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In 1999 Duennebier et al. deployed a hydrophone and geophone below the conjugate depth in the
abyssal Pacific, midway between Hawaii and California. Real time data were transmitted for three
years over an abandoned ATT cable. These data have been analyzed in the frequency band 1 to 30
Hz. Between 1 and 6 Hz the bottom data are interpreted as acoustic radiation from surface gravity
waves, an extension to higher frequencies of a non-linear mechanism proposed by Longuet-Higgins
in 1950 to explain microseisms. The inferred surface wave spectrum for wave lengths between 6 m
and 17 cm is saturated (wind-independent) and roughly consistent with the traditional Phillips κ−4

wave number spectrum. Shorter ocean waves have a strong wind dependence and a less steep wave
number dependence. Similar features are found in the bottom record between 6 and 30 Hz. But
this leads to an enigma: the derived surface spectrum inferred from the Longuet-Higgins mechanism
with conventional assumptions for the dispersion relation is associated with mean square slopes that
greatly exceed those derived from glitter. Regardless of the generation mechanism, the measured
bottom intensities between 10 and 30 Hz are well below minimum noise standards reported in the
literature.

PACS numbers: 43.30.Nb (Noise in water), 43.28.Py (Interaction of fluid motion and sound)

I. INTRODUCTION

More than fifty years ago, Longuet-Higgins, then Has-
selmann, explained the generation of microseisms on the
deep sea floor by a nonlinear process associated with sur-
face gravity waves. The linear wave amplitude dimin-
ishes by a factor exp(−2π) per wavelength and is thus
totally negligible at depth, but under some circumstances
a slight fraction of the wave energy is converted into
acoustic radiation at twice the wave frequency (but of
much greater length) which reaches the sea bottom. The
Longuet-Higgins and Hasselmann theory was generalized
by Brekhovskikh and others to allow for surface tension.
There are inconsistencies and errors, and we have found
it necessary to summarize the theory in an Appendix.

The theory calls for oppositely traveling surface waves
(almost opposite in the Hasselmann treatment) so that
twice during each wave period all the energy is potential
and twice kinetic (hence the double frequency). The orig-
inal application was to an ocean swell reflected by a steep
continental slope and to long ocean waves from two op-
posing storm fetches. Here we attempt to interpret H2O1

hydrophone and geophone records on the deep sea floor
in the frequency band 1 - 30 Hz in terms of the same
nonlinear process, a bold extension to centimeter and
even millimeter scale. We are encouraged by the smooth
blending with numerical wave models at the low end of
the band, and by rough agreement with the Phillips spec-
trum in the middle. There are inconsistencies, however,
above 6 Hz, in the ultragravities. Others have suggested
bubbles associated with breaking waves as generators of
deep ocean noise in this frequency range.

There have been numerous papers analyzing H2O data
in the decade since the station ceased operation. None,
however, has focused on our band of study. The recent
paper by Duennebier et al2 applies an approach similar to

ours (see Discussion) to develop wave models consistent
with deep sea data from the ALOHA station, some 100
km N. of Ohau. The Duennebier paper is also to be
recommended for the citations to other analyses of H2O
data in its exhaustive bibliography.

II. ACOUSTIC RADIATION FROM SURFACE WAVES

The following interpretation of bottom spectra is
founded on one premise and two models. The premise
is that the ambient fluctuations on the bottom are at-
tributable to acoustic radiation from interfering wind
waves on the surface. Two models are required, a wave
model and an acoustic model. The following description
of the models recapitulates our previous work with minor
extensions.3,4

The model for the azimuthally averaged, or 1-d, wave
elevation spectrum, Fζ(κ, U), using radian wave num-
ber with U wind speed, is the combination of two com-
ponents: (i) a saturated (independent of wind speed)
Phillips-like gravity wave spectrum, and (ii) a wind-
dependent ultragravity spectrum:

Fζ(κ, U) =
1

2
βκm + γ exp(aU)κn (1)

Each component is given a simple power-law dependence
on wave number. The five parameters of the model are
adjusted so it fits the H2O data, as described below. Us-
ing H for the spreading function, the 2-d spectrum, in
polar coordinates, is

Fζ(κ, U, θ) = Fζ(κ, U)Hκ(U, θ), (2a)
∫ π

−π

Hκ(U, θ)dθ = 1 (2b)
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with mean square elevation and slope

〈ζ2〉 =

∫

∞

0

Fζ(κ, U)κdκ, (3a)

〈m2〉 =

∫

∞

0

κ2Fζ(κ, U)κdκ, (3b)

respectively
The relation between the deep pressure spectrum (with

radian acoustic frequency ωA) and the surface elevation
spectrum (frequency ωS = ωA/2, and wave number κS)
is written (see A.11)

Fp(ωA) =

[

π

8

(ρ

c

)2

ω6
A

κS

v

]

F 2
ζ (κS)R2

B IκB (4)

where v = v(κS) is the group velocity of the surface waves
and B = B(ωA, θ, λ) is appended to account for the in-
fluence of the ocean’s variable sound speed and bottom.

Sea water density and sound speed are ρ, c. The factors
RB, Iκ, andB are all taken as constants, with RB = 1
(ignoring the Brekhovskikh ratio), Iκ = (2π)−1 (assum-
ing directional isotropy), and B = 1 (ignoring the sound
speed profile and bottom interaction).

Bottom velocity data are as informative as pressure.
For waves in an acoustic medium, the pressure and ve-
locity component in the direction of propagation are re-
lated by the impedance Z = ρc. Analogously, we define
effective impedances Zev, Zeh relating vertical and hor-
izontal components of velocity to pressure. In terms of
the spectra,

Fv(ω) = Z−2
ev Fp(ω), Fh(ω) = Z−2

eh Fp(ω), (5a)

Z = Z(ω, θ, λ) (5b)

In the case of a bottomless, constant velocity ocean,
with the source a homogeneous surface layer of incoherent
dipoles, B = 1 and the effective impedances are given by

Z2
ev = 2(ρc)2 = 126.5 dB, Z2

eh = 4(ρc)2 = 129.5 dB (6)

III. EVIDENCE FROM BENEATH THE SEA SURFACE

Fig. 1 shows spectra selected from 3 years of H2O
recordings on the deep sea floor. Spectra were calcu-
lated for 3 hour windows to a resolution of 0.1 Hz, giving
about 2000 equivalent degrees of freedom. The veloc-
ity spectra (geophone sensor, channels EHZ, EH1, EH2)
are superior in quality; the pressure spectra (hydrophone
sensor, channel HDH) are consistent with the indepen-
dently recorded velocities, but are obstructed by noise
at the higher frequencies. The smooth curves are model
spectra fitted to the pressure and velocity fields, using
visual judgement, based on the theory described above
(equations 1, 4, and 5a), with

m = −4.25, β = 0.01, (7a)

n = −2.15, γ = 1.06 × 10−7, a = .31, and (7b)

Z2
ev = 117 dB (7c)
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FIG. 1. Bottom spectra at H2O modeled as acoustic radia-
tion from interfering wind waves on the ocean surface. The
three pairs of spectra, data and model, are labeled with two
wind speeds in the upper panel. The first is inferred from the
data itself and the parenthetical is the ECMWF wind at the
time. The two strongest spectra are for 3 hr time windows
taken in year 2000, days 33.8, 284.1; the blue and purple are
for days 148.3 and 157.6 in 2001. These exemplars are rep-
resentative of tens to hundreds of virtually identical spectra
at the respective wind speeds. SI units are used throughout,
Pa2/Hz for pressure and (m s−1)2/Hz for velocity.

In assessing the wind dependence we have used
wind speeds at 6-hourly intervals provided by the Eu-
ropean Center for Medium-Range Weather Forecasts
(ECMWF). Data from ERA-Interim, the latest ECMWF
global atmospheric reanalysis of the period 1979 to
present, were interpolated from the analysis grid to pro-
vide values over the H2O location. These, in turn, were
interpolated with respect to time to the analysis win-
dows.
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A. Gravities

With regard to the gravity waves, there is rough agree-
ment between the derived model and ocean wave obser-
vations. The “Phillips constant,” β = 0.01, compares to
the Pierson and Moskowitz value of 0.0081,5,6 and the
shape of the wave number spectrum, Fζ(κ) ∝ κ−4.25,
compares to the classical Fζ(κ) ∝ κ−4.

In the frequency domain, ocean waves with a κ−4 wave
number spectrum yield an ω−5 frequency spectrum by
(A.9) and (A.2). For the acoustic radiation from such
waves, Fp(ω) ∝ κ−7 by (A.5). Our ocean wave model for
the gravities leads to Fζ(ω) ∝ ω−5.5 and Fp(ω) ∝ ω−8.

Bottom and surface spectra are both saturated for
moderate and strong winds. At very weak winds the
spectrum (purple) falls beneath saturation. In a previ-
ous paper4 we have attributed this to a decrease in the
overlap integral. In this special case, the pressure record
is better: the velocity spectrum for light winds and f & 4
Hz is limited by sensor noise.

B. Ultragravities

The band 6 < fA < 30 Hz is labeled “ultragravi-
ties,” in analogy with the short ultragravity waves on
the ocean’s surface. These spectra clearly are not satu-
rated. The acoustic transitions from the steep spectrum
to the flat spectrum, occurring between 4 and 10 Hz, are
consistent with the measured transitions in the surface
wave field. An interesting feature is the drop by about
10 dB for moderate and high winds (ignoring whale noise)
at about 30 Hz. This second transition is close to twice
13.5 Hz, the boundary between ultragravity and capil-
lary waves. This is the frequency of the minimum phase
velocity and, perhaps more importantly, where the phase
and group velocities are equal.

The wave number exponent of the ultragravities, n =
−2.15, sets the curvature of the acoustic model, and the
constant γ sets the level. These were selected by visually
matching the model spectra to numerous observed spec-
tra. The acoustic floor at reference frequency fug = 11.5
is near -197 dB (re (m s−1)2/Hz) and -80 dB (re Pa2/Hz)
for the geophone and hydrophone. This probably is set
by instrument noise, but we cannot dismiss the possibil-
ity it represents the integrated effect of acoustic radiation
from distant wave motion.

A sorting of nearly 2000 H2O velocity-wind pairs
at fug suggests exponential dependence on wind speed
with an increase by 2.7 dB/(m s−1) (Fig. 2). At 22
Hz (not shown) the acoustic floor is -199 dB and the
rise slightly steeper. The combined analysis suggests a
2.9 dB/(m s−1) dependence of the ultragravity spectrum.

Data for low winds are not helpful because of the acous-
tic floor, and high winds at this latitude are scarce, so
the usable range of wind speeds for parameterizing the
dependence of the ultragravity spectrum on U is lim-
ited. For example, if the wind dependence is modeled as
a power law, the histogram shown in Fig. 2 is reason-
ably fit by the function Fv = −246.9 + 60 log(U). The
difference between this function and the exponential, for
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FIG. 2. The variation with wind of the geophone spectral
intensity at fug = 11.5 Hz (see Fig. 1) can be modeled as an
exponential for speeds greater than about 6.5 ms−1. In this
two dimensional histogram, the contours refer to the number
of spectra (out of 1787 total) within 1 dB × 0.3 m s−1 cells.

5.5 < U < 14 m s−1 is no more than 1 m s−1. Using the
power law, an alternative expression for the ultragravity
term in (1) is 2.46 × 10−9U3κ−2.15.

The ultragravities are commonly taken to have a power
law dependence on wind speed U , or equivalently fric-
tion velocity u⋆ (U ≈ 25u⋆). For example, in an analy-
sis of microwave scattering across multiple radio bands,
Hwang7 fit the data to a function of the form Fζ ∝ uα

⋆ .
He found 0.5 < α < 2, as the wave number ranges
from the low end of the ultragravities band to the grav-
ity/capillary transition.

The ultragravity acoustic spectrum in the band 6 to
30 Hz is a reliable proxy for surface winds. But the good
agreement may in part be circular. Wind models uni-
formly distributed in space and time are obtained by as-
similating the patchy satellite estimates into numerical
weather models. Satellite winds are in part based on em-
pirical relations involving the scattering cross-sections of
waves in the ultragravity band.

C. Sensitivity of bottom receivers to surface processes

For a temperate sound channel in an ocean of 5 km
depth, the direct field of view is limited to an over-
head circle of 32 km radius centered above the bottom
recorders (Fig. 3). At that distance rays with 13 degrees
surface inclination are tangent to the sea floor. Flat-
ter rays from sources outside the circle turn above the
bottom: the sea floor is in the geometric ray shadow.
The intensity of the received bottom signal depends upon
the directivities of the emitted surface radiation and
the recorded bottom radiation. In addition to this di-
rect radiation, acoustic energy will reach the bottom
recorders in the form of trapped seismic waves from re-
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mote regions.8,9
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FIG. 3. Rays in the temperate sound channel, left.10 The sur-
face limited ray (SLR), with inclination of 12◦ at the sound
axis, turns at the “surface conjugate” depth of 3.2 km; be-
neath this depth, noise sources (such as whales) cannot be
heard except by surface reflection. The ocean beneath 3.2 km
is in the “shadow zone.” The bottom limited ray (BLR), with
axial inclination of 17◦, intersects the surface around a circle
with a radius of 32 km. Sound waves from dipole sources
associated with surface waves within the 32 km circle (at A,
B, C) are received by bottom hydrophones along three direct
paths, as shown; seismic waves from remote scattering also
reach the bottom hydrophones.

For the case of a homogeneous layer of incoherent
dipole sources on the surface of a uniform ocean, 90 % of
the pressure energy arises from within a circle of diameter
6 times the receiver depth, or 30 km for the 5 km receiver
(Ref. 3, Eqn. 7). This is somewhat less than the zone
BB in Fig. 3. For the vector receiver, the 90% range is a
little less for the vertical component and a little more for
the horizontal. Thus, the refraction of rays by the sound
channel is a second order effect for deep receivers.

D. Junction with long gravity waves

The H2O-derived wave model (Eq. 1, 7) blends
smoothly with ECMWF models11 at 0.5 Hz (Fig. 4);
both models are saturated for strong winds and slightly
below saturation for U ≤ 5 m s−1. Yet they are derived
from very different approaches: H2O from bottom obser-
vations 5 km beneath the surface, ECMWF from space
observations 500 km above the sea surface assimilated
into wind-wave weather models.

Either model can easily be extended into the other’s
domain, for H2O by extending the spectra to lower fre-
quencies and for ECMWF by extending the energy bal-
ance to higher frequencies. But the many underlying
assumptions suggest that we regard the smooth junction
with caution.
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gravities. The ECMWF spectra are averages of spectra about
the indicated wind from all year 2000 6-hourly models.

E. Gravity-ultragravity transition

The transition from long to short gravity waves has
a long history. The generation of gravities is generally
associated with wind shear at a critical layer where phase
velocity c equals wind speed U ;12 the generation process
of the unltragravities remains unknown!

Janssen13 places the junction at a wave number
κjoin = g/u2

⋆ where the phase velocity is the friction
velocity; for a 6 m s−1 wind we have u⋆ = 0.21 m s−1

and κjoin(6) = 213 radians m−1 (wave length 3 cm). We
proceed by equating the two terms in (1), using the pa-
rameters in (7),

κjoin(U) = 168 exp(−.15U) (8)

This yields a much lower wave number, κjoin(6) =
68 radians m−1, for a wavelength of 10 cm.

F. Mean-square slope

Fig. 5A shows the contributions to the mean-square
slope for the two wave bands, with

〈m2
G(U)〉 =

∫ κjoin

κp

κ2Fζ(κ, U)κdκ (9a)

〈m2
UG(U)〉 =

∫ κmin

κjoin

κ2Fζ(κ, U)κdκ (9b)

The lower limit of the gravities is taken at κp = g/U2,
where cp = U , κjoin is given by (8), and κmin, the
wave number of the phase velocity minimum, defines the
boundary between ultragravity and capillary waves. The
conclusions are that: (i) up to U = 5 ms−1 the H2O-
derived mean-square slopes are in general agreement with
the glitter derived slopes because in the gravities the in-
ferred wave spectrum is close to the Phillips spectrum,
but (ii) for higher winds the H2O-derived values are sev-
eral times higher. There is no easy way to reconcile the
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H2O exponential wind dependence with the glitter linear
dependence. We return to this enigma in Section VIII.

IV. EVIDENCE FROM (NEAR) THE SEA SURFACE

Observational evidence on the elevation spectrum
of wind waves available by 1997 was summarized by
Elfouhaily et al.14 in an important paper, The unified di-

rectional spectrum for long and short wind-driven waves,
that has been the foundation of many subsequent anal-
yses of microwave emission and backscatter (e.g. Refs.
15, 16). The model (henceforth, E model) spans wave
numbers from the low-frequency wind peak to 1,000
radians m−1, thus including the gravities and ultragravi-
ties, and extending well into the capillaries. The E model
was tailored in the ultragravity and capillary bands to
be consistent with the Cox & Munk linear dependence of
mean-square slope on wind speed (Fig 5B).

Shortly afterwards, Janssen et al.13 derived a similar
model (V model), featuring a Phillips-like spectrum in
the gravities, joined to an ultragravity spectrum com-
puted from the energy balance principle. The V model

is also consistent with the Cox & Munk relationship.
Subsequent studies of the ultragravities (e.g. mi-

crowave radiometry, laser slope measurements, energy
balance modeling, and interpretations of geophysical
model functions, Refs. 17–21) have been in overall agree-
ment with the E and V models. A κ−3.5 power law is rep-
resentative of the wave number dependence of Fζ(κ, U) in
the ultragravity band, only slightly flatter than the clas-
sical κ−4 Phillips spectrum in the gravity band. Further,
in most models the change in the ultragravity elevation
spectrum with U lessens with increasing wind (unlike the
exponential H2O dependence).

A comparison of the H2O velocity spectra observed on
the sea floor with those inferred from the E model re-
veals sharp differences in the ultragravities (Fig. 6A): (i)
a rise (as compared to a fall) in spectral intensity with
frequency, and (ii) a constant gradient (as compared to a
decreasing gradient) of intensity (in dB’s) with increasing
wind speed. The difference between the observed acous-
tics and the acoustics of the E model is plotted in Fig.
6B. As expected, the difference spectrum is associated
with an exponential wind dependence of approximately
3 dB/(m s−1).

V. EVIDENCE FROM ABOVE THE SEA SURFACE

Fig. 7 gives the result of satellite glitter measurements:
mean-square slopes in the up-down and cross wind di-
rections. Slope statistics is based on almost ten million
reflectance measurements distributed globally,22 and so
the error bars (circle diameters) are very tight; the red
lines are based on 29 images taken from B17 aircraft fifty
years ago,23 but comments concerning the reflection of
sunlight from the sea surface go back to antiquity.24

Observations in Fig. 7 yield the following empirical
relations:

1. The ratio crosswind/downwind of mean-
square slope components equals approximately
〈m2

y〉/〈m
2
x〉 = 2/3 for a range of wind speeds.

2. Total mean-square slope varies linearly with wind
according to 〈m2〉 = (4 + 5U) × 10−3 (wind in
m s−1).

The glitter slope variance is in quantitative agreement
with the H2O slopes at a wind speed of 5 m s−1, the
lowest for which there are reliable ultragravity data (Fig.
5A). Up to this speed the slope is dominated by the grav-
ities. At high winds the ultragravities dominate, and
the bottom-derived slopes rise sharply above the glitter
slopes.

Unlike the optical measurements, space observations
with microwave frequency probes are of limited useful-
ness for independent assessment of ocean wave proper-
ties. It is not yet possible to measure the spectrum of
the ultragravities directly.25 Radar observations, how-
ever, can give the slope at a limited number of discrete
wave numbers, depending on the frequency and inclina-
tion angle.7
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FIG. 6. (A) The spectrum of acoustic radiation of the
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The anomaly spectrum is the difference, in the ultragravity
band, between the H2O spectrum and the vertical velocity
derived from the E model.

VI. A HYBRID MODEL

There are a number of ways to interpret the discrep-
ancy between the mean-square slopes measured from
above as compared to those inferred from the H2O bot-
tom measurements. Here we consider a hybrid model in
which the total bottom acoustics (TBA) consists of the
pressure and velocity bottom signatures inferred from the
E model (EBA, Elfouhaily bottom acoustics) plus acous-
tic signatures from an unknown source, call them bubble
bottom acoustics (BBA).

The distance between the paired colored and black dB
levels in Fig. 6 are a measure of the ratio of the spec-
tral intensities, TBA/EBA. This ratio increases quasi-
linearly with the logarithm of frequency from 6-10 Hz
upward. For high winds and frequencies, EBA is negligi-
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FIG. 7. Mean square slopes derived from glitter measure-
ments taken from satellites (circles) and aircraft (lines).

ble, and BBA is nearly constant with frequency. Recall
the high correlation of the TBA with wind speed (Fig.
2); a possible interpretation is that BBA is a manifes-
tation of breakers and other sporadic wind generators of
sound but not an inherent component of surface wave sig-
natures. From the point of view of ambient sound in the
abyssal ocean, the distinction between EBA and BBA is
not vital.

Accordingly, the hybrid model consists of the EBA
term (black curves in Fig. 6) plus the BBA term which
is nearly independent of frequency. The BBA wind de-
pendence can be fit by

BBA : Fp(ωA) = 1.25 × 10−13U6

or, alternatively,

BBA : Fp(ωA) = 2.3 × 1010 exp(.62U)

Spectra for the hybrid model are shown by the black
curves in Fig. 8. They are generally within 2 dB of the
measured velocity spectra (colored curves, identical with
Fig. 1) in the ultragravities. The hybrid model cannot
account for the measured intensity drop near 30 Hz where
the BBA term dominates. We have previously attributed
this feature to a minimum in phase velocity or other wave
singularities at half this frequency.

VII. DISCUSSION

Our interpretation of the H2O measurements is
severely hindered by the lack of good surface records in
the the ultragravity band of ocean waves. There is no the-
ory of how they are generated. We lack good information
about their directional distribution, a crucial element in
coupling surface waves to sound waves. And finally, we
have not allowed for interaction with the sea bottom.
Other than that, the continuous three year H2O record,
with the benefit of its mid-ocean location removed from
human tampering, has been a surprisingly rich source of
information.

Gravity waves and bottom acoustics 6
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There is an opportunity for monitoring a variety of
processes with low-noise bottom instruments. Satellite
oceanography has demonstrated that an intensive sam-
pling strategy can overcome some of the problems of re-
mote sensing from above. It would appear that remote
sensing from beneath could offer similar opportunities.

Regardless of our ignorance of the underlying physics,
the lowest observed spectra (purple lines in Fig. 1) are re-
markable, yet not without precedent. At 10 Hz under the
lightest winds the H2O pressure spectrum (< −80 dB) is
about the same as observations under similar conditions
at ALOHA (Ref. 2, Figs. 3 and 6). This number is 20
dB below the Wenz model26 at this frequency. Some-
what higher levels were seen on hydrophones near Wake
Island.4,27

A bottom seismometer off California recorded levels
down to -180 dB at 10 Hz when the wind was be-
low 2 m s−1 (Ref. 29, Fig. 2, day 128, but the mis-
labled vertical axes ought to read acceleration with units
(µms−2)2/Hz). This is considerably higher than the
lowest H2O velocity spectrum (-197 dB), but with an
ocean depth of only 3800 m, the bottom was not out of
the sound channel. The H2O velocity spectrum at 10
Hz is consistent with the pressure spectrum, assuming
the impedance measured at lower frequencies holds here.
Unpublished spectra for hydrophones and seismometers
from stations of the PLUME array28 are similar to those
from H2O data.

The model devised here, (1, 7), is generally consis-
tent with the model developed to fit data from the hy-
drophone at ALOHA.2 The affinities are easily shown by
combining Dunnebier et al. Eqns. (5) and (6). Their ini-
tial model presumed a Phillips-like κ−4 wave spectrum
in the gravities, but a closer fit to the acoustic observa-

tions was obtained when an ad hoc f−1
p was appended

to the Hughes equation (Ref. 2, Eqn. 5). Rolling this
term into Fζ yields at an additional factor 1.002κ−.25 for
the gravities term of (Ref. 2, Eqn. 6). In addition, tak-
ing U/u⋆ = 25, the coefficient for the exponential in the
ultragravities wind term becomes 0.28. With these two
transformations, and neglecting the exponential roll-offs
at both ends of the wave spectrum, we get the following
parameters for their model cast into our notation:

m = −4.25, β = 0.024, (10a)

n = −1.58, γ = 5.0 × 10−6, a = .28 (10b)

There is better overall concordance in the gravities than
the ultragravities, but it is very significant that both ul-
tragravity models have an spectrum depending exponen-
tially on wind, and with similar coefficients.

VIII. ENIGMA

We are left with an enigma. If we interpret the ultra-
gravity band as the result of acoustic radiation by the
Longuet-Higgins mechanism using conventional assump-
tions, then we are left with mean square slopes far above
those indicated by the glitter observations. The hybrid
model interprets the ultragravities as being the result of
two processes: (i) acoustic radiation from Elfouhaily-like
surface waves, plus (ii) acoustic radiation from an en-
tirely different process, such as collapsing bubbles from
breaking waves.

The data in the capillary band present similar prob-
lems. We are intrigued by the inflection near 30 Hz in
the bottom spectra, and it is tempting to associate this
inflection with the gravity-to-capillary transition in the
wave field at half this frequency. This hypothesis is lost if
the energy is not generated by a Longuet-Higgins mech-
anism.

The strong correlation of the ultragravity and capillary
spectra with overhead winds shows that, whatever the
generation mechanism, the winds drive it.
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APPENDIX: ALIGNMENT OF THEORIES FOR THE
ACOUSTIC WAVES RADIATED BY OCEAN
GRAVITY-CAPILLARY WAVES

In the following discussion we summarize the extensive
background to the acoustic radiation formula (Eq. 4)
used in the text. This formula is based on the wave-wave
interaction theory of Longuet-Higgins and Hasselmann,
conventional assumptions for the dispersion relation, and
generalizations by Brekhovskikh and others to allow for
surface tension. Various small errors in the literature are
rectified. Equations presented in the first two parts are
give without citation.

1. Basic relations

Let Fp(ωA) designate the spectrum of acoustic pres-
sure radiated by the interaction of nearly oppositely di-
rected surface waves with elevation spectrum Fζ(ωS).
The acoustic radiation is at twice the frequency of the
surface waves. The power spectra are defined by the
mean-squares

〈p2〉 =

∫

∞

0

Fp(ωA)dωA

〈ζ2〉 =

∫

∞

0

Fζ(ωS)dωS

ωA = 2ωS

and, as shown below, are related according to

Fp (ωA) =

[

π

8

(ρ

c

)2

ω6
A

v(κS)

κS

]

F 2
ζ (ωS)R2

BIκ (A.1)

In this equation, ρ and c are the density and sound veloc-
ity of sea water, and κS and v(κS) are the wave number
and group velocity of the surface waves. The term RB is
the “Brehovskikh ratio,” and Iκ is the overlap integral,
both defined below.

We use the deep water dispersion relation, expressed
in terms of the wave number of the minimum phase
speed κmin, which depends on the surface tension T =
.074 N m−1.

ω2
S = gκS

(

1 + r2
)

, r = κS/κmin (A.2a)

κmin =
√

ρg/T ≈ 363 radians m−1 (A.2b)

We also have the phase and group velocities

c = ωS/κS , c2grav = g/κ, c2cap = Tκ/ρ (A.3a)

v = dωS/dκS = c

(

1 + 3r2

2(1 + r2)

)

(A.3b)

vgrav =
1

2
cgrav, vcap =

3

2
ccap (A.3c)

The symbol c in these expressions is not to be mistaken
for the speed of sound in sea water, which is the meaning
in (A.1) and everywhere else.

The Brekhovskikh ratio is

RB =
1 + 5

4
r2

1 + r2
, R2

grav = 1, R2
cap = 1.5625 (A.4)

This term is only found in the Brekhovskikh derivation.
It is readily shown that for gravity waves, (r → 0),

equation (A.1) reduces to

Fp(ωA) =
π

2

(ρg

c

)2

ω3
AF

2
ζ (ωS) Iκ (A.5)

Much of the literature is confined to gravity waves.

2. Wave definitions

It remains to specify the “overlap integral,” I. We
require to define the surface wave spectrum in κ, θ−space

〈ζ2〉 =

∫

∞

0

dκ

∫ 2π

0

Fζ(κ, θ)κdθ (A.6)

LetHκ(θ) designate the directional distribution so nor-

malized that
∫ 2π

0
Hκ(θ)dθ = 1 at any desired scalar wave

number κ. Thus, Fζ(κ, θ) = F̄ζ(κ)Hκ(θ), where F̄ζ(κ) is
the spectral density at κ integrated over all directions.
Omitting now the overbar, we then have

〈ζ2〉 =

∫

∞

0

Fζ(κ)κdκ =

∫

∞

0

Fζ(ω)dω (A.7)

With Hκ, the overlap integral is given as

Iκ =

∫ 2π

0

Hκ(θ)Hκ(θ + π)dθ (A.8)

In the frequency domain, Hω, Iω are similarly defined.
For an isotropic wave field, H = I = (2π)−1.

It follows from (A.7) that

Fζ(ω) = Fζ(κ)κ
dκ

dω
= Fζ(κ)

κ

v
(A.9)

and as a consequence

v

κ
F 2

ζ (ω) =
κ

v
F 2

ζ (κ) (A.10)

Substituting (A.10) in (A.1) gives the alternate expres-
sion

Fp (ωA) =

[

π

8

(ρ

c

)2

ω6
A

κS

v(κS)

]

F 2
ζ (κS)R2

BIκ (A.11)

3. Longuet-Higgins (1950) and Hasselmann (1963)

The beginning was Longuet-Higgins’ landmark paper30

which quantitatively demonstrated that microseisms, the
world-wide seismic noise background, with spectrum
peaking around f = 1/6 Hz, were due to the interac-
tion of opposed ocean waves. The same methodology
has recently been applied to model microseisms in North
America as arising from waves in the North Atlantic.31

The connection between Longuet-Higgins’ approach and
Hasselmann’s has been elucidated by Ardhuin et al. (Ref.
32, Appendix A).
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In a broad-ranging paper,33 Hasselmann considered
three mechanisms of microseism generation, and con-
cluded that the cause was non-linear wave-wave inter-
actions, as Longuet-Higgins had proposed over a decade
before.

To obtain the familiar result we start with Hassel-
mann’s (2.15), correcting the misprint and adding sub-
scripts to distinguish between wave and acoustic vari-
ables.

Fp (κA, ωA) = ωA
(ρg)

2

2

∫ 2π

0

fζ (ωS, θ) fζ (ωS, θ + π) dθ

(A.12)
Factoring the wave spectrum into a magnitude part and
a directional part, as before, gives

Fp (κA, ωA) = ωA
(ρg)2

2
F 2

ζ (ωS)

∫ 2π

0

H (θ)H (θ + π) dθ

(A.13)
It is noteworthy that the pressure spectrum is indepen-
dent of the vector wave number of the acoustic field. The
total pressure at a point is the integral over all (acoustic)
wave numbers. But the acoustic wave number cannot
exceed ωA/c. Using ~κ for the vector wave number, we
have

Fp (ωA) =

∫

∞

−∞

Fp (~κ, ωA) d~κ

=

∫ ωA/c

0

∫ 2π

0

Fp (κ, ωA)κdκdφ (A.14)

Carrying out the two integrations, which yields the term
in braces, gives

Fp (ωA) = ωA
(ρg)2

2
F 2

ζ (ωS)

∫ 2π

0

H (θ)H (θ + π) dθ

×

{

π
(ωA

c

)2
}

(A.15)

leading immediately to (A.5).

4. Subsequent literature

Brekhovskikh34,35 was the first in the field to consider
surface tension, but his formula must be doubled so that
it reduces to (A.5) in the gravity wave limit. This was
discovered by Hughes and reported by Lloyd.36 His for-
mula also incorporates the “Brekhovskikh ratio” which
makes it 50% larger in the capillaries than the corrected
results of Hughes and Cato.

We start with equation (13) in the second reference,
mostly keeping the original notation, adding subscripts
where needed, and adding the correction term in braces.

Fp (ωA) = {2}
π

4

(ρ

c

)2

ω2
S

(

5ω2
S − gκS

)2

×

[

(

κ
∂κ

∂ω

)

−1

Φ2(ωS)

]

m

δψ
(A.16)

The two substitutions

F 2
ζ (ωS) = Φ2(ωS), Iκ =

m

δψ
(A.17)

and introduction of the group velocity, v, give

Fp (ωA) =
π

2

(ρ

c

)2

ω2
S

(

5ω2
S − gκS

)2

[

v(κS)

κS
F 2

ζ (ωS)

]

Iκ

(A.18)
Rearranging terms, switching to ωA, and introducing RB,
as defined in (A.4), leads to the form

Fp (ωA) =

[

π

8

(ρ

c

)2

ω6
A

v(κS)

κS

]

F 2
ζ (ωS)R2

BIκ (A.19)

which is (A.1).
Hughes,37 working in the wave number domain, de-

rived a result (equation 33) twice as large as (A.11), as
he himself realized and communicated to Lloyd.36 Show-
ing this correction in braces, his formula,

Fp (ωA) =

{

1

2

} [

π

4

(ρ

c

)2

ω6
A

κS

v(κS)

]

F 2
ζ (κS)Iκ (A.20)

is (A.11), with RB = 1.
Lloyd36 (unnumbered equation at the bottom of p.

433) published a formula equivalent to (A.5), which holds
when surface tension is ignored. This is easily demon-
strated by expressing all spectra in radian frequency, rec-
ognizing the different definition of the overlap integral,
and accounting for the fact he specifically incorporated
the Phillips model (Fζ(ω) = βg2ω−5) given a few para-
graphs previously in the paper.

His derivation started with consideration not only of
surface tension but also of traveling wave contributions
to the radiated energy. Although the influence of these
terms was dropped part way through the analysis, and
it is not clear how to recover them, he corroborated
Brekhovskikh, stating on p. 433 (using our notation)

Fp(Brek)

Fp(Llo)
=

[

1 +
r2

4 (1 + r2)

]2

(A.21)

From this, we infer that he obtained, but did not publish,
a result equivalent to (A.1), but with RB = 1. Equation
(A.21) is identical to (A.4), but to obtain this form we
use the equivalence T = κ−2

min, as follows from his uncon-
ventional definition of the dispersion relation in the text
following (18).

Cato38,39 applied a theory of Lighthill’s for acoustic
radiation from moving boundaries in a fluid. In the first
paper he obtained an exact solution, without resorting
to the usual perturbation expansion. His approach may
have some affinities with Lloyd’s work, which also was
based upon a Lighthill theory. The second paper, in
which he applied the general result to the specific case
of radiation by nearly opposed gravity waves, is more
pertinent.

In the case of standing waves on the surface of a bot-
tomless ocean, Cato’s solution for the spectrum of the far
field pressure (equation 59 in the second paper), partially
using his notation, is

PD(ωA) =
1

16

(ρg

c

)2

ω3
AΩ2

ζ (ωS) Iκ (A.22)
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This is 8π smaller than (A.5).
More interesting is to tap earlier into his derivation,

and it is not difficult to derive the analog of (A.1), but
with the same 8π discrepancy. Starting with equation 54
in the same paper, and changing notation slightly (but
retaining his H , which is not a spreading function), we
have

PD(ωA) = 2ρ2ω4
S

{

v(κS)

κS
F 2

ζ (ωS)

}

I

∫

HH∗κdκ

(A.23)
In (A.23) we have taken i = l = 3 as in the original, since
this is the principle term in the far field. Furthermore,
H = H3 = 1/2 far from the surface, so

∫

HH∗κdκ =
1

4

(

ω2
A

2c2

)

(A.24)

giving

PD(ωA) =
(ρ

c

)2

ω4
S

(

ω2
A

4

) {

v(κS)

κS
F 2

ζ (ωS)

}

Iκ (A.25)

which is the same as

PD(ωA) =

[

1

64

(ρ

c

)2

ω6
A

v(κS)

κS

]

F 2
ζ (ωS)Iκ (A.26)

and (A.26) is, now, 8π smaller than (A.1), with RB = 1.
Kibblewhite made major contributions to the subject,

culminating in the monograph coauthored with Wu.40

This covers not only their own work, but includes a re-
view and summary of the foundations underlying most
other derivations. There is one theoretical curiosity to be
mentioned. By using pressure rather than velocity poten-
tial as the field variable in the perturbation expansion,
they obtain an answer 20% smaller than (A.5). Sub-
stituting equations 4.109 and 4.111 in 4.92, the result
following this approach is

Fp(ωA) =

[

26

32

]

π

2

(ρg

c

)2

ω3
AF

2
ζ (ωS) Iκ (A.27)

Wilson et al.41 applied Cato’s theory to relate low fre-
quency wave and acoustic data acquired off the East coast
of North America. The deep acoustic data were well
explained by using the measured wave spectrum as the
source term in Cato’s theory. Their method accounted
for a variable sound speed profile in the water, and a lay-
ered and elastic ocean bottom. Although their work fo-
cused on frequencies less than 1 Hz, the method is equally
applicable to higher frequencies. The agreement between
theory and data is curious, because their theory also con-
tains Cato’s 8π error.

The governing equation is (3) in their paper, except for
the erroneous ρ2, and for the far field we take i = j = 3,
as described above. Dropping subscripts,

PD(ωA) =
2

(2π)2

∫

ΦHH∗d~κ (A.28)

Referring back to Cato’s (34, 39, 40, and 41) in the
second paper, and with some obvious changes of variable,
it can be shown that

Φ = 2πρ2ω4
S

v(κS)

κS
F 2

ζ (ωS) (A.29)

and thus can be brought outside the integral.

The integral that remains is 2π times (A.24), when the
angular term is considered. This gives,

Fp (ωA) =

[

1

64

(ρ

c

)2

ω6
A

v(κS)

κS

]

F 2
ζ (ωS)Iκ (A.30)

which is the same as (A.26) and 8π smaller than (A.1),
with RB = 1.
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