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ABSTRACT

This study develops a stochastic approach to model short-crested stormy seas as random fields both in space

and time. Defining a space–time extreme as the largest surface displacement over a given sea surface area

during a storm, associated statistical properties are derived by means of the theory of Euler characteristics of

random excursion sets in combination with the Equivalent Power Storm model. As a result, an analytical

solution for the return period of space–time extremes is given. Subsequently, the relative validity of the new

model and its predictions are explored by analyzing wave data retrieved from NOAA buoy 42003, located in

the eastern part of the Gulf of Mexico, offshore Naples, Florida. The results indicate that, as the storm area

increases under short-crested wave conditions, space–time extremes noticeably exceed the significant wave

height of the most probable sea state in which they likely occur and that they also do not violate Stokes–

Miche-type upper limits on wave heights.

1. Introduction

One of the key elements in the analysis of long-term

predictions of extreme wave crest events is the proba-

bility of exceedance of the maximum crest height Cmax

observed at a point Q in time t during a storm. Following

Borgman (1973), this probability can be expressed as

PrfCmax . zg5 12 exp

�ðD

0

lnf12 P[z jHs 5 h(t)]g
T[h(t)]

dt

�
,

(1)

where h(t) is the time series of the significant wave height

Hs recorded at Q, T(h) is the mean zero up-crossing

period, D is the storm duration, and P(z jHs 5 h) is

the exceedance probability of the crest height z in

a sea state where Hs 5 h. This is described reasonably

well by the Rayleigh law or the Tayfun model for lin-

ear or nonlinear waves, respectively (Tayfun 1986;

Tayfun and Fedele 2007; Fedele 2008; Fedele and

Tayfun 2009).

Borgman’s formulation (1) is the starting point of

various statistical methods developed for predicting

occurrences of extreme events in stormy seas (Krogstad

1985; Prevosto et al. 2000; Boccotti 2000; Isaacson and

Mackenzie 1981; Guedes Soares 1988; Goda 1999;

Arena and Pavone 2006, 2009; Fedele and Arena 2010).

These assume that the effects of the sea state observed

during time intervals of the short-term scales of Ts ;

1–3 h can be accumulated to predict the wave conditions

for the long-term scales of Tl ; years. One of the

drawbacks of such stochastic analyses is that, in short-

crested seas, surface time series gathered at a fixed point

tend to underestimate the true actual wave surface

maximum that can occur over a given region of area Es

around Q. A large crest observed in time at Q represents

a maximum observed at that point, but it may not even

be a local maximum in the actual crest segment of

a three-dimensional (3D) wave group. The actual crest

representing the global maximum occurs at another

point located without or within Es. Certainly, the ele-

vation of the actual crest is always larger than that

measured at Q. Thus, (1) underestimates the maximum

wave surface height hmax attained over Es, which is also

not the highest crest height of the group, unless the

area is large enough for all wave-group dynamics to

develop fully. Indeed, hmax can also occur on the re-

gion‘s boundaries, and this is usually the case in areas of

smaller size than the average size of wave groups. Thus,

wave extremes should be modeled in both space and

time as maxima of random fields rather than those of
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random functions of time (Adler 1981, 2000; Piterbarg

1995; Adler and Taylor 2007). Because in 3D random

fields it is not possible to define a wave easily or un-

ambiguously, as is possible in time series, in this work

we refer to a space–time extreme as the largest surface

displacement hmax over a given sea surface area during

a storm.

Note that the application of such advanced stochastic

theories to realistic oceanic conditions has been limited

because it requires the availability of wave surface data

measurements collected both in space and time, in par-

ticular directional wave spectra (Baxevani and Richlik

2004). Only at large spatial scales, synthetic aperture

radar (SAR) or interferometric SAR (INSAR) remote

sensing provides sufficient resolution for measuring

waves longer than 100 m (see, e.g., Marom et al. 1990;

Marom et al. 1991; Dankert et al. 2003). However, it is

insufficient to correctly estimate spectral properties at

smaller scales. At such scales, up-to-date field measure-

ments for estimating directional wave spectra are chal-

lenging or inaccurate even if a linear or two-dimensional

(2D) wave probe-type arrays could be used, though ex-

pensive to install and maintain (Allender et al. 1989;

O’Reilly et al. 1996). Recently, stereo video techniques

have been proposed as an effective low-cost alternative for

such precise measurements (Benetazzo 2006; Wanek and

Wu 2006; Fedele et al. 2011a,b; Gallego et al. 2011; Bechle

and Wu 2011; de Vries et al. 2011; Benetazzo et al. 2012).

Indeed, a stereo camera view provides both spatial and-

temporal data whose statistical content are richer than that

of a time series retrieved from wave gauges. For example,

Gallego et al. (2011) have estimated directional spectra by

a variational variant of the Wave Acquisition Stereo

System (WASS) proposed by Benetazzo (2006). Fur-

ther, WASS was used by Fedele et al. (2011a) to prove

that in short-crested seas the maximum surface height

over a given area is generally larger than that observed

in time by point measurements (see also Forristall 2006).

The fact that the spatial extremes are larger than those

measured at a fixed point is not only because there are

more waves in a spatial domain. The main reason is that

fixed-point measurements cannot detect true extremes

in short-crested seas. Theories due to Adler (1981) and

Piterbarg (1995) follow from both reasons, especially

from this essential difference between fixed-point versus

true spatial picture. An extreme observed at a fixed

probe in time in short-crested seas indicates that a wave

crest section just propagated through the probe, and the

probability that the actual extreme of that crest section

coincides with the extreme observed in time is simply

zero. It is only in long-crested seas that one can equate

the extremes observed in time with the actual spatial

extremes.

As pointed out by Baxevani and Richlik (2004), the

occurrence of an extreme in a Gaussian field is analo-

gous to that of a big wave that a surfer is in search of and

always finds. Indeed, his likelihood to encounter a big

wave increases if he moves around a large area instead

of waiting to be hit by it. Indeed, if he spans a large area

the chances to encounter the largest crest of a wave-

group increase, in agreement with the findings of the

recent European Union ‘‘MaxWave’’ project (Rosenthal

and Lehner 2008).

In this work, the main focus is on characterizing the

statistical properties of space–time extremes in short-

crested sea states and their long-term predictions. The

paper is structured as follows: First, the essential ele-

ments of the theory of Euler characteristics (EC; Adler

1981) are introduced. Then, their application is pre-

sented in the context of the Equivalent Power Storm

(EPS) model of Fedele and Arena (2010). The statistical

properties of space–time extremes are then derived.

Further, the relative validity of the new model and its

predictions are assessed by analyzing wave measure-

ments and directional spectra retrieved from National

Oceanic and Atmospheric Administration (NOAA)

buoy 42003 (east Gulf of Mexico).

2. Euler characteristics and extremes

A significant result on the geometry of multidimen-

sional random fields follows from the so-called Euler

characteristics of their excursion sets (Adler 1981) and

the relation to extremes. To keep the presentation

simple, hereafter random fields in three dimensions or

lower are considered, but the theory is valid in any di-

mensions (Adler and Taylor 2007). Consider a homog-

enous Gaussian wave field h(x, y, t) over the bounded

space–time volume V with zero mean and standard de-

viation s (see Fig. 1). Here, homogeneity simply means

that h is stationary in time and homogenous in space.

Thus, the associated probability distributions at any

points of the domain are the same and Gaussian, irre-

spective of the domain’s size. Given a threshold z, define

the excursion set UV,z as that part of V within which h is

above z: namely,

U
V,z 5 f(x, y, t) 2 V: h(x, y, t) . zg . (2)

In 3D sets, the EC counts the number of connected

volumetric components of the excursion set U, minus

the number of holes that pass through it, plus the num-

ber of hollows inside. For 2D random fields instead, the

EC counts the number of connected components minus

the number of holes of the respective excursion set. In

one-dimension (1D), the EC simply counts the number
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of z upcrossings, thus providing their generalization to

higher dimensions (Adler 1981).

Worsley (1996) presented various applications of EC

theory to characterize the anomalies in the cosmic mi-

crowave background radiation, galactic topologies and

cerebral activities in biomedical imaging. EC theory is

also relevant to oceanic applications because Adler

(1981) and Adler and Taylor (2007) have shown that the

probability of exceedance Prfhmax . z jVg that the

global maximum hmax of h over V exceeds a threshold z

depends on the domain size and it is well approximated

by the expected EC of the excursion set UV,z, provided

that the threshold is high. The expected EC approxi-

mation to the exceedance probability of hmax can be

explained heuristically as follows. As z increases, the

holes and hollows in the excursion set UV,z disappear

until each of its connected components includes just

one local maximum of h, and the EC counts the number

of local maxima. For very large thresholds, the EC equals

1 if the global maximum exceeds the threshold and

0 otherwise. Thus, EC(UV,z) of large excursion sets is

a binary random variable with states 0 and 1 and, for

z� s,

Prfhmax . z jVg5 PrfEC(U
V,z) 5 1g5 hEC(U

V,z)i ,
(3)

where angled brackets denote expectation. This heu-

ristic identity has been proved rigorously to hold up to

an error that is in general exponentially smaller than any

of the terms of the expected EC approximation (Taylor

et al. 2005): namely,

Prfhmax . z jVg5 hEC(U
V,z)i

1 Ofexp[2u2(1 1 x)/2]g , (4)

where u 5 z/s � 1 and the constant x . 0. Piterbarg

(1995) also derived an asymptotic expansion of the

probability in (3) for large Gaussian maxima via gen-

eralized Rice formulas (Rice 1944, 1945) valid for higher

dimensions. In the following, we will first apply the

preceding results to homogenous 3D Gaussian fields and

then consider nonstationary space–time extremes ob-

served during a sea storm.

a. Extremes of Gaussian fields

Consider the Gaussian field h(x, y, t) homogenous

over the space–time volume V of size XYD (see Fig. 1).

Drawing upon Adler and Taylor (2007), define

M3(D, X, Y jHs) 5 2p
D

T

XY

Lx Ly

axyt (5)

as the average number of 3D waves within V. Here, T is

the mean wave period and Lx and Ly are the mean wave

lengths along x and y, respectively. These, as well as the

parameter axyt, are all estimated from the moments of

the directional spectrum of h (see appendix A). The

probability that one of the 3D waves exceeds the

threshold z is given by

PV(z jHs) 5 [16(z/Hs)
2

2 1]P(z jHs) , (6)

where

P(z jHs) 5 exp

 
28

z2

H2
s

!
(7)

is the Rayleigh law.

If V is not large, then the threshold z can also be ex-

ceeded on the boundary surface S 5 ›V with probability

PS(z jHs) 5 4(z/Hs)P(z jHs) , (8)

by one of the 2D waves. The average number of such

occurrences is given by

M2(D, X , Y jHs) 5 M2,y
1 M2,h , (9a)

FIG. 1. Sketch illustrating definitions relevant to the space–time

volume V.

SEPTEMBER 2012 F E D E L E 1603



where

M2,y
5

ffiffiffiffiffiffi
2p
p

D

 
X

T Lx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 a2

xt

q
1

Y

T Ly

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 a2

yt

q !
and

(9b)

M2,h 5
ffiffiffiffiffiffi
2p
p XY

Lx Ly

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 a2

xy

q
. (9c)

Here, M2,y (M2,h) is the average number of 2D waves

that occur on the vertical (horizontal) faces of ›V and

the parameters axt, ayt, and axy also depend upon the

directional spectrum (see appendix A).

The threshold z can also be exceeded along the pe-

rimeter P 5 ›S of the surface S. In this case, the num-

ber of such occurrences follows the Rayleigh law of

(7). The average number of 1D waves that exceed u is

given by

M1(D, X, Y jHs) 5
D

T
1

X

Lx

1
Y

Ly

. (10)

There is no clear geometric criterion, such as that of

zero upcrossings for 1D waves, for defining 2D or 3D

waves. In simple terms, this can be thought as one of

the space–time cells in which the map of the wave

surface h(x, y, t) can be portioned within a given vol-

ume or area.

For large thresholds z� s, the probability of ex-

ceedance of the absolute maximum hmax of the wave

surface h over V is given by

Prfhmax . z jVg5 Prfhmax . z jVg1 Prfhmax . z j Sg
1 Prfhmax . z jPg . (11Þ

Here, each term on the right-hand side of the preceding

equation denotes, from left to right, the probability that

hmax is exceeded over the interior volume V of V, its

surface S, or the perimeter P, respectively. The three

terms can be derived as follows: The probability that

hmax does not exceed z in V is equal to the probability

that all the 3D waves in V have amplitudes less than or

equal to z. If one assume the stochastic independence

among waves (which holds for large z), then the first

term in (11) can be expressed as

Prfhmax . z jVg5 1 2 Prfhmax # z jVg

5 1 2 [1 2 PV(z jHs)]M
3 (12)

and similarly for the other two terms: that is,

Prfhmax . z j Sg5 1 2 Prfhmax # z j Sg

5 1 2 [1 2 PS(z jHs)]M
2 (13)

and

Prfhmax . z jPg5 1 2 Prfhmax # z jPg

5 1 2 [1 2 P(z jHs)]M
1 . (14)

For z� s, the preceding will lead to

Prfhmax . z jVg ffi M3PV(z jHs) 1 M2PS(z jHs)

1 M1P(z jHs) , (15Þ

in agreement with Adler and Taylor (2007).

b. Scale dimension of extremes

A statistical indicator of the geometry of space–time

extremes in the volume V can be defined as (see ap-

pendix B)

b 5 3 2
4M2z0 1 2M1

16M3z2
0 1 4M2z0 1 M1

, (16)

where z0 relates to the expected maximum surface

height hmax. The parameter b represents a scale di-

mension of waves: that is, the relative scale of a space–

time wave with respect to the volume’s size. From (16), it

is easily seen that 1 # b # 3. In particular, if b 5 3, wave

extremes are fully 3D and they are expected to occur

within the volume V away from the boundaries. For

2 , b , 3, extremes intersect also the lateral surface of

V. The limiting case of b 5 2 is attained when one of the

three sides D, X, or Y is null: for example, D 5 0. In this

case, the extreme can occur within an area Es 5 XY and

it is 2D. When the area’s boundaries are touched by the

extreme, then 1 , b # 2. The limiting case of 1D ex-

tremes (b 5 1) occurs when the area Es collapses to

a line (X 5 0 or Y 5 0). As an example, Fig. 2 shows the

wave dimension b computed for each hourly sea state

of the Hs sequence recorded during the period 2007–09

by NOAA buoy 42003, moored off the east Gulf, for

D 5 1 h and squared Es 5 1002 m2. Clearly, in milder or

low sea states, extremes are quasi 3D because mean

wavelengths (;30 m) and periods (;3 s) are much

smaller than the lateral length L and duration D, re-

spectively. As the intensity of the sea state increases, so

do both the associated mean wavelengths (up to

;190 m) and periods (up to ;12 s) and the wave di-

mension reduces; at the highest sea states, b is roughly

2.6 and waves appear more long crested. However,
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their sea states are broadbanded and modulational

effects are negligible. In this case, extremes are ex-

pected to occur on the surfaces X–T or Y–T of the

volume V.

In the following sections, (15) is extended for a ran-

dom wave field h homogenous in space but non-

stationary in time, thus providing a means of predicting

the maximum value of h over an area during a storm

under more realistic conditions. This also leads to

a generalization of the Borgman model (1) for predict-

ing space–time extremes in storm seas with dominant

second-order nonlinearities. As discussed above, the

eventual application of such an approach requires spa-

tial data, specifically directional spectra that can be es-

timated, for example via noninvasive stereo imaging

techniques (Benetazzo 2006; Gallego et al. 2011; Fedele

et al. 2011a) or via SAR/INSAR remote sensing (see,

e.g., Marom et al. 1990; Marom et al. 1991; Dankert

et al. 2003).

c. Space–time extremes during storms

Consider the space–time volume V of Fig. 1, and re-

gard h as the wave surface generated by an actual storm

passing through the area Es 5 XY during a time interval

D. Assuming that h is spatially homogenous over the

area but nonstationary in time, partition D into J 5 D/Dt

time intervals each centered at t 5 tj, as shown in Fig. 1.

Next, assume that h is locally or piecewise stationary in

any time interval [tj, tj 1 Dt], with Dt usually equal to 1 h

or so. The sea storm is then defined as a sequence of

3D stochastically independent Dt sea states DVj with

piecewise time-varying mean period T(t) and

wavelengths Lx(t) and Ly(t). Such parameters can be

estimated from the directional spectrum (see appendix

A). The surface DSj of DVj consists of four vertical faces

aligned along the t axis and surrounding the interior DVj.

The perimeter ›DSj consists of four vertical segments, each

of length Dt. With this setting in mind, the volume V

is partitioned in disjoint subsets V 5 Sb < SL < V < Su,

where Su and Sb are the upper and bottom surface areas of

V at t 5 0 and D, respectively, and the lateral surface SL

and interior volume V are given by

SL 5 <
j51, J

DSj, V 5 <
j51,J

DVj . (17)

The exceedance probability of the global maximum hmax

of h over V can then be expressed as

Prfhmax . z jVg5 1 2 Prf(hmax # z jV)

\ (hmax # z j SL) \ (hmax # z j ›SL)

\ (hmax # z j Sb) \ (hmax # z j Su)g ,

(18)

where ›SL is the perimeter of SL. Assuming stochastic

independence, as Dt / 0 or J / ‘, (18) yields the ex-

tended Borgman exceedance probability to space–time

(see appendix C for derivation),

P(hmax jEs . z) 5 1 2 exp½ ðD

0
(P1 1 P2 1 P3) dt�, (19)

where

P1( z jHs 5 h) 5
lnf1 2 P[z1jHs 5 h(t)]g

T[h(t)]
, (20)

P2(z jHs 5 h) 5 NS

lnf1 2 PS[z1jHs 5 h(t)]g
T[h(t)]

, and

(21)

P3(z jHs 5 h) 5 NV

lnf1 2 PV [z1jHs 5 h(t)]g
T[h(t)]

, (22)

where the coefficients NS and NV are given in appendix

A. Here, to account for second-order nonlinearities, the

linear amplitude z1 is related to the nonlinear amplitude

z via the quadratic equation z 5 z1 1 mz2
1/2s (Tayfun

1980, 1986; Fedele and Tayfun 2009), where m 5 l3/3

represents an integral measure of steepness dependent

on the skewness coefficient l3 of h.

Note that (19) is a normalized probability measure

because P(hmax jEs . 0) 5 1. As Es / 0, it reduces to

FIG. 2. Wave dimension b of each hourly sea state of the Hs

sequence recorded by NOAA buoy 42003 during 2007–09 (D 5 1 h

and X 5 Y 5 100 m).
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P(hmax . z) 5 1 2 expð ðD

0
P1 dtÞ , (23)

which is the Borgman probability in (1) for the maxi-

mum wave crest Cmax observed in time at point Q. The

expected maximum hmax of the actual storm follows by

integrating (19) over z as

hmax 5

ð‘

0
P(hmax jEs . z) dz . (24)

As z / ‘, (19) tends asymptotically to

P(hmax jEs . z) / 2

ðD

0
(P1 1 P2 1 P3) dt , (25)

which is the extension of Adler’s probability (15) to sea

storms.

Note that the exceedance probability in (19) relies on

the assumption of stochastic independence of large

waves, which holds for weakly non-Gaussian fields

dominated by second-order nonlinearities or short-

crested seas considered in this work. Indeed, realizations

of maxima typically occur at times and locations typi-

cally well separated to render them largely independent

of one another in wind seas. Clearly, in long-crested sea

states the areal effects are negligible and (19) reduces to

the time Borgman formulation (1). However, in this case

the wave surface is affected by nonlinear quasi-resonant

interactions and fourth-order cumulants increase be-

yond the Gaussian threshold if the spectrum is narrow

(see, e.g., Fedele et al. 2010). To account for such de-

viations, an obvious modification would be to simply

replace in (1) the Rayleigh/Tayfun distribution with the

Gram–Charlier (GC) type of models, such as those de-

veloped by Mori and Janssen (2006), Tayfun and Fedele

(2007), or Fedele (2008). Indeed, GC models have been

shown to describe the effects of quasi-resonant in-

teractions on the wave statistics (see, e.g., Fedele et al.

2010). However, in such long-crested sea states in-

dividual waves are correlated (see, e.g., Janssen 2003)

and (1), even with a GC model, loses its validity and

yields conservative estimates as an upper bound. The

space–time stochastic model proposed herein can be

extended to smoothly bridge long- and short-crested

conditions. This would require taking into account the

correlation between neighboring waves, and it should

depend upon the joint probability distribution of suc-

cessive extremes (see, e.g., Fedele 2005). Such a model

would be beneficial for estimating extreme waves

in rapid development of long-crested sea states in

time. Some work on marine accidents suggests that

such conditions may occur (Tamura et al. 2009). The

development of such a stochastic model is in progress

and will be discussed elsewhere.

3. Prediction and properties of space–time
extremes

In the following, (19) will be applied in the context

of the EPS model of Fedele and Arena (2010) to predict

the long-term statistics of space–time extremes: namely,

the largest surface elevation hmax that can occur over the

area Es centered at point Q during a storm. To do so,

consider a time interval t during which N(t) storms

sweep through Es, and assume that the time series of

significant wave heights Hs at Q as well as the directional

spectrum are given as measurements. Then, define a

succession of storms where each storm, according to

Boccotti (2000), is identified as a nonstationary sequence

of sea states in which Hs exceeds 1.5 times the mean annual

significant wave height at the site, and it does not fall below

that threshold during an interval of time longer than 12 h

(see also Arena 2004). Given a succession of storm events

in time, each event is described as an EPS storm of dura-

tion b and peak amplitude a at, say, t 5 t0. The significant

wave height h varies in time t according to a power law

h(t) ; jt 2 t0jl, where l (.0) is a shape parameter (Fedele

and Arena 2010). The EPS storm has sharp cusps for

0 , l , 1 and rounded peaks for l $ 1. For l 5 1, the

ETS model of Boccotti with linear cusps is recovered

(Boccotti 2000). It is then assumed that a and b are re-

alizations of two random variables: for example, A and B,

respectively. Then, the storm-peak probability density

function (pdf) pA(a) is not fitted directly to the observed

storm-peak data via ad hoc regressions, but it follows an-

alytically by requiring that the average times spent by the

equivalent and actual storm sequences above any thresh-

old be identical: namely,

pA(a) 5
t

N(t)

a

b(a)
G(l, a) . (26)

Here, the function G(l, a) (see Appendix D) depends on

the exceedance distribution of significant wave heights

P(h) 5 PrfHs . hg and the conditional average duration

b(a jEs) 5 B jA ¼ a, both of which are estimated via

regression. In particular, a Weibull fit is adopted for

P(h) as

P(h) 5 exp

�
2

�
h 2 hl

w

�u�
, (27)

where u, w, and hl are regression parameters (see Fedele

and Arena 2010). As a consequence, the analytical form

of the storm-peak density pA is defined via (26). For

example, for triangular storms (l 5 1),
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pA(a) ;
a

b(a)

d2P

da2
5

u

wb(a)

�
a 2 hl

w

�u21

3

�
u

�
a 2 hl

w

�u
1 u 2 1

�

3 exp

�
2

�
a 2 hl

w

�u�
, (28)

and pA depends upon the Weibull parameters and the

conditional b(a). For comparison, both the generalized

extreme value (GEV) and Gumbel (G) models are used

to fit the observed storm-peak data. In particular, the

GEV density and cumulative distribution function are

given by

pGEV(a) 5
dPGEV

da
,

PGEV(a) 5 PrfA # ag

5 exp[2(1 1 k(a 2 m)/s)21/k], a $ m 2 s/k ,

(29)

where (k, m, s) are the GEV parameters. For Gumbel,

pG(a) 5
dPG

da
,

PG(a) 5 PrfA # ag

5 expf2exp[2(a 2 mG)/sG]g, a $ 0, (30)

where (mG, sG) are regression parameters. Note that

GEV tends to G as k/0.

The conditional storm base is estimated as follows:

For large z, the probability that hmax . z during an EPS

storm is given by

Pfhmax jEs . z; a, bg

5 1 2 exp

"
b

la

ða

0

P1(z j h) 1 P2(z j h) 1 P3(z j h)

(1 2 h/a)121/l
dh

#
.

(31)

This follows from (19) specializing the significant wave

height history h(t) to that of the EPS storm (see Fedele

and Arena 2010). As Es/0, (31) reduces to the time-

based Borgman probability (1) specialized to point es-

timates of the maximum crest height Cmax 5 hmax in EPS

storms: namely,

Pfhmax . z; a, bg5 1 2 exp

"
b

la

ða

0

P1(z j h)

(1 2 h/a)121/l
dh

#
.

(32)

The expected maximum hmax(Es) of the EPS storm then

follows by integration as in (24). For a given area Es,

the statistical equivalence between an actual storm

and the associated EPS is achieved by requiring that

a equal the actual maximum Hs in the storm, and b is

chosen so that the expected maximum hmax during the

storm is the same as that of the EPS storm (Fedele and

Arena 2010). Once the hmax of the true storm is esti-

mated from data by means of (19) and (24), a good

approximation of b is given by imposing the exceed-

ance probabilities of the actual and EPS storms to be

equal at z 5 hmax: namely,

Pfhmax jEs . hmax; a, bg5 P(hmax jEs . hmax) . (33)

From this, b follows as

b(Es, l) 5 la

ðD

0
(P1 1 P2 1 P3) dtða

0

P1 1 P2 1 P3

(1 2 h/a)121/l
dh

, for z 5 hmax .

(34)

It is observed that b depends upon the storm shape, but

it slightly changes with the area Es as expected, because

b and the storm-peak density pA are unique temporal

properties of the given location, as a result of the

assumed spatial homogeneity. Thus, hereafter b is esti-

mated as b(Es, l) ’ b(0, l), based on the Borgman time-

based model (32). As an example, Fig. 3 (top) shows one

of the largest observed actual storms and the associated

EPS. In the same figure, the exceedance probability (32)

of the maximum crest height expected in time at the

buoy location is compared for both the actual and EPS

storms.

Given l, the conditional average b(a) at the buoy lo-

cation is then described by

b(a) 5 bm exp[sm(a 2 a0)] , (35)

where bm, sm, and a0 are regression parameters (Boccotti

2000).

Note that the EPS model depends on the measured

data only via the observed P(h) and the density pA is

estimated by way of (26) for an arbitrary l . 0. As a re-

sult, the EPS model is defined in a probabilistic setting,

and no further data fitting is necessary for estimating

extremes and associated statistics, which can be ex-

pressed explicitly as a function of pA. Indeed, the return

period R(Hs . h) of an actual storm whose peak is

greater than a given threshold h can be expressed as

(Fedele and Arena 2010)
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R(Hs . h) 5
t

N(t)

ð‘

h
pA(a) da

. (36)

This can also be derived exploiting compound Poisson

processes (Tayfun 1979).

The return period R(hmax jEs . z) of an actual storm

in which the maximum wave surface height exceeds z

can be derived a follows: Consider the number

Nw(z jEs) of equivalent storms where the maximum

surface elevation over Es during the storm is greater

than z. Then, R(hmax jEs . z) of an actual storm is

FIG. 3. NOAA buoy 42003: (top) shape and exceedance probability of the maximum time

crest height Cmax of the observed actual storm and the associated EPS storm and (bottom)

duration of EPS storms and conditional base regression b(a) from Eq. (40) (regressions pa-

rameters bm 5 86.5 h, sm 5 20.13 m21, and a0 5 2.22 m).
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defined as that of an equivalent storm whose global

maximum hmax exceeds z. Thus,

R(hmax jEs . z) 5
t

Nw(z jEs)
, (37)

where Nw(z) can be explicitly formulated by following

the same logical steps as in Fedele and Arena (2010). It

is given by

Nw(z jEs) 5
1

t

ð‘

z
pA(a)P[(hmax jEs . z; a, b(a)] da.

(38)

Using (38), (37) is simplified further to

R(hmax jEs . z)

5
1ð‘

z

a

b(a)
G(l, a)P[(hmax jEs . z; a, b(a)] da

. (39)

As Es / 0, this expression reduces to that for point

measurements [i.e., R(hmax . z); see Arena and Pavone

2006] and thus yields the return period of a storm whose

largest crest height exceeds z at a given location in time.

Drawing upon Fedele and Arena (2010) and from

probabilistic principles, one can also estimate the most

probable value of the peak significant wave height A of

the storm during which the maximum hmax exceeds

a given threshold (e.g., z) over the area Es. Indeed, given

that F 5 fhmax . z jEsg, the conditional probability

density function describing the relative frequency of

occurrence of the extreme event in the equivalent storm

whose peak intensity A is in [a, a 1 da] is given by

pAjF(a; z) 5
pA(a)P(hmax jEs 5 z; a, b(a))ð‘

0
pA(a)P(hmax jEs 5 z; a, b(a)) da

. (40)

The conditional mean mAjF(z, Es) and standard de-

viation sAjF(z, Es) are both function of z and area Es. If

the coefficient of variation g 5 sAjF /mAjF � 1, then an

exceptionally high surface elevation most likely occurs

during a storm whose maximum significant wave height

(i.e., the storm peak A) is very close to mAjF . Most likely

this is also the intensity of the sea state in which the

expected extreme occurs. In the applications to follow, it

will be shown that theoretical predictions such as these

implied by the EPS models are approximately satisfied

in actual storm data. Moreover, to compare the EPS

predictions with those based on GEV and G models, the

return periods R(Hs . h) and R(hmax jEs . z) will be

also estimated replacing pA with pGEV and pG, which

follow from the storm-peak data via (29) and (30).

4. Long-term extremes in the east Gulf

Hereafter, the space–time EPS model will be applied

to elaborate some wave measurements retrieved by the

NOAA buoy 42003 moored west of Naples, Florida,

during 1976–2009. The data indicates that the observed

sea states at the buoy location are short crested in

agreement with the analysis of Forristall (2007) (see also

Forristall and Ewans 1998). Indeed, their angular

spreading Du, estimated as in O’Reilly et al. (1996), is in

the range of [308–608]. The time series of long-term wave

statistics for point measurements have been elaborated

showing that the exceedance distribution P(h) of sig-

nificant wave heights is well represented by the Weibull

law (27) with parameters u 5 0.591, w 5 0.201 m, and

hl 5 0 m. Further, directional data available for the

period 2000–09 are used to fit the wave parameters

T, Lx, and Ly from the hourly measured directional

spectra as

T 5 gT

ffiffiffiffiffiffiffiffiffiffiffiffi
4Hs/g

q
, Lx 5 gXgT

2
, Ly 5 gygT

2
, (41)

where gT 5 2:42, gX 5 0:171, and gy 5 0:172. From the

analysis of the estimated directional spectra of the

hourly sea states, the spectral parameters axt, axt, and

axy are on average very small and can be set equal to

zero as conservative estimates, whereas axyt ; 0:7 as an

average. For the data at hand, quasi-triangular storms

are optimal (l ; 0:9) (see Fig. 3, top), and the condi-

tional base b(a) can be estimated from a sequence of

N(t) 5 627 storms: it is reported in Fig. 3 (bottom).

Given P(h) and b(a), one can now compute the pdf

pA(a) of the storm-peak intensity A from (26) and pre-

dict the return period R(Hs . h) from (36) for the

NOAA buoy 42003. Figure 4 illustrates such predic-

tions labeled as EPS. For comparison, the predictions

based on the estimates of pA directly from the observed

storm-peak data using GEV and Gumbel models [cf.

Eqs. (29) and (30)] are also reported. Note that EPS and

G yield similar predictions, whereas GEV leads to

overestimation at large R. The associated return period

R(hmax jEs . z) of the largest surface height over

a square area Es 5 L2, with L 5 103 m, is computed from

(39) and shown in Fig. 5 for EPS, GEV, and Gumbel.

For comparisons, the associated time predictions of the

return period R(hmax . z) (Es 5 0) are also shown.

Clearly, the expected wave height hmax attained over Es

is larger than that expected at given point in time. Fur-

ther, as the area increases the predictions tend to deviate
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from the time Borgman counterpart as shown in Fig. 6

(right), which reports the EPS predictions of hmax as

function of R over increasing areas with L 5 102, 103,

and 104 m, respectively. Over such large areas, the wave

dimension b is expected to be roughly 3 (see Fig. 2 for

the case L 5 100 m). Thus, drawing upon Boccotti

(2000), most likely hmax is the highest crest height of the

central wave of a group that focuses within the area. An

estimate of the associated steepness «h is needed to as-

sess if the large crest violates the Stokes–Miche upper

limit for breaking. To do so, given R we need an estimate

of the most probable value amax of the peak significant

wave height A of the storm during which such maximum

hmax exceeds z. This can be inferred using Eq. (40),

which allows to predict the mean mAjF of the condi-

tional pdf pAjF(a; z) of A given F 5 fhmax . z jEs 5 L2g.
The stability bands for such estimate proceed from the

standard deviation sAjF . Figure 6 (middle) shows the

associated ratio hmax/amax as function of R for the pre-

dictions in Fig. 6 (top). For the largest area considered

(L 5 104 m), this ratio increases to roughly 1.5–1.6, thus

significantly exceeding the predictions at a given

point in time (i.e., 0.9–1.1), in agreement with the

stereo measurements of ocean waves (Fedele et al.

2011a). Given amax, the expected steepness can be

expressed as «h 5 khhmax, where the wavenumber kh

can be estimated in various ways. For example, one

can extract its value from the actual wave profile if

available. Equivalently, the theory of quasi de-

terminism (Boccotti 1997a,b, 2000; Fedele and Tayfun

2009) suggests that a large crest at focusing tends to

assume the same shape as the spatial covariance. Spe-

cifically, one can take the wavelength and thus the cor-

responding wavenumber value along the direction with

the shortest zero-crossing wavelength (method 1). Al-

ternatively, the period Th of the largest wave can be

estimated from the time covariance (Boccotti 2000),

and kh follows from the dispersion relation as

kh 5 (2p/Th)2/g (method 2). For NOAA buoy 42003,

Th ; 1:26T 5 3:33
ffiffiffiffiffiffiffiffiffiffiffiffi
4Hs/g

p
is a decent fit, especially for

intense sea states. Figure 6 (bottom) reports both the

expected steepness «h and the associated confidence

intervals as function of R (estimates from the Th fit). It is

seen that the Stokes–Miche upper limit «max ; 0:44

(Stokes 1880; Michell 1893) is not violated by large

waves (see also Tayfun 2008). This result clearly sug-

gests that exceptional waves with hmax/amax . 1 can oc-

cur over larger areas. However, a more critical analysis

of the breaking conditions is required, but this goes

beyond the scope of this paper.

Finally, to confirm the above long-term predictions

the Hs sequence of hourly sea states recorded by NOAA

buoy 42003 during the period 2007–09 has been ana-

lyzed. In particular, Fig. 7 (top) reports the short-term

(D 5 1 h) expected maximum surface height hmax/Hs

attained over Es 5 XY (X 5 Y 5 103 m) for each hourly

sea state. The associated «h (Fig. 7, bottom) is also es-

timated directly from the directional spectrum using

methods 1 and 2, with differences less than 2%. Clearly,

extremes of intense sea states do not violate the Stokes–

Miche upper limit in agreement with the long-term

predictions of Fig. 6.

FIG. 4. NOAA buoy 42003: predicted return period R(Hs . h)

estimated with G, GEV, and EPS models (G parameters: mG 5

22.007 m and sG 5 2.135 m; GEV parameters: m 5 2.656 m, s 5

0.422 m, and k 5 0.353; Weibull parameters for EPS: u 5 0.591,

w 5 0.201 m, and hl 5 0).

FIG. 5. NOAA buoy 42003: predicted return periods R(hmax . z)

(labeled as time) and R(hmax jEs . z) over the area Es 5 L2 (L 5

103 m) estimated with G, GEV, and EPS models (regression pa-

rameters as in Fig. 4).
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5. Conclusions

The stochastic model developed herein extends the

Borgman time-domain model (1) to space–time ex-

tremes and demonstrates the increased likelihood of

large waves over a given area in short-crested seas (see

also Baxevani and Richlik 2004). The proposed model

was applied to several storms recorded by the NOAA

buoy 42003. The results reveal that given a return pe-

riod, the associated threshold z exceeded by the max-

imum surface height hmax over a given area is greater

than that predicted by the Borgman time-domain

model. In particular, for the largest area considered

(L 5 104 m), hmax exceeds 1.4 times the signifi-

cant wave height amax of the sea state where the

maximum occurs, significantly exceeding the ratio

hmax/amax ; 0.9–1.1 predicted from the Borgman

model. These results are in agreement with those ob-

tained from the recent stereo measurements by Fedele

et al. (2011a). In intense sea states, if the area is large

enough compared to the mean wavelength, a space–

time extreme most likely coincides with the crest of

a focusing wave group that passes through the area.

Further, estimates of the steepness of such large crests

suggest that they do not violate the Stokes–Miche

upper limit.

FIG. 6. NOAA buoy 42003: (top) predicted return period R(hmax j Es . z) of the largest

surface height hmax over increasing areas Es 5 L2 with L 5 0 (time), 102, 103, and 104 m esti-

mated with the EPS model (regression parameters as in Fig. 4); (middle) significant wave height

Hs 5 a(hmax) of the most probable sea state in which hmax occurs in terms of the ratio hmax/Hs;

and (bottom) steepness «h of the associated extreme wave.
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The present EPS model provides another ‘‘hand on

the elephant’’ for the subject of extreme waves (see,

e.g., Boccotti 1981, 2000; Fedele 2008; Fedele and

Tayfun 2009; Gemmrich and Garrett 2008) by dem-

onstrating that the occurrence of large waves over an

area can be explained in terms of extremes in space–

time. In particular, the proposed model is of relevance

as a practical tool for identifying safer shipping routes

and for improving the design and safety of offshore

facilities.

The correlation or stochastic dependence of wave

extremes is not an issue for the statistics of maxima

because realizations of maxima typically occur at times

and locations typically well separated to render them

largely independent of one another in wind seas. How-

ever, under conditions conducive to the rapid de-

velopment of long-crested sea states such as those

studied numerically by Waseda et al. (2011), stochastic

dependence can be an important factor in analysis. In

this regard, the space–time stochastic model proposed

here can be extended to smoothly bridge long- and

short-crested conditions by taking into account the

correlation between neighboring waves (see, e.g.,

Fedele 2005).

APPENDIX A

Wave Parameters

Drawing from Baxevani and Richlik (2004), the mean

period and wavelengths are given by

T 5 2p

ffiffiffiffiffiffiffiffiffiffi
m000

m002

s
, Lx 5 2p

ffiffiffiffiffiffiffiffiffiffi
m000

m200

s
, and

Ly 5 2p

ffiffiffiffiffiffiffiffiffiffi
m000

m020

s
. (A1)

Here,

mijk 5

ð ð
ki

xkj
yvkW(v, u) dv du (A2)

are spectral moments of the directional spectrum W.

In (21) and (22), the coefficients NS and NV are given

by

NV 5 2p
XY

Lx Ly

axyt and (A3)

NS 5
ffiffiffiffiffiffi
2p
p

 
X

Lx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 a2

xt

q
1

Y

Ly

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 a2

yt

q !
, (A4)

with

axyt 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 a2

xt 2 a2
yt 2 a2

xy 1 2axyaxtayt

q
, (A5)

where

axt 5
m101ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m200m002
p , ayt 5

m011ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m020m002
p , and

axy 5
m110ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m200m020
p . (A6)

APPENDIX B

Scale Dimension of Extremes

Consider the maximum wave surface height hmax over

V. From the associated probability of exceedance (15),

the expected value hmax is given, according to the theory

of extremes (Gumbel 1958), by

hmax

Hs

5 z0 1
ge

16z0 2
F9(z0)

F(z0)

, (B1)

FIG. 7. NOAA buoy 42003 (east Gulf): (top) short-term ex-

pected maximum surface height hmax over an area Es 5 L2 (L 5

103 m) for each hourly sea state (period 2007–09) in terms of the

ratio hmax/Hs, with Hs being the significant wave height, and

(bottom) steepness «h of the associated extreme wave (dashed line

is the Stokes–Miche upper limit). The wave dimension b is ;3 for

all the analyzed sea states.
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where ge 5 0:5772 is the Euler–Mascaroni constant; the

prime denotes derivative with respect to z 5 z/Hs; and

the dimensionless z0 satisfies

F(z) exp(28z2) 5 1, (B2)

with

F(z) 5 16M3z2 1 4M2z 1 M1 . (B3)

Consider now as a reference the order statistics of N

waves whose parent distribution follows an exceedance

distribution of the form

P(h jHs . z) 5 (4z)b21 exp(28z2) , (B4)

where the parameter b $ 1. In particular, for b 5 1 (B4)

reduces to the Rayleigh law (7) for 1D waves and for b 5

2 and 3 to the distributions PS and PV in (7) and (8) for

2D and 3D waves, respectively. Thus, b is interpreted as

a scale dimension of waves: that is, the relative scale of

the wave with respect to the volume’s size.

In the following, b is related to the mean wavelengths

and periods as well as the volume’s geometry by

equating the expected maximum hb of N ‘‘beta waves’’

to the true maximum hmax in (B1). Indeed, from (B4)

according to the theory of extremes (Gumbel 1958) the

expected maximum hb of N beta waves is given by

h
b

Hs

5 zN 1
ge

16zN 2 b/zN

, (B5)

where, from (B4), zN satisfies N(4z)b exp(28z2) 5 1. The

two expected maxima hb and hmax are identical if b and

N are chosen as

b 5 1 1 z0

F9(z0)

F9(z0)
5 3 2

4M2z0 1 2M1

16M3z2
0 1 4M2z0 1 M1

(B6)

and

N 5
F(z0)

4z0

5 4M3z0 1 M2 1
M1

4z0

, (B7)

respectively. Here, N is the average number of waves of

dimension b that occur within V.

APPENDIX C

Derivation of Prfhmax . z jVg

In (18), assume the stochastic independence of the

events fhmax # z jVg, fhmax # z j SLg, fhmax # z j ›SLg,

fhmax # z j Sbg, and fhmax # z j Sug (valid for large z).

Then, the probability of exceedance can be rewrit-

ten as

Prfhmax.z jVg512 Prfhmax # z jVg

� Prfhmax # z jSLg �Prfhmax # z j›SLg

� Prfhmax # z j Sbg �Prfhmax # z j Sug .

(C1)

Further, the last two terms on the right-hand side can be

set equal to 1, assuming that the significant wave height

is null or small in the beginning and at the end of the

storm [M2,h 5 0 in (9)]. This simplifies (C1) to

Prfhmax . z jVg5 1 2 Prfhmax # z jVg

� Prfhmax # z j SLg

� Prfhmax # z j ›SLg . (C2)

Here, the terms on the right-hand side can now be

formulated a la Borgman as in (12)–(14) assuming

the stochastic independence of the sea-state events:

namely,

Aj 5 fhmax # z jDVj g, Bj 5 fhmax # z jDSjg,

Cj 5 fhmax # z j ›DSjg . (C3)

As a result,

Prfhmax # z jVg5 Pr
n
\

j51,J
Aj

o

5 P
J

j51

[1 2 PV(z1 jHs 5 hj)]M
3
(Dt,X,Y jH

s
5h

j
), (C4)

Prfhmax # z j SLg5 Pr
n
\

j51,J
Bj

o

5 P
J

j51

[1 2 PS(z1 jHs 5 hj)]M
2,y(Dt,X ,Y jH

s
5h

j
), (C5)

and

Prfhmax # z j ›SLg5 Pr
n
\

j51,J
Cj

o

5 P
J

j51

[1 2 P(z1 jHs 5 hj)]M
1
(Dt,0,0,jH

s
5h

j
), (C6)
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where hj 5 h(tj), and PV , PS, and P follow from (6), (8),

and (7) as the probabilities that a 3D, 2D, and 1D wave

has an amplitude larger than z in DVj, in DSj, and along

its perimeter ›DSj, respectively (see Fig. 1). The linear

amplitude z1 is related to the nonlinear amplitude z via

the quadratic equation z 5 z1 1 mz2
1/2s, where m is an

integral measure of steepness (Tayfun 1980; Fedele and

Tayfun 2009). Taking the limit of Dt / 0 or J / ‘ in

(C3)–(C6) yields the extended Borgman exceedance

probability (19) to space–time.

APPENDIX D

Function G(l, a)

G(l, a) 5

sin(p/l)

p/l

ð‘

1

d2P

dz2

�����
ax

(x 2 1)21/l dx, l . 1

d2P

da2
, l 5 1

(21)nan

n!

sin(pj)

pj

ð‘

1

dn12P

dzn12

�����
ax

(x 2 1)2m dx, l 5
1

n 1 j
, 1,

8>>>>>>>>>><
>>>>>>>>>>:

(D1)

with (integer) n . 1 and 0 , j , 1. If l 5 1/n is rational

(i.e., j 5 0), then, from (D1),

G(l, a) 5 2
(21)nan

n!

dn11P

dan11
. (D2)
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