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ABSTRACT
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In this paper, we revisit extreme wave statistics related to the 1993’s Draup-

ner freak wave event drawing on ERA-interim reanalysis data. In particular,

we study the influence of nonlinear wave-wave interactions and space-time

variability of the wave field on the predictions of the maximum wave and

crest heights expected at the Draupner site.

According to Janssen’s (2003) theory, in realistic oceanic storms characterized

by short-crested seas the wave field forgets its initial conditions and adjusts to

a non-Gaussian state dominated by second order bound nonlinearities on time

scales t � tc ≈ 0.13T0/νσθ where T0, ν and σθ denote mean wave period,

spectral bandwidth and angular spreading of dominant waves respectively. In

this regime, we propose that statistical predictions of extreme waves can be

based on the Tayfun (1980) model combined with Adler-Taylor’s (2009) the-

ory on Euler-Characteristics of random fields.

According to ERA-interim reanalysis of the Draupner storm, it is found that

tc/T0∼O(1), indicating that quasi-resonant interactions are ineffective in am-

plyfing waves. Further, the probability that a wave with crest-to-trough height

H/Hs > 2.15 occurs over the platform’s area is roughly 10-50 times larger

than the probability that the same wave is observed at a single point, where

the significant wave height Hs = 4σ and σ is the standard deviation of surface

elevations. The analysis predicts that the associated second order nonlinear

crest height exceeds the threshold 1.45Hs, in fair agreement with measure-

ments. These studies provide evidence that freak wave behavior may be a

manifestation of the space-time properties of oceanic fields. The proposed

theoretical framework can be applied to refine the predictions of higher reso-

lution forecast wave models.
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1. Introduction

The Draupner wave was recorded on 1 January 1995 by a downward pointing laser at the Draup-

ner platform in the North Sea at a water depth d = 70 m (Haver (2001)). The freak wave occurred

during a 5-hour sea state with significant wave height Hs = 4σ = 11.9 m, mean period T0 = 13.1

s and wavelength L0 = 260 m, and σ is the standard deviation of surface elevations. The crest

height h = 18.5 m (h/Hs = 1.55) and the crest-to-trough height H = 25.6 m (H/Hs = 2.15) (Haver

(2004); Karin Magnusson and Donelan (2013)). The wave profile was very steep, but there is no

evidence that the wave was breaking. In the last decade the properties of the Draupner wave

have been extensively studied (see Dysthe et al. (2008); Osborne (2010) and references therein).

Several physical mechanisms have been proposed to explain the occurrence of such a giant wave

(Kharif and Pelinovsky (2003)) including the two competing hypotheses of nonlinear focusing

due to third-order wave-wave quasi-resonant interactions (Janssen (2003)) and purely dispersive

focusing of second order waves (Fedele and Tayfun (2008); Fedele (2008)).

Third-order quasi-resonant interactions and associated modulational instabilities cause the statis-

tics of weakly nonlinear gravity waves to significantly differ from the Gaussian structure of linear

seas (Janssen (2003); Fedele (2008); Onorato et al. (2009); Shemer and Sergeeva (2009); Toffoli

et al. (2010)), especially in long-crested seas. The wave field near a large crest is that of a breather

(Peregrine (1983); Osborne et al. (2000), see also Ankiewicz et al. (2009)). One integral statistics

used as a measure of the relative importance of such nonlinearities and the increased occurrence

of large breathers is the excess kurtosis as defined by Janssen (2003) as

C4 =

〈
η4〉

3〈η2〉2
−1,

where η is the wave surface elevation, brackets denote statistical average and the fourth order

cumulant µ40 = 3C4. In general, C4 comprises a dynamic component due to nonlinear wave-
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wave interactions (Janssen (2003)) and a bound contribution induced by the characteristic crest-

trough asymmetry of ocean waves ( Tayfun (1980); Tayfun and Lo (1990); Tayfun and Fedele

(2007); Fedele and Tayfun (2008); Fedele (2008)). For long-crested seas at deep water, within

the framework of the higher order compact Zakharov (cDZ) equation (Dyachenko and Zakharov

(2011)), Fedele (2014a) showed that, correct to O(ν2) in spectral bandwidth, the dynamic excess

kurtosis monotonically increases to the asymptotic value

CcDZ
4 =CNLS

4

(
1− 4

√
3+π

8π
ν

2

)
≈CNLS

4
(
1−0.40ν

2) ,
where

CNLS
4 = BFI2 π

3
√

3
(1)

is the dynamic excess kurtosis of long-crested or unidirectional narrowband waves described

by one-dimensional (1-D) nonlinear Schrodinger (NLS) and Dysthe (1979) equations (Mori and

Janssen (2006)), and the Benjamin-Feir index BFI =
√

2µ/ν , with µ denoting an integral measure

of wave steepness and ν is the spectral bandwidth. Clearly, CcDZ
4 is smaller than CNLS

4 , especially

as the spectral bandwidth widens. This is consistent with the result that in accord with cDZ the lin-

ear growth rate of a subharmonic perturbation reduces with respect to the NLS counterpart as wave

steepness increases (Fedele (2014a)). Indeed, modulation instability is attenuated as µ increases, a

well known result (Lighthill (1965)). Thus, we see that the occurrence of rogue waves induced by

large breathers becomes less likely as the steepness of carrier wave increases. To date higher-order

breathers have been observed experimentally only at sufficiently small values (∼ 0.01− 0.09) of

wave steepness (Chabchoub et al. (2011, 2012)) since wave breaking is inevitable for µ > 0.1,

as pointed out by Shemer and Alperovich (2013) (see also Shemer and Liberzon (2014)). They

also noted that ’breather does not breath’ and differs from the 1-D NLS solution due to significant

asymmetric spectral widening. Moreover, breather amplification is smaller than that predicted by
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the NLS, indicating that modulation instability attenuates as waves steepen, in accord with the nu-

merical studies of Euler equations (Slunyaev and Shrira (2013); Slunyaev et al. (2013)). Clearly,

the preceding results are valid for unidirectional waves where energy is ’trapped’ as in a long wave-

guide. If dissipation is negligible and the wave steepness is small, quasi-resonant interactions are

effective in reshaping the wave spectrum, inducing nonlinear focusing via modulation instability

before breaking occurs (Onorato et al. (2009); Chabchoub et al. (2011, 2012)). However, such 1-D

conditions never occur in nature as they are unrealistic models of oceanic wind seas. These are

typically short-crested and nonlinear focusing due to modulational effects is reduced since energy

can spread directionally (Onorato et al. (2009); Toffoli et al. (2010)).

Recent studies also proposed the hypothesis that the Draupner wave occurred in crossing seas

(Onorato et al. (2010)). The analytical study suggests that angles ∼ 10°− 30◦ between the dom-

inant sea directions are the most probable for establishing a freak wave sea induced by quasi-

resonant wave-wave interactions. However, Adcock et al. (2011) reported that the hindcast from

the European Centre for Medium-Range Weather Forecasts shows swell waves propagating at

approximately 80° to the wind sea. Adcock et al. (2011) also argued that the Draupner wave oc-

curred due to crossing of two almost orthogonal wave-groups in accord with second order theory.

This explains the large set-up observed under the giant wave instead of the expected set-down.

However, there is no evidence of significant swell components nearby the platform as clearly seen

from Fig. 2 in Adcock et al. (2011) and Fig. 1, which shows the ERA-interim wave directional

spectrum at the Draupner site. Clearly, one can also argue that the observed set-up is an indication

that measurements may be corrupted. Further, in accord with Boccotti’s (2000) quasi-determinism

theory the probability that two different wave groups cross at the same point at the apex of their

development is much smaller than the probability that one of the two groups focuses at the same

point .

6



The sea state of the Draupner wave was short-crested (see Fig. 1 and bottom-right panel of Fig.

2) and occurred on finite depth (d/L0∼ 0.3) where modulation instabilities are attenuated and thus

may have played an insignificant role in the wave growth. Recently, Tayfun (2008) arrived at sim-

ilar conclusions based on the analysis of North Sea data. His results indicate that large time waves

(measured at a given point) result from the constructive interference (focusing) of elementary

waves with random amplitudes and phases enhanced by second-order non-resonant interactions.

Further, the surface statistics is not affected by third-order nonlinearities, and it obeys the Tayfun

distribution (Tayfun (1980); Fedele and Tayfun (2008)) in agreement with observations (Fedele

(2008)). This is confirmed by a recent quality data control and analysis by Christou and Ewans

(2014) of single-point field measurements from fixed sensors mounted on offshore platforms, the

majority of which were recorded in the North Sea. The analysis of an ensemble of 122 million

individual waves revealed 3649 rogue events, concluding that freak waves observed at a point in

time, i.e. time waves, are merely rare events induced by dispersive focusing.

Furthermore, recent studies by Fedele (2012) and Fedele et al. (2013) provided both theoretical

and experimental evidences that the expected maximum wave surface height over an area in time

(space-time extreme) is larger than that expected at a fixed point (time extreme), especially in short-

crested seas (see also Forristall (2011)). Indeed, the occurrence of an extreme in Gaussian fields is

analogous to that of a big wave that a surfer is in search and always finds (Baxevani and Rychlik

(2006)). If he spans a large area the chances to encounter the largest crest of a wave group increase

(Rosenthal and Lehner (2008)).

The preceding provide the principal motivation for revisiting the Draupner’s event and study the

space-time properties of the sea state in which the freak wave occurred. The remainder of the

paper is organized as follows. First, the essential elements of Janssen’s formulation for the excess

kurtosis of directional or short-crested seas are presented (Fedele (2014b)). This is followed by

7



a review of the essential elements of the theory of Euler Characteristics for random fields (Adler

(1981)), space-time extremes (Fedele (2012)) and associated stochastic wave groups (Fedele and

Tayfun (2008)). Drawing on ERA-interim reanalysis (Dee et al. (2011)) we then study the sta-

tistical properties of space-time extremes of the Draupner storm. In concluding, we discuss the

implications of these results on rogue-wave predictions.

2. Excess kurtosis of short-crested seas

Fedele (2014b) revisited Janssen’s (2003) formulation for the total excess kurtosis C4 of weakly

nonlinear gravity waves in deep water. This comprises a dynamic component Cd
4 due to nonlinear

wave-wave interactions (Janssen and Bidlot (2009)) and a bound contribution Cb
4 = 6µ2 induced

by the characteristic crest-trough asymmetry of ocean waves ( Tayfun (1980); Tayfun and Lo

(1990); Tayfun and Fedele (2007); Fedele and Tayfun (2008); Fedele (2008)). For waves that

are approximately narrowband and characterized with a Gaussian type directional spectrum, Cd
4

is expressed as a sixfold integral that depends on time t, the BFI and R (Fedele (2014b)). Here,

the parameter R = ν2/2σ2
θ

is a measure of short-crestedness of the dominant waves, with ν and

σθ denoting spectral bandwidth and angular spreading (Janssen and Bidlot (2009); Mori et al.

(2011)). The associated excess kurtosis growth rate can be solved analytically for narrowband

waves (Fedele (2014b), see also appendix A). It is found that in the focusing regime (0 < R < 1)

the dynamic excess kurtosis initially grows attaining a maximum Cmax
4 at the at the intrinsic time

scale

τc = 2πν
2 tc

T0
=

1√
3R

, or
tc
T0
∼ 0.13

νσθ

(2)

8



given by the least-squares fit

Cmax
4 (R)
BFI2 ≈ b

(2π)2
1−R

R+bR0
, 0≤ R≤ 1, (3)

where R0 = 3
√

3
π

and b = 2.48. Eventually the excess dynamic kurtosis tends monotonically to

zero as energy spreads directionally in accord with numerical simulations (Annenkov and Shrira

(2009)). In the defocusing regime (R > 1) the dynamic excess kurtosis is always negative attaining

a minimum at tc given by (Janssen and Bidlot (2009))

Cmin
4

(
1
R

)
=−RCmax

4 (R), 0≤ R≤ 1. (4)

and then it tends to zero in the long time. Thus, the present theoretical predictions indicate a

decaying trend for the dynamic excess kurtosis over large times.

For time scales t ? 10tc the wave wave field forgets its initial conditions and adjusts to a non-

Gaussian state dominated by bound nonlinearities as the total kurtosis of surface elevations asymp-

totically approaches the bound component level (Annenkov and Shrira (2013, 2014)). In typical

oceanic storms where dominant waves are characterized with ν ∼ 0.2− 0.4 and σθ ∼ 0.2− 0.4,

this adjustment is rapid since the time scale tc/T0 ∼ O(1) with T0 ∼ 10− 14 s and the dynamic

kurtosis peak is negligible compared to the bound counterpart. For time scales of the order of or

less than tc the dynamic component can dominate and the wave field may experience rogue wave

behavior induced by quasi-resonant interactions (Janssen (2003)). However, one can argue that

the large excess kurtosis transient observed during the initial stage of evolution is a result of the

unrealistic assumption that the initial wave field is homogeneous Gaussian. Oceanic wave fields

are typically inohomogenous both in space and time.

In the left panel of Fig. (3), the preceding approximation is compared against the theoretical

Cmax
4 for narrowband waves (Fedele (2014b), see also appendix A). Evidently, the latter is slightly
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larger than the maximum excess kurtosis derived by Janssen and Bidlot (2009), who have also

used (3) but with b = 1. Their maximum follows by first taking the limit of the excess kurtosis at

large times (t = ∞) and then solving the associated sixfold integral (Fedele (2014b)). Clearly, the

dynamic excess kurtosis should vanish at large times. Janssen (personal communication, 2014)

confirmed that Eq. (A3) holds and provided an alternative proof that Cd
4 tends to zero as t → ∞

using complex analysis. He also remarks that they are unresolved questions regarding the appro-

priate large-time behavior of the resonant function (Fedele (2014b)).

Further, in the focusing regime (R < 1,τc < 1/
√

3), from (3)

Cmax
4 (τc)

BFI2 ≈ b
(2π)2

−1+3τ2
c

1+3bR0τ2
c
. (5)

Clearly, the maximum kurtosis becomes larger for longer time scales τc, as illustrated in the right

panel of Fig. (3). In the defocusing regime (R > 1,τc > 1/
√

3) the dynamic excess kurtosis is

negative and the minimum value Cmin
4 can be computed from Eq. (4).

Drawing on ERA-interim reanalysis data, we now consider the Draupner storm event over the

North Sea’s area at the time of maximum development (Jan 2st 1995 UTC 00). For example,

the top panel on the left of Fig. (2) shows the spatial distribution of the significant wave height

Hs = 4σ at the peak time. The maximum of Hs is about 8.5 m which is smaller than the observed

11.9 m (Karin Magnusson and Donelan (2013)). Indeed, it is well known that ERA understi-

mates peak values and predict broader directional spectra because of the low spatial resolution

of the data set, i.e. grid cell size ∼ 1002 km2 and 60 vertical levels (Dee et al. (2011)). Nev-

ertheless, such predictions provide leading order estimates of sea-state parameters that can be

further refined in future studies using higher order resolution forecast models. For example, the

top panels of Fig. (4) show the Gaussian adjustment time tc/T0 and the total excess kurtosis C4.

The dynamic and bound components are shown in the bottom panels of the same figure. Clearly,
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tc ∼ O(T0)∼ 15 seconds, indicating that nonlinear wave-wave interactions are negligible. Indeed,

Cd
4 is slightly negative indicating a defocusing wave regime due to the short-crestedness of the sea

states, whereas the non-zero and positive bound component indicates that second order nonlinear-

ities are dominant. Thus, in this regime statistical predictions of extreme waves can be based on

the Tayfun (1980) model (Tayfun and Fedele (2007); Fedele and Tayfun (2008); Fedele (2008))

combined with Adler-Taylor’s (2009) theory of Euler Characteristics for random fields. In the

following, we will first present the theory of space-time extremes (Fedele (2012)) and then apply

it to study the statistical properties of the Draupner freak wave event.

3. SPACE-TIME EXTREMES

In accord with ERA-interim reanalysis, in the time interval D ∼ 3 hours and over the grid cell

area A∼ 1002 km2 we can assume that the sea state is both stationary in time and homogenous in

space. Then, the wave surface η(x, t) can be modeled as a three-dimensional (3-D) homogeneous

Gaussian random field over the space-time volume Ω defined by the area A and the time interval

D, and x = (x,y) denotes the coordinate vector. Thus, the associated probability distributions at

any points of the volume are the same and Gaussian. Drawing on Adler (1981), consider the Euler

Characteristics (EC) of excursion sets of η defined as follows. Given a threshold z, the excursion

set UΩ(z) is the part of Ω within which η is above z:

UΩ(z) = {(x, t) ∈Ω : η(x, t)> z}.

In 1-D Gaussian processes, the EC simply counts the number of z-upcrossings, thus providing

their generalization to higher dimensions. Indeed, for two dimensional (2-D) random fields, the EC

counts the number of connected components minus the number of holes of the respective excursion

set. In 3-D sets instead, the EC counts the number of connected volumetric components of the set,
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minus the number of holes that pass through it, plus the number of hollows inside. Further, the

probability of exceedance that the global maximum of η over Ω, say ηmax, exceeds z depends on

the domain size and it is well approximated by the expected EC of the excursion set, provided that

z is high (Adler (1981, 2000); Adler and Taylor (2009)). For an heuristic argument, as z increases

the holes and hollows in the excursion set UΩ(z) disappear until each of its connected components

includes just one local maximum of η , and the EC counts the number of local maxima. For very

large thresholds, the EC equals 1 if the global maximum exceeds the threshold and 0 otherwise.

Thus, the EC of large excursion sets is a binary random variable with states 0 and 1, and, for large

z,

Pr{ηmax > z}= Pr{EC (UΩ(z)) = 1}= 〈EC (UΩ(z))〉 , (6)

where angled brackets denote expectation. This heuristic identity has been proved rigorously to

hold up to an error that is in general exponentially smaller than the expected EC approximation

(Adler and Taylor (2009); Adler (2000)). For 3-D random fields, which are of interest in oceanic

applications, the probability PST(ξ ;A,D) that the maximum surface elevation ηmax over the area

A and during a time interval D exceeds the threshold ξ Hs is given by (Adler and Taylor (2009))

PST(ξ ;A,D) = Pr{ηmax > ξ Hs}= NST(ξ ;A,D)PR(ξ ), (7)

where

NST(ξ0;A,D) = 16M3ξ
2
0 +4M2ξ0 +M1 (8)

is interpreted as the average number of space-time waves occurring within the space-time volume

Ω spanned by the area A and the time interval D and

PR(ξ ) = Pr{h > ξ Hs}= exp(−8ξ
2) (9)

is the Rayleigh exceedance probability of the crest height h of a time wave observed at a single

point within the area A. Here, M1,M2 and M3 are the average number of 1-D, 2-D and 3-D waves

12



that can occur within the volume Ω (Fedele (2012)). They all depend upon the directional wave

spectrum and are given in appendix A. Note that Piterbarg (1995) also derived an asymptotic

expansion of the probability in (6) for large higher dimensional Gaussian maxima via generalized

Rice (1944,1945) formulas.

A statistical indicator of the geometry of space-time extremes in the volume Ω is the wave

dimension

β = 3− 4M2ξ0 +2M1

16M3ξ 2
0 +4M2ξ0 +M1

, (10)

where 1 ≤ β ≤ 3 (Fedele (2012)). The parameter represents a scale dimension of waves, i.e. the

relative scale of a space-time wave with respect to the volume’s size. In particular, if wave extremes

are 3-D (β > 2) they are expected to occur within the volume Ω away from the boundaries, whereas

the limiting case of 1-D time extremes (β ∼ 1) occur for time waves observed at a single point.

Furthermore, Fedele (2012) showed that space-time extremes are larger than time extremes in

agreement with recent stereo measurements of oceanic sea states (Fedele et al. (2013)).

Drawing on ERA-interim reanalysis data, the bottom-left panel of Fig. (2) shows the map of the

estimated wave dimension β for the North Sea’s area at the Draupner storm peak time. Clearly, sea

states are short-crested and extremes are roughly 3-D, indicating that the area is large compared to

the mean wavelength. Thus, in accord with Boccotti’s (2000) quasi-determinism theory a space-

time extreme most likely coincides with the crest of a focusing wave group that passes through the

area as discussed below.

4. Stochastic wave groups

Drawing on Fedele and Tayfun (2008); Fedele (2008), in accord with a second-order stochastic

model of weakly nonlinear waves, the expected space-time dynamics nearby a large wave crest is
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that of a stochastic wave group, whose surface elevation is given by

ζc = h0ζ1 +
h2

0
4σ

ζ2,

where h0 is the linear crest amplitude distributed according to Eq. (7),

ζ1(X,T ) = Ψ(X,T )

is the linear component,

Ψ(X,T ) =
〈η(x, t)η(x+X, t +T )〉

σ2 =
∫ S1

σ2 cos(χ1)dω1dθ1

is the space-time covariance of η (Boccotti (2000)) and

ζ2 =
∫ S1S2

σ3

(
A+

12cos(χ1 +χ2)+A−12cos(χ1−χ2)
)

dω1dθ1dω2dθ2

is the second order component. Here, S j = S(ω j,θ j) and χ j = kj ·X−ω jT , where X = (X,Y) and

kj = (kjsinθj,kjcosθj) with k jtanh(k jd) = ω2
j /g from linear dispersion, and the coefficients A±12

can be found in (Sharma and Dean (1979)). In the narrowband limit

ζc = h0ζ1 +
h2

0ω2
m

2g

(
ζ

2
1 − ζ̂

2
1

)
,

where ζ̂1 is the Hilbert transform of ζ1 with respect to time T and ωm = m001/m000 is the spectral

mean frequency.

For generic sea states, the largest nonlinear crest amplitude is attained at the focusing point

(X = 0,T = 0) and given by

ξ = ξ0 +2µξ
2
0 , (11)

where ξ0 = h0/Hs and ξ = h/Hs are the linear and nonlinear crest heights. The Tayfun wave

steepness µ = λ3/3 relates to the skewness of surface elevations. For oceanic applications, Fedele

and Tayfun (2008) proposed the approximation

µ ∼ µa = µm
(
1−ν +ν

2) (12)
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where µm = ω2
mσ/g, ωm = m001/m000 is the mean spectral frequency and ν =√

m000m002/m2
001−1 is the spectral bandwidth. Further, the wave trough following the large crest

occurs at t = T ∗, where T ∗ is the abscissa of the first miminum of the time covariance function

(Boccotti (2000))

ψ(T ) = Ψ(X = 0,T ) = 〈η(x, t)η(x, t +T )〉 .

Note that second order nonlinearities do not affect the wave height since crests steepen as much as

troughs shallow. Thus, the associated second order nonlinear crest-to-trought height is that of the

linear group ζ1, i.e.

H = h0 (1+ψ
∗) , (13)

where ψ∗ = ψ(T ∗) is the Boccotti’s (2000) narrowbandedness parameter. Note that for narrow-

band waves ψ∗→ 1. The left panels of Fig. (5) show the maps of the (top) Tayfun steepness µa

and (bottom) Boccotti ψ∗ estimated from ERA-interim reanalysis data at the time of maximum

development of the Draupner storm. Clearly, ψ∗ ∼ 0.75 as the characteristic value of sea states

dominated by wind waves (Boccotti (2000)) and the maximum wave steepness µa ∼ 0.08 typical

of oceanic storms (Tayfun (2008)).

According to Fedele (2012), from (16) and (11) follow the expected space-time nonlinear crest

height hST attained over the area A during a time interval D:

ξST =
hST

Hs
= ξm +2µξ

2 +
γe (1+4µξm)

16ξ0− 32M3ξm+4M2
16M3ξ 2

m+4M2ξm+M1

,

where γe = 0.577... is the Euler-Mascheroni constant and ξm is the most probable surface elevation

value which, according to Gumbel (1958), satisfies

PST (ξm;A,D) = NST (ξm)PR(ξm) = 1.
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The corresponding expected maximum nonlinear crest height hT at a point during the time interval

D is given by

ξT =
hT

Hs
= ξm +2µξ

2
m +

γe (1+4µξm)

16ξm
,

where, now, ξm satisfies NDPR(ξm) = 1 and ND = D/T̄ denotes the number of wave occurring

during D and T̄ is the mean up-crossing period (see appendix B). Fig. (5) shows the prediction of

space-time extremes according to ERA-interm reanalysis of the Draupner storm at the significant

wave height peak time. It is seen from the two top panels that the expected space-time extreme

ξST over the grid cell area A ∼ 1002 km2 during D = 3 hours is twice the expected maximum

time crest extreme ξT at a single point (see also bottom-left panel for the map of the ratio ξST/ξT ).

Further, the bottom-right panel shows that estimates of the steepness of such large crests do not

violate the Stokes-Miche upper limit (Michell (1893)).

Clearly, in short-crested seas, in average, the number of space-time waves exceeding ξm is much

larger than the number of time waves exceeding the same threshold at a point as it will be discussed

later on. Their occurrence is sparse both in space and time in accord with a Poisson statistics

(Aldous (1989); Piterbarg (1995)). It is natural to ask what is the probability that one of the large

waves occurs within a smaller area as that covered by the Draupner’s oil rig. The probability of

this occurrence is not negligible and can be computed resorting to a Poisson Clumping Heuristics

(Aldous (1989)) as presented below.

Given a crest-to-trough height H = αHs, the associated linear crest amplitude follows from (13)

as

ξ0(α) =
α

1+ψ∗
(14)
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and from (11) the nonlinear crest height

ξ (α) = ξ0(α)+2µξ
2
0 (α) =

α

1+ψ∗
+2µ

α2

(1+ψ∗)2 . (15)

Then, from (9) for a large threshold α � 1 the ’time probability’ PT that H exceeds αHs during a

time interval D is equal to the probability that the associated linear crest height exceeds ξ0, that is

PT (α) = 1− exp(−NDPR(ξ0)), (16)

where ND is the average number of time waves in the time interval D ((Gumbel 1958)). Similarly,

for α � 1 the ’space-time probability’ PST that H exceeds αHs over an area A during D is given

by Eq. (7) as

PA(α) = PST (ξ0;A,D) = NST (ξ0)PR(ξ0)∼ 1− exp(−NST (ξ0)PR(ξ0)). (17)

Clearly, in average the number of ’space-time waves’ exceeding ξ0, i.e. NST (ξ0)P(ξ0), is much

larger than the number of ’time waves’ exceeding the same threshold at a point, i.e. NDPR(ξ0).

Indeed, NST (ξ0)> ND as M1 > ND (see appendix B). However, what is the probability that one of

the space-time waves occurs within a smaller area as that of the Draupner’s oil rig fooprint ?

In short-crested seas, space-time waves larger than ξ0 are Poisson distributed over a large area

A and their average number λ per unit space-time volume is given by

λ =
NST (ξ0;A,D)P(ξ0)

AD
.

Thus, according to a Possion clumping heuristics (Aldous (1989)) the probability that one space-

time wave occurs over a smaller area A0 during the interval D is simply given by

PA0(α) = 1− exp(−λA0D) = 1− exp
(
−A0

A
NST (ξ0;A,D)P(ξ0)

)
.

From (7),
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PA0(α) = 1− exp
(
−PST (ξ0;A,D)

A0

A

)
≈ 1− exp(−PST (ξ0;A0,D)) .

We remind that the measured Draupner wave has a crest-to-trough height H = 2.15Hs and crest

amplitude h = 1.55Hs. Based on ERA-interim reanalysis of the Draupner storm, for α = 2.15

and A∼ 1002 km2 (the numerical grid cell area) the probability PA0 that a space-time wave with

H > 2.15Hs occurs over a randomly chosen smaller area A0 = 502m2 (the Draupner platform’s

footprint) is 10 to 40 times larger than the probability PT that a time wave exceeds the same

threshold at a single point. In particular, the open northern part of the North sea is more susceptible

to larger extremes than the southern and central parts. This is seen in the top panels of Fig. (6)

which show maps of the two abovementioned probabilities at the time of max development of the

Draupner storm. The ratio PST/PT is also shown in the bottom-left panel of the same figure. We

conclude that it is more probable that a wave with H > 2.15Hs hits an oil rig located in the northern

part than in the central and southern parts. Further, the exceeded crest height threshold h/Hs is

in the range of 1.35− 1.55 (see bottom-right panel) and estimates of the steepness of such large

crests do not violate the Stokes-Miche upper limit.

Finally, the top panel of Fig. (7) compares the space-time probabilities PA0 for areas A0 =

502,1002,2002 m2 and the time probability PT at the Draupner site (58.2 N, 2.5 E). The thresh-

old H/Hs = 2.15 is exceeded with probability PA0 ∼ O(10−2− 10−3), which is larger then the

point probability PT ∼ O(10−4). Further, the exceeded nonlinear crest height h/Hs ∼ 1.45, in fair

agreement with observations (Karin Magnusson and Donelan (2013)). As ERA-interim reanaly-

sis in general understimates Hs peak values, we expect that the above probabilities are somewhat

understimated as well.
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5. Conclusions

These studies provide evidence that freak wave behavior may be a manifestation of the space-

time properties of oceanic fields. Over larger areas (compared to the mean wavelength) a space-

time extreme most likely coincides with the maximum crest of a stochastic wave group that passes

through the area, in accord with Boccotti’s (2000) quasi-determinism theory. Estimates of the

steepness of such large crests do not violate the Stokes-Miche upper limit.

Third-order quasi-resonant interactions do not appear to play a significant role in wave growth.

The associated large excess kurtosis transient observed during the initial stage of wave evolution

is a result of the unrealistic assumption that the initial wave field is homogeneous and Gaussian.

Oceanic wave fields are typically inohomogenous both in space and time. If the wind is suffi-

ciently stationary and the underlying environmental conditions do not change, a random wave

field forgets its initial conditions and adjusts to a non-Gaussian state dominated by bound nonlin-

earities (Annenkov and Shrira (2013, 2014)). In typical oceanic storms where dominant waves are

characterized by ν ∼ 0.2− 0.4 and σθ ∼ 0.2− 0.4, this adjustment is rapid since the time scale

tc/T0 ∼ O(1) with T0 ∼ 10− 14 s and the dynamic kurtosis peak is negligible compared to the

bound counterpart. In this regime, statistical predictions of extreme waves can be based on the

Tayfun (1980) model (Tayfun and Fedele (2007); Fedele and Tayfun (2008); Fedele (2008)).

Spatial and temporal inhomogeneity of the wave field should be accounted for. For example, in

a storm the significant wave height varies both in space and time and the short-term prediction of

extremes should be modified accordingly (see, e.g. Fedele (2012)). Finally, further studies based

on higher resolution forecast models are desirable.
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APPENDIX A

Dynamic Excess Kurtosis

For narrowband waves in deep waters, the evolution of the dynamic excess kurtosis from initial

Gaussian conditions is given by (Fedele (2014b))

Cd
4 = BFI2J(τ,R) (A1)

where

J(τ;R) = 2Im
∫

τ

0

1√
1−2iα +3α2

√
1+2iRα +3R2α2

dα. (A2)

The maximum is attained at τ = τc (see Eq. (2)) and given by

Cmax
4 (R) = BFI2Jp(R), (A3)

where

Jp(R) = J
(

1√
3R

;R
)
= Im

∫ 1√
3R

0

2√
1−2iα +3α2

√
1+2iRα +3R2α2

dα,

and Im(a) denotes the imaginary part of a.
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APPENDIX B

Space-Time Statistical Parameters

For space-time extremes, the coefficients in Eq. (8) are given by (Baxevani and Rychlik (2006);

Fedele (2012))

M3 = 2π
D
T
`x

Lx

`y

Ly
αxyt ,

M2 =
√

2π

(
D
T
`x

Lx

√
1−α2

xt +
D
T
`y

Ly

√
1−α2

yt +
`x

Lx

`y

Ly

√
1−α2

xy

)
,

M1 = ND +Nx +Ny,

where

ND =
D
T
, Nx =

`x

Lx
, Ny =

`y

Ly

are the average number of waves occurring during the time interval D and along the x and y sides

of length `x and `y respectively. They all depend on the mean period T , mean wavelengths Lx and

LY in x and y directions:

T = 2π

√
m000

m002
, Lx = 2π

√
m000

m200
, Ly = 2π

√
m000

m020

and

αxyt =
√

1−α2
xt−α2

yt−α2
xy +2αxtαytαxy.

Here,

mi jk =
x

ki
xk j

y f kS( f ,θ)d f dθ

are the moments of the directional spectrum and

αxt =
m101√

m200m002
, αyt =

m011√
m020m002

, αxy =
m110√

m200m020
.
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FIG. 1. Draupner storm: ERA-interm (left) directional spectrum (log scale) at the Draupner site (58.2 N,2.5

E) at the time of maximum development of the storm (Jan 2st 1995 UTC 00) and (top-right) wave frequency

spectrum S( f )/S( fp) and (bottom-right) angular dispersion σ2D(θ) =
∫

S( f ,θ)d f , where σ is the standard

deviation of surface elevations and fp the dominant frequency. Direction θ = 0 means going to the north and

θ = π/2 to the east (Oceanographic convention).
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FIG. 2. ERA-interim reanalysis at the time of maximum development of the Draupner storm (Jan 2st 1995

UTC 00). Top panels: (left) significant wave height Hs = 4σ and (right) Tayfun wave steepness µ (Eq. (12)).

Bottom panels: (left) wave dimension β (Eq. (10)) and (right) narrowbandedness Boccotti parameter ψ∗.

Dashed lines are Hs contours.
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FIG. 4. ERA-interim reanalysis at the time of maximum development of the Draupner storm (Jan 2st 1995

UTC 00). Top panels: (left) Gaussian adjustment time tc/T0 (Eq. (2)) and (right) total excess kurtosis C4 =Cd
4 +

Cb
4 . Bottom panels: (left) dynamic excess kurtosis Cd

4 (Eq. (3)) and (right) bound excess kurtosis Cb
4 = 18µ2.

Dashed lines are Hs contours.
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FIG. 5. ERA-interm reanalysis of the Draupner storm at the time of maximum development (Jan 2st 1995

UTC 00). Top panels: (left) expected maximum time crest extreme ηT at a single point and (right) corresponding

space-time extreme ηST expected over the grid cell size ∼ 1002km2 during D = 3 hours. Bottom panels: (left)

ratio ηST/ηT and (right) maximum expected wave steepness. Dashed lines are Hs contours.

34



 

 

2

2

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

7
8

ST probability [log10] that H/H
s
>2.15

   8
o
W    4

o
W    0

o
     4

o
E    8

o
E 

  51
o
N 

  54
o
N 

  57
o
N 

  60
o
N 

  63
o
N 

  66
o
N 

−6

−5

−4

−3

−2

−1

 

 

2

2

2
2

3

3

3

4

4

4

4

5

5

5

6

6

7

7
8

Point Probability [log10] that H/Hs>2.15

   8
o
W    4

o
W    0

o
     4

o
E    8

o
E 

  51
o
N 

  54
o
N 

  57
o
N 

  60
o
N 

  63
o
N 

  66
o
N 

−6

−5

−4

−3

−2

−1

 

 

2

2

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

7
8

   8
o
W    4

o
W    0

o
     4

o
E    8

o
E 

  51
o
N 

  54
o
N 

  57
o
N 

  60
o
N 

  63
o
N 

  66
o
N 

Probability ratio

10

20

30

40

 

 

2

2

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

7
8

Exceeded crest height h/H
s

   8
o
W    4

o
W    0

o
     4

o
E    8

o
E 

  51
o
N 

  54
o
N 

  57
o
N 

  60
o
N 

  63
o
N 

  66
o
N 

1.35

1.4

1.45

1.5

FIG. 6. ERA-interim reanalysis at the time of maximum development of the Draupner storm (Jan 2st 1995

UTC 00). Top panels: (left) probability PST (H/Hs;A0,D) (log10 units) that a wave with H/Hs > 2.15 occurs

over an area ∼ A0 = 502m2 during D = 3 hours and (right) corresponding probability PT (H/Hs;D) that the

same wave occurs at a single point in time. Bottom panels: (left) probability ratio PST/PT and (right) exceeded

nonlinear crest height h/Hs. Dashed lines are Hs contours.
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FIG. 7. ERA-interim reanalysis at the time of maximum development of the Draupner storm (Jan 2st

1995 UTC 00) at the platform site (58.2 N, 2.5 E). Left: space-time probability PST (H/Hs;A0,D) for A0 =

502,1002,2002 m2 and corresponding time probability PT (H/Hs;D) as a function of H/Hs and D = 3 hours.

Right: exceeded second order nonlinear crest height h/Hs as a function of H/Hs.
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