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On the kurtosis of deep-water gravity waves
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In this paper, we revisit Janssen’s (J. Phys. Oceanogr., vol. 33 (4), 2003, pp. 863–884)
formulation for the dynamic excess kurtosis of weakly nonlinear gravity waves
in deep water. For narrowband directional spectra, the formulation is given by
a sixfold integral that depends upon the Benjamin–Feir index and the parameter
R = σ 2

θ /2ν
2, a measure of short-crestedness for the dominant waves, with ν and

σθ denoting spectral bandwidth and angular spreading. Our refinement leads to a
new analytical solution for the dynamic kurtosis of narrowband directional waves
described with a Gaussian-type spectrum. For multidirectional or short-crested seas
initially homogeneous and Gaussian, in a focusing (defocusing) regime dynamic
kurtosis grows initially, attaining a positive maximum (negative minimum) at the
intrinsic time scale τc = ν2ω0tc = 1/

√
3R, or tc/T0 ≈ 0.13/νσθ , where ω0 = 2π/T0

denotes the dominant angular frequency. Eventually the dynamic excess kurtosis tends
monotonically to zero as the wave field reaches a quasi-equilibrium state characterized
by nonlinearities mainly due to bound harmonics. Quasi-resonant interactions are
dominant only in unidirectional or long-crested seas where the longer-time dynamic
kurtosis can be larger than that induced by bound harmonics, especially as the
Benjamin–Feir index increases. Finally, we discuss the implication of these results
for the prediction of rogue waves.
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1. Introduction

Third-order quasi-resonant interactions and associated modulational instabilities
cause the statistics of weakly nonlinear gravity waves to significantly differ from
the Gaussian structure of linear seas (Janssen 2003; Fedele 2008; Onorato et al.
2009; Shemer & Sergeeva 2009; Toffoli et al. 2010; Xiao et al. 2013). One integral
statistic used as a measure of the relative importance of such nonlinearities is the
excess kurtosis defined by Janssen (2003) as

C4 = 〈η
4〉

3σ 4
− 1, (1.1)
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where η is the surface displacement with respect to the mean sea level, σ 2 = 〈η2〉 is
the wave variance and angle brackets denote a statistical average. In general,

C4 =Cd
4 +Cb

4, (1.2)

which comprises a dynamic component Cd
4 due to nonlinear wave–wave interactions

(Janssen 2003) and a bound contribution Cb
4 induced by the characteristic crest–trough

asymmetry of ocean waves (see e.g. Tayfun 1980; Tayfun & Lo 1990; Tayfun &
Fedele 2007; Fedele & Tayfun 2009). If third-order Stokes contributions are taken into
account (Janssen 2009, 2014b; Janssen & Bidlot 2009) then

Cb
4 = 6µ2. (1.3)

For unidirectional (long-crested) seas initially homogeneous and Gaussian on deep
water, Mori & Janssen (2006) have shown that the large-time behaviour of the
dynamic excess kurtosis is to monotonically increase towards the asymptotic value

Cd
4,NLS =BFI2 π

3
√

3
, (1.4)

where

BFI= µ
√

2
ν

(1.5)

is the Benjamin–Feir index, µ= k0σ represents an integral measure of wave steepness,
ν is the spectral bandwidth and k0 is the dominant wavenumber. The preceding
approximation is valid for the dynamics of unidirectional narrowband waves described
by one-dimensional (1-D) nonlinear Schrödinger (NLS) and Dysthe (1979) equations
(see, for example, Shemer & Sergeeva 2009; Shemer, Sergeeva & Liberzon 2010a;
Shemer, Sergeeva & Slunyaev 2010b).

Clearly, the preceding results are valid for unidirectional waves where energy is
‘trapped’ as in a long wave-guide. If dissipation is negligible and the wave steepness
is small, quasi-resonant interactions are effective in reshaping the wave spectrum,
inducing nonlinear focusing and large waves in the form of breathers via modulation
instability before breaking occurs (Onorato et al. 2009; Shemer & Sergeeva 2009;
Shemer et al. 2010a; Chabchoub, Hoffmann & Akhmediev 2011; Chabchoub et al.
2012; Shemer & Alperovich 2013; Shemer & Liberzon 2014). However, such 1-D
conditions never occur in nature as they are unrealistic models of oceanic wind
seas. The latter are typically multidirectional (short-crested) and energy can spread
directionally. As a result, nonlinear focusing due to modulational effects is reduced
(Onorato et al. 2009; Waseda, Kinoshita & Tamura 2009; Toffoli et al. 2010).

In regard to the kurtosis in short-crested seas initially homogeneous and Gaussian,
the focus of recent numerical studies has been on the asymptotic behaviour with
time (see, for example, Annenkov & Shrira 2013, 2014; Janssen & Bidlot 2009).
Theoretical studies on the transient short-lived features of kurtosis and their relevance
to the prediction of rogue waves are desirable. These provide the principal motivation
for revisiting Janssen’s (2003) formulation for the dynamic excess kurtosis of weakly
nonlinear deep-water gravity waves.

The remainder of the paper is organized as follows. We first review Janssen’s
(2003) dynamic kurtosis model. Then, we present a new analytical solution of
a sixfold integral that yields the growth rate of the dynamic excess kurtosis for
narrowband Gaussian-shaped spectra. This is followed by a detailed study of
its short-time evolution and long-time asymptotic behaviour and comparisons to
numerical simulations and experiments. In concluding, we discuss the implications of
these results for rogue wave prediction.
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2. Dynamic excess kurtosis
Drawing on Janssen (2003) the dynamic excess kurtosis of weakly nonlinear sea

states, initially homogeneous and Gaussian, is given by

Cd
4 =

4g
σ 2

Re
∫

T34
12δ

34
12

√
ω4

ω1ω2ω3
G(t)E1E2E3 dω1,2,3 dθ1,2,3, (2.1)

where the resonant function

G(t)= 1− exp(−iω34
12t)

ω34
12

, (2.2)

T34
12 is the Zakharov kernel (Zakharov 1968, 1999; Krasitskii 1994) as a function of

the wavenumber vectors kj= (kj cos(θj), kj sin(θj)) and Re(x) denotes the real part of x.
The sixfold integral in (2.1) is defined over the manifold

k1 + k2 − k3 − k4 = 0 (2.3)

or equivalently δ34
12 = δ(k1+ k2− k3− k4), where δ(k) is the Dirac delta. The frequency

mismatch is given by ω34
12=ω1+ω2−ω3−ω4, E(ω, θ) is the surface spectrum and σ 2

is the variance of surface elevations. The deep-water angular frequency ω(k)=√gk,
the wavenumber magnitude k= |k|, and

ω4 =
√

gk4 =
√

g|k1 + k2 − k3| (2.4)

follows from (2.3), with g denoting gravity acceleration. Since homogeneous Gaussian
initial conditions with random phases and amplitudes are imposed, it follows that

Cd
4(t= 0)= 0. (2.5)

Equation (2.1) can be simplified by resorting to a narrowband approximation (Mori
& Janssen 2006; Janssen & Bidlot 2009). So, we assume the spectrum E to peak at
ω=ω0 and θ = θ0, where ω0 and θ0 denote the dominant angular frequency and wave
direction, respectively, and the associated wavenumber k0 = ω2

0/g, wave period T0 =
2π/ω0 and phase speed c0 =ω0/k0. Next, define

ωj =ω0(1+ νvj), θj = θ0 + σθφj, (2.6a,b)

where ν and σθ denote spectral and angular widths respectively. Under the narrowband
condition ν, σθ � 1, T34

12 ∼ k3
0 to leading order and the frequency mismatch, correct to

O(ν2, σ 2
θ ), is given by

ω34
12 ∼ ν2ω0∆, (2.7)

with

∆= {(v1 − v3)(v2 − v3)− R(φ1 − φ3)(φ2 − φ3)} =∆v − R∆φ, (2.8)

where ∆z = (z1 − z3)(z2 − z3) for a generic z= (z1, z2, z3) triplet, and the parameter

R= 1
2
σ 2
θ

ν2
(2.9)
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is a measure of short-crestedness of dominant waves (Janssen & Bidlot 2009).
Expanding (2.1) around ν = 0 and σθ = 0, to leading order

Cd
4(τ )=BFI2J(τ ; R), (2.10)

where
J(τ ; R)= 2 Re

∫
1− exp(i∆τ)

∆
Ẽ1Ẽ2Ẽ3 dv1,2,3 dφ1,2,3. (2.11)

Here, τ = ν2ω0t is a dimensionless time and Ẽj(vj, φj)= Ej/σ .
For a Gaussian-shaped spectrum, the rate of change of Cd

4 is explicitly given by

dCd
4

dτ
=BFI2 dJ

dτ
, (2.12)

and

dJ
dτ
= dJ0(τ ; 1, R)

dτ
= 2 Im

(
1√

1− 2iτ + 3τ 2
√

1+ 2iRτ + 3R2τ 2

)
, (2.13)

where the function J0(τ ; P, Q) is defined in appendix A and Im(x) denotes the
imaginary part of x. On this basis, the factor J in (2.10) follows by quadrature as

J(τ ; R)= 2 Im
∫ τ

0

1√
1− 2iα + 3α2

√
1+ 2iRα + 3R2α2

dα. (2.14)

For small times τ � 1,

J(τ ; R)=
∫ τ

0
((1− R)α +O(α2)) dα = 1

2
(1− R)τ 2 (2.15)

and (2.10) yields
Cd

4 ∼BFI2(1− R)τ 2, τ � 1, (2.16)

in agreement with Janssen & Bidlot (2009).
Note that the dynamic excess kurtosis in (2.10) is consistent with the evolution of

weakly nonlinear narrowband wavetrains of the two-dimensional (2-D) NLS equation.

3. Intrinsic nonlinear time scale

The growth rate (2.12) of the dynamic Cd
4 vanishes at the dimensionless time

τc = 1√
3R
, (3.1)

or in physical units
tc

T0
= 1

2π

√
2
3

1
σθν
∼ 0.13
σθν

, (3.2)

where T0 = 2π/ω0 is the dominant wave period. Further, the second derivative of Cd
4

at τc is given by

d2Cd
4

dτ 2

∣∣∣∣
τ=τc

=−6
√

3R(1− R). (3.3)
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FIGURE 1. Dynamic excess kurtosis: solid lines, Cd
4/BFI2 as a function of dimensionless

time τ = ν2ω0t= 2πν2t/T0 for different values of R; dashed line, locus of transient peaks
(T0 denotes the dominant wave period and ν is the spectral bandwidth).

Thus, Cd
4 attains a positive maximum (negative minimum) at τ = τc for 0 < R < 1

(R > 1). It is straightforward to show that for multidirectional or short-crested seas
(R> 0)

lim
τ→∞

Cd
4 = 0. (3.4)

Indeed, it is sufficient to study the rate of change of Cd
4 for large times τ � 1. To do

so, consider the change of variable τ = 1/r and expanding (2.12) around r= 0 yields

dCd
4

dτ
∼ (−1+ R)r3

9R2
= (−1+ R)

9R2τ 3
. (3.5)

Note that in (2.13) the real part of the term within parentheses, which has no physical
meaning, decays as τ−2. For 0< R< 1, Cd

4 first attains a positive peak at τ = τc and
then decays monotonically to zero since dCd

4/dτ <0 for large τ . This is clearly seen in
figure 1, showing the evolution of Cd

4 for different values of R. For R> 1, Cd
4 initially

decreases, reaching a negative peak at τ = τc, and then tends monotonically to zero,
because dCd

4/dτ > 0 for large τ as shown in figure 1. At the critical value R= 1, the
excess kurtosis is null at any time, as can easily be verified from (2.12).

In summary, depending on the value of R there will be nonlinear focusing (Cd
4 > 0)

or nonlinear defocusing (Cd
4 <0) in agreement with Janssen & Bidlot (2009). Note that

for unidirectional or long-crested seas (R= 0) the rate of change dCd
4/dτ > 0 for any

time τ . In this case, the dynamic excess kurtosis monotonically increases with time
to the asymptotic value of (1.4) (Mori & Janssen 2006; Shemer & Sergeeva 2009;
Fedele et al. 2010; Shemer et al. 2010a,b).

4. Dynamic excess kurtosis maximum

From (2.10) and (3.1), the peak value of Cd
4 at τ = τc is given by

Cd
4(R)=BFI2Jp(R), (4.1)
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where

Jp(R)= J
(

1√
3R
; R
)
= Im

∫ 1/
√

3R

0

2√
1− 2iα + 3α2

√
1+ 2iRα + 3R2α2

dα. (4.2)

The following relation holds:

Jp

(
1
R

)
=−RJp(R), (4.3)

in agreement with Janssen & Bidlot (2009). This relation allows us to compute the
minimum kurtosis for R> 1 from the maximum value for R< 1. Indeed,

Cd
4,min

(
1
R

)
=−RCd

4,max(R), 0 6 R 6 1, (4.4)

where Cd
4,max = BFI2Jp(R). Clearly, this vanishes at R= 1 signalling the change from

a nonlinear focusing to a defocusing regime where the dynamic excess kurtosis is
negative.

Drawing on Janssen & Bidlot (2009), the limit

Jp(R)∼− π

3
√

3R
, R� 1, (4.5)

and that for small times in (2.16), suggest the least-squares fit for the maximum

Cd
4,max(R)
BFI2 = Jpeak(R)≈ b

(2π)2

1− R
R+ bR0

, 0 6 R 6 1, (4.6)

where R0 = (3
√

3)/π and b = 2.48. In figure 2(a), the preceding approximation
is compared to the theoretical Cd

4,max obtained from solving (4.1) by numerical
integration. Evidently, the latter is slightly larger than the maximum excess kurtosis
derived by Janssen & Bidlot (2009), who have also used (4.6) but with b= 1. Their
maximum follows by first taking the limit of the resonant function G(t) in (2.2) at
t =∞ and then solving the sixfold integral in (2.1). Clearly, for R> 0 the dynamic
excess kurtosis should vanish at large times as discussed above. Janssen (personal
communication, 2014a) confirmed that (4.1) holds and provided an alternative proof
that Cd

4 tends to zero as t→∞ using complex analysis and numerical integration.
Further, from (3.1)

Cd
4,max(τc)

BFI2 ≈ b
(2π)2

−1+ 3τ 2
c

1+ 3bR0τ 2
c

, 0 6 τc 6
1√
3
. (4.7)

Clearly, the transient maximum kurtosis becomes larger for longer time scales τc, as
illustrated in figure 2(b). Note that the dynamic excess kurtosis is negative for τc >

1/
√

3 as the wave regime is of defocusing type (R> 1) and the minimum value Cd
4,min

can be computed from (4.4).
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FIGURE 2. Maximum dynamic excess kurtosis Cd
4,max as a function of (a) R and (b) 1/τc:

bold line, present theoretical prediction; thin line, least-squares fit from (4.6) (b= 2.48);
dashed line, Janssen & Bidlot (2009) fit (b= 1).

5. Comparisons to simulations and experiments
We now compare the theoretical narrowband (NB) predictions for the total kurtosis

C4 (see (1.2), (2.10) and (1.3)) to experimental results (Onorato et al. 2009) and the
comprehensive numerical simulations of JONSWAP directional wave fields carried
out by Toffoli et al. (2010) and Xiao et al. (2013). They considered the broadband
modified nonlinear Schrödinger equations (BMNLS) (Dysthe 1979) and a high-order
spectral (HOS) solver (Dommermuth & Yue 1987). In particular, we consider the
comprehensive numerical results reported in figures 10(a,b) in Xiao et al. (2013)
for the two cases of narrow and broad directional spreading, i.e. σθ = 0.04 and
0.07 respectively. The simulated sea states have standard deviation σ = 0.02 m,
dominant wave period T0= 1 s, significant wave height Hs= 4σ = 0.08 m, BFI= 0.78,
wave steepness µ = 0.08 and spectral bandwidth ν = 0.15 (see appendix B for the
estimation of wave parameters). As shown in figure 3, the numerical studies by Xiao
et al. (2013) indicate an initial overshoot of the kurtosis followed by a decay towards
quasi-Gaussian conditions.

In particular, figure 3(a) shows that for a narrow directional spreading (σθ ∼ 0.04)
the present theoretical NB model (thick line) explains the peak kurtosis and the initial
transient behaviour of BMNLS simulations (thin dashed line) as NB is consistent with
the dynamics of the 2-D NLS equation. BMNLS and NB yield faster initial growth
and overestimate both HOS (thin solid line) and experiments (triangle symbols).
However, soon after the transient stage, the spectrum has already broadened in
frequency and spread angularly, approaching a quasi-equilibrium state. At this stage,
the NB approximation provides just a qualitative trend of the large-time behaviour
since it does not account for spectral changes. In particular, NB shows a slower
decaying trend to zero than BMNLS. This indicates that numerical models capture
the directional energy spreading and quasi-resonant interactions attenuate much faster
than NB after the transient peak.

For a broad directional spreading (σθ ∼ 0.07) figure 3(b) shows that NB overestimates
the maximum kurtosis and qualitatively explains the initial transient overshoot of
BMNLS simulations, which are now beyond their range of validity as the spectrum
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FIGURE 3. Kurtosis µ4=〈η4〉/〈η2〉2=3(C4+1) as a function of time t/2T0 for JONSWAP
directional wave fields initially homogeneous and Gaussian (BFI = 0.78, µ = 0.08,
ν = 0.15): theoretical narrowband predictions compared to simulations and experiments
(A) from Onorato et al. (2009) (data digitized from figure 10a,b in Xiao et al. 2013).
(a) Narrow directional spreading with σθ = 0.04, R = 0.03 (see (2.9)) and (b) broad
directional spreading with σθ = 0.07, R= 0.1. Narrowband theory: dynamic kurtosis µd

4 =
3(Cd

4 + 1) from (2.10) (thick dashed line) and total kurtosis µ4 = µd
4 + µb

4 (thick solid
line), with µb

4 = 3(Cb
4 + 1) from (1.3). Dashed horizontal lines denote Janssen & Bidlot

(2009) dynamic kurtosis maximum from (4.6) with b = 1. Simulation results from Xiao
et al. (2013): HOS (thin solid line), BMNLS (thin dashed line). The numerical results
from Toffoli et al. (2010) are also shown: BMNLS (E) and HOS (+).

is already too broad initially. Instead, HOS simulations are in agreement with
experiments and yield a smaller value of the maximum kurtosis and a slower transient
than BMNLS. This suggests that higher order-nonlinearities and broader spectral
bandwidth effects should be accounted for to obtain more accurate theoretical models
for kurtosis evolution. Indeed, for the compact form of the 1-D Zakharov equation
(cDZ, Dyachenko & Zakharov 2011), Fedele (2014) showed that, correct to O(ν2) in
spectral bandwidth, the associated dynamic kurtosis maximum

Cd
4,cDZ =Cd

4,NLS

(
1− 4

√
3+π

8π
ν2

)
≈Cd

4,NLS(1− 0.40ν2) (5.1)

is smaller than the NLS counterpart Cd
4,NLS in (1.4), especially as the spectrum widens.

The present study can be extended to derive an analytical solution of the kurtosis
evolution from initial Gaussian and homogeneous wave conditions in accord with the
2-D Zakharov equation (Dyachenko & Zakharov 2011; Gramstad 2014).

Finally, we note that in both the above-mentioned cases the NB model qualitatively
describes the initial transient and kurtosis peak. For time scales t� tc, NB indicates
the correct asymptotic behaviour of the total kurtosis of surface elevations as
dominated by nonlinear bound harmonics (see also Annenkov & Shrira 2013 and
Annenkov & Shrira 2014).

6. Concluding remarks
Our refinement of Janssen’s (2003) theory implies that in typical multidirectional

or short-crested oceanic fields third-order quasi-resonant interactions do not appear
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to play a significant role in the wave growth. In particular, we have shown that
the large excess dynamic kurtosis transient observed during the initial stage of
wave evolution is a result of the unrealistic assumption that the initial wave field
is homogeneous Gaussian. A random wave field forgets its initial conditions and
adjusts to a non-Gaussian state dominated by bound nonlinearities in agreement with
experiments (Onorato et al. 2009; Waseda et al. 2009) and simulations (Annenkov &
Shrira 2013, 2014). In this regime, statistical predictions of rogue waves can be based
on the Tayfun (1980) and Janssen (2009) models to account for both second-order
skewness and third-order bound kurtosis nonlinearities (Fedele 2015).
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Appendix A
Consider the generic sixfold integral

J0(τ ; P,Q)= 2 Re
∫

1− exp(i∆τ)
∆

Ẽ1Ẽ2Ẽ3 dv1,2,3 dφ1,2,3, (A 1)

where P and Q are complex coefficients,

∆= P∆v −Q∆φ (A 2)

and

Ẽj(vj, φj)=
exp

(
−v

2
j + φ2

j

2

)
2π

. (A 3)

Then, the integral (A 1) can be written as

J0(τ ; P,Q) = Re
∫

1− exp(iP∆vτ − iQ∆φτ)

P∆v − iQ∆φ

exp
(
−v

2
1 + v2

2 + v2
3

2

)
(2π)3/2

×
exp

(
−φ

2
1 + φ2

2 + φ2
3

2

)
(2π)3/2

dv1,2,3 dφ1,2,3. (A 4)

Clearly, vj and φj are coupled via the denominator P∆v − iQ∆φ . However, they
become uncoupled if we take the time derivative

dJ0

dτ
= Im

∫
exp(iP∆vτ − iQ∆τ)

exp
(
−v

2
1 + v2

2 + v2
3

2

)
(2π)3/2

×
exp

(
−φ

2
1 + φ2

2 + φ2
3

2

)
(2π)3/2

dv1,2,3 dφ1,2,3. (A 5)
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Indeed,
dJ0

dτ
= 2 Im[I0(τ ; P)I0(τ ; −Q)], (A 6)

where

I0(τ ; P)=
∫

exp(iP∆zτ)

exp
(
−z2

1 + z2
2 + z2

3

2

)
(2π)3/2

dz1,2,3. (A 7)

Drawing on Fedele et al. (2010) Gaussian integration yields

I0(τ ; P)= 1√
1− 2iPτ + 3P2τ 2

(A 8)

and from (A 6)

dJ0(τ ; P,Q)
dτ

= 2 Im
(

1√
1− 2iPτ + 3P2τ 2

√
1+ 2iQτ + 3Q2τ 2

)
. (A 9)

Appendix B
Recently, Toffoli et al. (2010) and Xiao et al. (2013) have compared BMNLS and

HOS simulations of JONSWAP directional wave fields to the experimental results in
Onorato et al. (2009). Their Benjamin–Feir index is a factor

√
2 larger than the one

used in this work (see (1.5)), that is

BFI′ = 2k0σ

ν
= 2µ

ν
=√2BFI. (B 1)

Further, their wave steepness µ′ = 2µ where µ= k0σ is used in this work (see also
table 1 in Toffoli et al. 2010). In the numerical results reported in figure 10(a,b) of
Xiao et al. (2013), BFI′ = 1.1 and µ′ = 0.16. Thus, BFI = 0.78, µ = 0.08 and the
spectral bandwidth follows as ν =√2µ/BFI= 0.15.

The directional distribution D(θ) adopted by Xiao et al. (2013) is given by

D(θ)= 2
Θ

cos2

(
πθ

Θ

)
, |θ |6 Θ

2
(B 2a,b)

and the associated directional spreading follows as

σθ =

√√√√√√√√
∫ Θ/2

−Θ/2
D(θ)θ 2 dθ∫ Θ/2

−Θ/2
D(θ) dθ

=Θ
√

π2 − 6
12π2

. (B 3)

The numerical results shown in figure 10(a) of Xiao et al. (2013) are for Θ =
12(π/180) rad (narrow directional spreading); using (B 3) yields σθ = 0.04 and
R = 0.03 from (2.9). For the case of broad directional spreading shown in their
figure 10(b) Θ = 21(π/180) rad and σθ = 0.07, R= 0.1.
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