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Theoretical understanding of the generation and growth of wind driven surface water
waves has been based on two distinct mechanisms; the first being stochastic excitation by
wave incoherent random atmospheric pressure fluctuations unrelated to wave amplitude
(Eckart 1953; Phillips 1957) and the second instability arising from wave induced coher-
ent atmospheric pressure fluctuations proportional to wave amplitude (Helmholtz 1868;
Kelvin 1871; Jeffreys 1925; Miles 1957). Incoherent wave independent forcing produces
growth of surface height variance linear in time while coherent forcing proportional to
wave amplitude produces exponential growth. While observed wave developments can
be fit to these forms, and despite broad agreement on the underlying physical process of
momentum transfer from the atmospheric boundary layer shear flow to the water waves
by atmospheric pressure fluctuations, quantitative agreement between theory and field
observations of wave growth has proved elusive. Accepting that the dominant contri-
bution to wave growth results from an at least statistical proportionality and coherent
phase lag between atmospheric pressure fluctuations and surface elevation, at issue is the
mechanism by which this relationship is produced and maintained. Mechanisms previ-
ously proposed by Jeffreys and Miles have been extensively examined and found to be in
substantial variance with observations (Snyder and Cox 1966). In this work an alternative
mechanism is proposed which unites the wave incoherent atmospheric forcing process,
with its essentially turbulent character and linear in time variance growth, with the wave
induced coherent atmospheric forcing with its exponential growth. The mechanism pro-
duces exponential growth that exceeds that produced by laminar critical layer instability
and growth rate dependencies on wave number more in accord with observations. This
stochastic parametric instability is an example of the universal instability arising from
the nonnormality of nearly all time-dependent flows (Farrell & Ioannou 1999).

1. Introduction

Theories proposed to explain the phenomenon of surface water wave excitation by
wind involve either wave incoherent stochastic forcing by random atmospheric pressure
fluctuations (Eckart 1953; Phillips 1957) or wave coherent forcing by wave induced at-
mospheric pressure fluctuations (Helmholtz 1868; Kelvin 1910; Jeffreys 1925,1926; Miles
1957,1959a,b). These mechanisms together with a parametrization of nonlinear interac-
tions were incorporated into a general prediction equation form by Hasselmann (1960).
Various empirical versions of this prediction equation are presently used for operational
wave forecasting purposes (WAMDI group 1988). These prediction equations incorporate
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a variance growth linear in time to account for wave incoherent forcing and a growth ex-
ponential in time to account for wave induced coherent forcing. Coherent forcing by wave
induced atmospheric pressure fluctuations proportional to wave amplitude is generally
accepted as necessary to account for observed rates of wave development.

The surface water wave generation problem can be thought of as a shear stability
problem in the presence of a flexible lower boundary. Perhaps the most familiar example
of this class of stability problems is Kelvin-Helmholtz instability resulting from Bernoulli
suction coherently 180 degrees out of phase with surface elevation. However, Kelvin-
Helmholtz instability requires that this suction exceed the gravitational restoring force
in turn requiring wind speeds in excess of those observed to be associated with wave
generating and it follows that Kelvin-Helmholtz instability is not generally regarded as an
important mechanism for water wave generation. The instability mechanisms of Jeffreys
and Miles result from the positive momentum flux from the atmosphere to the water
wave that occurs when a component of wave induced atmospheric perturbation pressure
lags surface water elevation by 90o. While Jeffreys’ theory postulates that turbulent flow
separation produces the required atmospheric pressure to surface elevation phase lag,
Miles’ is a linear laminar theory which has no direct role for turbulence in producing the
phase lag required for instability. In fact the phase lag and the growth rate are determined
by the ratio of the curvature of the atmospheric velocity profile to its shear at the height
where the wind velocity component in the direction of the wave velocity and the wave
velocity are equal. In general this linear critical layer theory substantially under predicts
observed growth rates and also requires an unobserved vanishing of growth rate as wave
speed approaches the maximum wave parallel wind speed (Snyder & Cox 1966).

It must be noted that any laminar instability theory must take some account of the tur-
bulent nature of atmospheric boundary layer pressure fluctuations so that the phase lag
between atmospheric pressure fluctuations and wave height must at least be interpreted
as a statistical average quantity. The attraction of the laminar instability mechanism is in
large part that it predicts a properly phased component of atmospheric pressure fluctu-
ations systematically proportional to wave amplitude and as a result growth exponential
in time. In contrast wave incoherent turbulence reduces pressure fluctuations unrelated
to wave amplitude and therefore gives rise to variance growth linear in time and even
coherent resonant pressure fluctuations produce variance growth at most quadratic in
time (Phillips 1957). There is no doubt as to the existence in laminar flow over a flexible
boundary of the instability described by Miles (cf Farrell & Ioannou, 2005). However,
theory and observation could be brought into better agreement if there existed in a tur-
bulent shear flow over a flexible boundary another instability mechanism exponential in
time and substantially dominant in growth rate when compared with the laminar mech-
anism. We demonstrate such a mechanism which uses either wave incoherent atmospheic
turbulence or atmosphere incoherent wave turbulence to produce a statistically coher-
ent component of atmospheric pressure fluctuations proportional to and properly phased
with surface elevation to produce exponential growth . The mechanism can be viewed as
an incoherent parametric instability and is an example of the universal instability arising
from the nonnormality of nearly all time-dependent flows (Zel’dovich et al 1984; Farrell
& Ioannou 1996, 1999). We note that this instability mechanism that involves the full
spectrum of the underlying dynamical operator is entirely distinct from that based on the
convexity of the modal instability growth rate as a function of wind speed (Nikolayeva
& Tsimring 1986; Jannsen 1994; ; Miles 1997; Miles & Ierley 1997).

We begin by describing the stochastic time-dependent instability mechanism then ap-
ply it to the wave generation problem for representative boundary layer profiles. We then
compare these results with predictions of laminar instability theory. Finally a comparison



Stochastically Generated Surface Water Waves 3

is made between the predictions of the stochastic parametric theory and observations of
wave growth.

2. The time dependent stability problem

Consider an inviscid incompressible atmosphere of constant density in which the mean
wind, U(z, t), in the x direction varies both in the vertical direction, z, and with time,
t, because of the gustiness of the mean wind. Assume, for the sake of generality, that
the mean wind at z = 0 is U0(t). Harmonic perturbations in the atmosphere with x
wavenumber k and streamfunction ψa(z, t)eikx are governed by the equation:

(

∂

∂t
+ ikU(z, t)

)

D2ψa − ikU ′′(z, t)ψa = 0 , (2.1)

where D2 is the Laplacian operator D2 ≡ ∂2/∂z2 − k2, and U ′′(z, t) ≡ ∂2U(z, t)/∂z2

denotes the curvature of the mean wind profile. Equation (2.1) is assumed to be valid in
the region z > 0 occupied by the atmosphere which has density ρa. The streamfunction
ψa is assumed to decay to 0 as z → ∞.

A semi-infinite incompressible fluid of density ρw occupies the region z < 0. This
fluid models the water; it is assumed to have no motion other than that associated with
irrotational small amplitude surface waves with streamfunction form:

ψw(x, z, t) = ψ0

w(t)ekzeikx , (2.2)

in which ψ0

w(t) is the streamfunction of the water at the mean air-water interface, z = 0.
The surface elevation, which is also assumed to take the harmonic form: η = η̂(t)eikx, is
a material boundary and satisfies in the small elevation limit the relations:

dη̂

dt
= −ikU0(t)η̂ + ikψ0

a (2.3)

dη̂

dt
= ikψ0

w , (2.4)

where ψ0

a(t) ≡ ψa(0, t). Subtracting the two conditions (2.3) and (2.4) we obtain that
the streamfunctions in the air and water are given by:

ψ0

w = ψ0

a − U0(t)η̂ . (2.5)

Streamfunction (2.2) satisfies the momentum equations for z < 0 with time dependence
obtained by imposing (2.5) and continuity of normal stress, which on linearization at
z = 0, takes the form:

pw − pa = g(ρw − ρa)η̂ , (2.6)

where pw,a are the values of the fourier coefficients of the pressure on the water and
atmospheric side of the interface at z = 0. In boundary condition (2.6) surface tension
has been neglected.

Using the linearized momentum equation in the x direction both in the atmosphere
and water layers the normal stress boundary condition at z = 0 can be expressed as:

d

dt

(

ǫDψa(0, t) − kψ0

a + kU0(t)η̂
)

= −ikǫU0(t)Dψa(0, t)+ ikǫα(t)ψ0

a − ik(1− ǫ)gη̂. (2.7)

where D ≡ ∂/∂z and α(t) = U ′(0, t) is the wind shear at z = 0 and ǫ = ρa/ρw; for the
water-air interface ǫ ≈ 0.001.

The linear temporal development of perturbations is determined by (2.1) together
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with the far field boundary condition ψa(z, t) → 0 as z → ∞ and the interface boundary
conditions at z = 0 given by (2.3) and (2.7).

3. Instability due to the gustiness of the wind studied using the

generalized Kelvin-Helmholtz stability problem

Consider in (2.1) the simple time dependent shear flow:

U(z, t) =

{

U0(t) + α(t)z, z > 0;
0, z < 0.

(3.1)

This flow is a generalization of the time dependent version of the Kelvin-Helmholtz
stability problem flow (Kelly (1965)) with the crucial inclusion of a time dependent
shear in the atmosphere. Although shear has been included the streamfunction in the air
(z > 0) is still given by:

ψa(z, t) = ψ0

a(t)e−kz . (3.2)

Specification of the streamfunction in z > 0 allows the temporal stability to be de-
termined by a single equation governing the evolution of surface elevation which on
introducing (3.2) in (2.3) and (2.7), takes the form of the harmonic oscillator equation:

d2η̂

dt2
+ γ(t)

dη̂

dt
+ ω2(t)η̂ = 0 . (3.3)

Continuing the analogy with the harmonic oscillator we can identify equivalent time
dependent coefficients for damping:

γ(t) = i
ǫ

1 + ǫ
(α(t) + 2kU0(t)) , (3.4)

and restoring force:

ω2(t) = ω2

g +
ǫk

1 + ǫ

(

i
dU0(t)

dt
− (α(t) + kU0(t))U0(t)

)

, (3.5)

where

ω2

g = kg
1 − ǫ

1 + ǫ
, (3.6)

is the frequency of the surface gravity wave in the absence of a mean flow. With the
change of variable;

ζ = η̂ exp

(

i
ǫ

2(1 + ǫ)

∫ t

(α(s) + 2kU0(s)) ds

)

, (3.7)

the phase shifted elevation ζ satisfies the harmonic oscillator equation in standard form:

d2ζ

dt2
+ Ω2(t)ζ = 0 , (3.8)

with time modulated square frequency:

Ω2(t) = ω2

g−
ǫ

1 + ǫ
kU0(t)(α(t)+kU0(t))−

iǫ

2(1 + ǫ)

dα

dt
+

ǫ2

4(1 + ǫ)2
(α(t)+2kU0(t))

2 . (3.9)

Now assume that the velocity at the air-water interface is modulated stochastically as:

U0(t) = U0 + σ1ξ1(t) , (3.10)
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Figure 1. Histogram of wind fluctuations at 10 m that lead to a growth rate for the 17 m
surface waves (k = 0.37 m−1) of λ ≈ 0.0025 s−1. The wind fluctuates as a red noise process

with decorrelation time 10 s and r.m.s. amplitude 30% of the mean value of U10 which for the
case shown is 15.3 m/s corresponding to mean friction velocity u∗ ≈ 0.68 . The wind follows
the logarithmic boundary layer profile, and the friction velocity is varied in order to produce
the imposed value of U10.

where ξi(t) is a zero mean random variable with unit variance, and σ1 a scalar rms
variance of the random fluctuation. Similarly, assume that the shear is given by

α(t) = α0 + σ2ξ2(t) , (3.11)

where ξ2(t) is another random variable with zero mean and unit variance independent of
ξ1(t). With these assumptions (3.8), keeping only time dependent terms O(ǫ) and O(σ1)
and O(σ2), becomes:

d2ζ

dt2
+ (ω2

d − ǫσ1k(α0 + 2kU0)ξ1(t) − ǫσ2ξ3(t))ζ = 0 , (3.12)

where ξ3(t) = kU0ξ2 + (i/2)dξ2/dt and

ω2

d = ω2

g −
ǫ

1 + ǫ
kU0(α0 + kU0) +

ǫ2

4(1 + ǫ)2
(α0 + 2kU0)

2 , (3.13)

is the frequency of the surface wave in the case of atmospheric velocity U0 and shear α0.
When ω2

d < 0 the surface is Kelvin-Helmholtz unstable and this instability occurs in
the absence of time variation of the velocity discontinuity U0(t) and of the shear α(t).
However, while when ω2

d > 0 the surface is stable in the absence of time variation, it is
a remarkable fact that the oscillator is destabilized by stochastic temporal variation of
its frequency (Arnold et al 1986; Farrell & Ioannou 1996). An estimate of the Lyapunov
exponent can be obtained in the small σ1 and σ2 limit (Arnold et al, 1986):

λ =
πǫ2

4ω2

d

(

σ2

1
k2(α0 + 2kU0)

2ξ̂1(2ωd) + σ2

2
ξ̂3(2ωd)

)

+O(σ3

1
, σ3

2
) , (3.14)

where

ξ̂i(2ωd) =
1

2π

∫

∞

−∞

e−2iωdt < ξi(t)ξi(0) > dt , (3.15)

is the Fourier transform of the time lagged correlation < ξi(t)ξi(0) > evaluated to give
the power of the random process at the subharmonic frequency 2ωd.

At first glance this O(ǫ2) expected mean growth rate of surface waves is disappointingly
slow given that ǫ ≈ 0.001 for the air-water interface. However, the logarithmic boundary
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Figure 2. Lyapunov exponents λ (s−1) for time varying logarithmic boundary layer profiles as
a function of zonal wavenumber k (m−1). The circles are for mean friction velocities u∗ ≈ 0.4
(corresponding to U10 = 10 ms−1) and the star for mean friction velocity u∗ ≈ 0.68 (corre-
sponding to U10 = 15 ms−1). The wind fluctuates as a red noise process with decorrelation time
10 s and with r.m.s. amplitude 30% of the mean value of U10. For comparison the growth rates
found when the mean flow does not vary are also plotted for mean flows with friction velocities
u∗ = 0.3, 0.5, 1. Gustiness leads to appreciably higher growth rates. The squares indicate the
growth rates found in the example of a disrupted flow described in section 5.

layer has shears O(1/ǫ) s−1 in the neighborhood of the interface and because U0 is
O(1) ms−1 the growth rate is dominated by terms in the surface shear :

λ ≈
πǫ2σ2

1

4ω2

d

k2α0(α0 + 4kU0)ξ̂1(2ωd) , (3.16)

revealing λ to be at least O(ǫ2α2

0
σ2

1
) s−1 and of an order that can compete with the

unstable growth obtained from the laminar stability theory of Miles (1957). Moreover,
for α0 >> kU0, the surface wave frequency ω2

d is proportional to the wavenumber k, and
the dependence of growth rate on wavenumber is linear in k: λ = a + bk, in agreement
with observations (Snyder et al 1981).

This very simple example demonstrates that variations in shear can destabilize a sur-
face wave that is otherwise stable in the mean and that the expected growth rate is at
least O(ǫ2α2

0
σ2

1
) s−1 where α0 is the mean surface shear and σ1 is the r.m.s. value of the

wind fluctuations at the interface.

4. Destabilization of surface water waves by atmospheric turbulence

The atmospheric boundary layer is typically turbulent and the associated character-
istic wind field fluctuation is a phenomenon referred to as gustiness. From the point of
view of time-dependent operator stability this turbulent gustiness represents a structured
time dependence of the operator, the structure being referred to is confining fluctuations
to terms in the operator representing the wind and its derivatives. The operator govern-
ing perturbations is also highly nonnormal so that rapid transient growth is supported
(Farrell & Ioannou, 2005). Rapid exponential growth is intrinsic to nonnormal time-
dependent operators that exhibit transient growth and are not commuting at all times
(Zel’dovich et al 1984; Farrell & Ioannou 1996, 1999). Exponential growth occurs even
in cases for which the operator is at all times stable as in the previous section example.

We wish to examine the exponential wave growth arising from gustiness in a boundary
layer model with a logarithmic velocity profile . Consider the logarithmic boundary layer
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Figure 3. Lyapunov exponents λ (s−1) (circles) for time varying logarithmic boundary layer
profiles as a function of mean wind at height 6.1 m (U6.1) for a 17 m wave (k = 0.37 m−1)
compared with the best fit growth rates (continuous line) from Snyder & Cox (1966) . In our
simulations the wind fluctuates as a red noise process with decorrelation time 10 s and r.m.s.
amplitude 30% of the mean value of U10. The Lyapunov exponents obtained vary approximately
linearly with U6.1.
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Figure 4. Surface elevation |η̂(t)| (m) as a function of time (s) for the case shown in figure 1.
This 17 m wave reaches the breaking height of 2.7 m in approximately an hour.

flow:

U(z, t) =
u∗(t)

K
log

(

1 +
z

z0(t)

)

. (4.1)

In (4.1) u∗(t) is the time varying friction velocity, K = 0.42 is the von Karman constant,
and z0(t) = κu2

∗
(t)/g is the corresponding time varying roughness length expressed in

terms of the Charnock constant, κ = 0.0144, the friction velocity and the acceleration of
gravity, g. Analysis of the generalized stability of this profile for constant friction velocity
was presented in Farrell & Ioannou (2005) where it was demonstrated that the continuous
spectrum of the operator can excite the surface wave at amplitudes far greater than that
obtained by introducing of the unstable eigenmode itself.

In the construction of the model for the wind gustiness we follow Cavaleri (1994) and
the observations from Cavaleri & Cardone (1994) and assume that the velocity at 10 m,
U10, is a gaussian random variable. By construction the wind follows the logarithmic
boundary layer profile, and the friction velocity is chosen to vary in order to produce the
chosen distribution of U10. For U10 we take:

U10 = U10 (1 + 0.3ξ(t)) , (4.2)
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Figure 5. Phase advance θ associated with the surface elevation. The dash line corresponds to
the phase propagation of a surface wave with phase velocity c =

√

g/k. The surface elevation
predominantly propagates prograde, except during short periods during which adjustment is
taking place.

where U10 is the mean 10m wind in (ms−1) and ξ(t) is a red noise process with zero mean,
unit variance and decorrelation time τ = 10 s (calculation with different decorrelation
times have been carried out, and the results we report do not depend sensitively on
τ). An example histogram of U10 is shown in figure 1. Using this variation we obtained
that 17 m surface waves (k = 0.37 m−1) grow at the rate λ ≈ 0.0025 s−1 which is an
order of magnitude larger than the corresponding rate for the constant logarithmic profile
with U10 = U10. The growth rates obtained for other wavenumbers and for various U10

are shown in figure 2 where for comparison the growth rate for a constant wind and
for various friction velocities has also been plotted. In order to obtain a more concrete
comparison with data the growth rates obtained from (4.2) are shown in figure 3 together
with the growth rates of 17 m surface waves for various U10 as fit to observations by
Snyder & Cox (1966). Considering that no attempt was made to adjust for the conditions
of the experiment the agreement is good.

A single realization of the development of the amplitude and phase of a surface wave is
shown in figures 4 and 5 for the single realization of the wind shown in figure 1. The initial
condition for this simulation is η̂(0) = 0.001 m. Note that after an initial adjustment the
wave grows exponentially and the phase of the wave advances with phase speed about
√

g/k.

5. Destabilization of surface water waves due to turbulent wave

incoherence

The previous example demonstrated that time dependence can destabilize the surface
wave system by repeatedly eliciting the very large transient growth intrinsic to highly
nonnormal dynamical operators. This is a very general mechanism that can produce
asymptotically exponential growth in many contexts that may appear at first unrelated.
The surface wave field is well known to be highly irregular with groups of waves typically
having coherence times of a few wave periods. As a result, the wave groups may be
modelled as appearing out of the background turbulence for a short period before receding
back into the background only to reappear as a group again for an interval of time. Each
time the group emerges from the background it must organize its associated atmospheric
wave field in the manner of the starting vortex problem but with the crucial difference
that the adjustment take place in a highly nonnormal system with large transient growth

To examine this growth scenario consider the following system. The state of the system
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Figure 6. Structure in the atmosphere of the streamfunction of the most unstable eigenfunction
of the propagator Φ(t) for a logarithmic velocity profile with u∗ = 0.5 and for k = 0.37. For
this example the density ratio is ǫ = 0.001 and a lid is placed at z = 3 (m) in order to
improve numerical conditioning of the initial value problem. The associated growth rate is
kci = 0.0014 s−1.

is described by the column vector φ = [η̂, ψ1, · · ·ψn−1], where ψi is the value of the
streamfunction in z > 0 at one of the levels z = zi with z1 = 0 and zn−1 = zT . The state
of the system evolves according to

dφ

dt
= Aφ , (5.1)

which symbolically describes the discretized equation (2.1) together with the interface
boundary conditions (2.3) and (2.7). The mean flow is the logarithmic profile (4.1) with
a constant friction velocity u∗. The dynamics described by (5.1) are allowed to evolve
the perturbations only over a time period τ , which is a random interval over which the
perturbation flow φ is assumed coherent. At the end of each period τ the perturbation
flow is disrupted by multiplying the evolved state φ(t+τ) = (expAτ)φ(t) by the diagonal
matrix P with diagonal elements: P11 = 1 and Pii = exp(−zi−1/δ) for i > 2. At time

t =
∑N

i τi the state of the system is

φ(t) = Φ(t)φ(0) , (5.2)

where the propagator is

Φ(t) =

N
∏

i=1

Φi , (5.3)

and

Φi(t) = P exp(Aτi) . (5.4)

The disruption of the atmospheric perturbation field by P taking place after random
interval τi elicits the reestablishment of the atmospheric field as a recurrent adjustment
process. We wish to determine under these disrupted conditions the Lyapunov exponent
of the resulting surface wave.

A variety of cases were examined and it was determined that the Lyapunov exponent
obtained is invariably larger than the growth rate of the most unstable wave obtained
when the flow is not disrupted. This is consistent with results shown in Farrell & Ioannou
(2005) in which a wide class of perturbations concentrated near the interface were found
to excite the surface gravity wave by extracting energy from the shear of the mean flow.

A practical method to obtain an approximation to the Lyapunov exponent is to de-
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termine the maximally growing eigenfunction of the propagator Φ(t) for large enough

t =
∑N

i τi with τi is a random variable uniformly on the interval: [T/4, 8T ], where
T = 2π/

√
gk is the period of the surface wave. The maximally growing eigenfunction for

a realization of this process with N = 300 resulting in t = 4260 s is shown in figure 6 for
a 17 m wave in a flow with u∗ = 0.5 (δ = 1/500 m in this calculation). Note that the
eigenfunction which approximates the first Lyapunov vector is located near the interface
taking advantage of the large shear there. The associated growth rate is shown for waves
with k = 1 and k = 0.37 in figure 2. The spread in growth rate values for k = 1 indicates
the results for different realizations of the disruption sequence.

6. Discussion

Excitation of surface water waves by wind is a familiar phenomenon of great theoret-
ical and practical importance which has eluded comprehensive theoretical explanation.
The atmospheric boundary layer is clearly turbulent, but direct incoherent pressure forc-
ing resulting from atmospheric pressure fluctuations produces at most quadratic in time
variance growth (Phillips 1957) while growth exponential in time appears to be required
by observations. The required exponential growth implies coherent and properly phased
pressure fluctuations proportional to wave amplitude. The laminar critical layer instabil-
ity mechanism of Miles (1957) produces exponential growth but fails to correspond with
observations of growth rate in general. In this work we have demonstrated an essentially
turbulent exponential instability the fundamental explanation of which can be traced to
the universal instability of time-dependent flows arising from the necessary nonnormal-
ity of nearly all time-dependent operators that are not commutating at all times. This
stochastic parametric instability dominates the laminar critical layer instability for suffi-
ciently turbulent boundary layers and provides an alternative mechanism for explaining
the observed growth of surface water waves.
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