ 1.62Hs exceeded by the 1/106 fraction of largest
crests. These results suggest that rogue events are rare oc-
currences of unexpected waves in weakly nonlinear ran-
dom seas.
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