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Abstract. The coupling between topographic irregularities and wave-driven mean
water motion in the surf zone is examined. This coupling occurs because the
topographic perturbations produce excess gradients in the wave radiation stress
that cause a steady circulation. This circulation, in turn, creates a sediment
transport pattern that can reinforce the bottom disturbance and may thereby lead
to the growth of large-scale bed forms. To investigate this coupling mechanism, the
linearized stability problem with an originally plane sloping beach and normal wave
incidence is solved in two different cases. First, the breaking line is considered to be
fixed, and second, the perturbations in water depth that produce a displacement of
the breaker line are accounted for. The first case shows that the basic topography
can be unstable with respect to two different modes: a giant cusp pattern with
shore-attached transverse bars that extend across the whole surf zone and a
crescentic pattern with alternate shoals and pools at both sides of the breaking line
showing a mirroring effect. In the second case, the varying breaker line may have
a strong influence on the circulation. This is clear for the giant cusp topography
whose growth is totally inhibited. In contrast, the morphology and the growth of

the crescentic pattern remains almost unchanged.

1. Introduction

The nearshore zone in front of sandy beaches some-
times shows quite regular morphological patterns at
length scales well above the length scale of incident
wind or swell waves. Giant cusps [Komar, 1971], shore-
attached oblique/transverse bar systems [ Niedoroda and
Tanner, 1970; Hunter et al., 1979; Lippmann and Hol-
man, 1990], crescentic bars [Bowen and Inman, 1971]
and ridge and runnel systems [Mulrennan, 1992] are
well-known examples of such features. These patterns
are certainly intriguing and have scientific interest in
themselves. More importantly, their regularity gives an
indication that the large-scale complex dynamics of the
surf zone as a whole can be understood in terms of
simple physical mechanisms, at least in some circum-
stances.
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These large-scale beach processes, which involve long
time-scales have sometimes been related to the pres-
ence of low-frequency waves, in particular infragravity
edge waves. These waves can be excited by the presence
of low-frequency patterns in the external wave forcing
[Bowen and Guza, 1978; Holman and Bowen, 1982].
This is an example of a forced topographic response in
which an imposed velocity field creates the underlying
topography. However, another possibility is that these
patterns can be the result of morphodynamic instabil-
ities of the alongshore uniform equilibrium, an exam-
ple of free or self-organized behavior of the nearshore
dynamical system [Southgate and Beltran, 1998]. Of
course, it is very plausible that in many circumstances
both kind of behaviors will interact on natural beaches.

Since the earlier suggestions by Sonu [1968] and the
work of Barcilon and Lau [1973] and Hino [1974], little
attention had been paid to nearshore morphodynamic
instabilities. In the nineties an increasing interest in
this approach developed, and those early investigations
have been revisited and extended by Christensen et al.
(1994], Deigaard et al. [1999], Vittori et al. [1999],
Falqués [1991] and Falqués et al. [1996a,b]. In addi-
tion, the concept of self-organization in the nearshore
has been further extended by the work of Werner and
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Fink [1993] and Coco et al., [1999a, b] by using cellular
automata methods.

Morphodynamic instabilities arise from the coupling
that sediment transport induces between the small per-
turbations on a reference uniform bottom topography
and the disturbances thereby produced on water mo-
tions. In the case of normal wave incidence, where
there is no longshore current, this coupling can oc-
cur through the perturbation that the bed forms cause
on the incident wave field. Basically, the shoals and
the troughs cause wave energy redistribution, variations
in the breaking point, wave refraction, reflection, and
diffraction, which produce, in turn, a radiation stress
distribution that is no longer in equilibrium with the
setup/setdown, and a steady circulation is created. We
will refer to this interaction as bed-surf interaction.

When there is a significant longshore current, the de-
flection that the bed forms produce on the current is an-
other source of morphodynamic interaction. This mech-
anism is responsible for the formation of free bars in
rivers and can also be important in the nearshore envi-
ronment in case of currents generated by tides, by wind
stress, or by river discharge. We will refer to it as bed-
flow interaction. For wave-driven longshore currents
this effect is usually mixed with the bed-surf interaction.
However, from a conceptual point of view, bed-flow in-
teraction is worth investigating in isolation [Falgués et
al., 1996a and Falqués et al., 1996b] suggest that the
bed-flow mechanism can be dominant under some cir-
cumstances. This is quite satisfactory since bed-flow
effects are much easier to deal with than bed-surf in-
teraction, which is based on the complex processes that
waves undergo within the surf/shoaling zone.

Normal wave incidence is assumed in the present pa-
per to avoid a mean longshore current. A satisfactory
understanding of each of the individual processes, bed-
flow and bed-surf, in isolation is convenient before deal-
ing with the general situation of oblique wave incidence.
As far as we know, instability in case of normal wave
incidence is essentially unexplored. For instance, the
model of Christensen et al. [1994] could not deal with
the case of 8, = 0. Apparently, Hino [1974] did some nu-
merical experiments with normal incidence. However,
even though his results were promising, a lack of a sys-
tematic investigation by both numerical and analytical
tools is apparent. More recently, Vittori et al. [1999]
proposed a morphodynamic instability mechanism re-
sulting in the formation of crescentic patterns. Such an
approach considers normally incident waves and results
in the appearance of rhythmic features offshore of the
breaking area so that the direct influence of a moving
breaking line is not considered.

The purpose of the present paper is to present a first
detailed investigation of bed-surf interaction as a source
of morphodynamic instability. In fact, this paper is
the natural continuation of Falgués et al. [1999a] who
showed that there were not purely hydrodynamic in-
stabilities in the case of normal incidence unless wave-
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current or bed-surf interactions were taken into account.
We will concentrate here on a single bed-surf effect:
wave energy redistribution in the surf zone which is be-
lieved to be the major source of bed-surf interaction at
an initial stage. This analysis shows that even with this
rather simplified modeling, morphodynamic instability
indeed develops and produces bed forms that compare
well with features that can occur on natural beaches.
Furthermore, this study suggests some interesting links
between morphological patterns and sediment transport
modes. The effect of the variation of the breaking point
due to the bed forms, always disregarded in previous
studies concerning morphodynamic instabilities in the
nearshore region [Hino, 1974; Christensen et al., 1994;
Vittori et al., 1999], will be also investigated, and the
importance of such a localized effect will be considered
in detail. On the other hand, wave refraction will be
neglected here and its effect left for further research.
Also, the present study is restricted to the case of non-
barred beaches and to only the initial growth of the
perturbations.

In section 2 we present the theoretical setting of mor-
phodynamic stability. In section 3 we give some general
properties of the instability and investigate the physi-
cal mechanisms. This is done by analytical tools and
by considering an idealized situation. In section 4 we
present numerical simulations under the hypothesis of
a fixed breaking line. In section 5 we present numeri-
cal experiments in case of more realistic conditions that
include a varying breaking line. In section 6 we give a
brief summary, some discussion, and a comparison with
natural morphological patterns. Three appendixes are
included, one on the sediment transport parameterisa-
tion, the second on some mathematical developments,
and the third on the parameterization of the moving
breaking line.

2. Governing Equations and Stability
Analysis

2.1. Governing Equations

We consider a rectilinear beach with a shoreline given
by the y axis and with a topography given by z =
2p(z,y,t), where z is the cross-shore coordinate and z
is the vertical one (positive upward, see Figure 1). The
two-dimensional horizontal nearshore hydrodynamics
on timescales larger than the incident waves proceed
from depth-averaged momentum and mass conservation
and read

(’*)vi

1
5p T UV = 9%~ p_D(Ti + Siji5)

+%[1/D(’U1’,j + 'Uj,i)],j 1=1,2 (1)
oD

Here v = (vy,v9) is the depth-averaged horizontal ve-
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Figure 1. Sketch of the geometry and coordinate sys-
tem.

Figure 1:

locity, z1 = z, £z = y, and repeated indexes are as-
sumed to be summed. The derivative with respect to
z; has been indicated by the subindex i:. The total
depth is D = z; — 2, where z5(z,y,t) stands for the
free surface elevation. The bottom shear stress is T
and the water density is p. The lateral mixing from
wave breaking turbulence is parameterized by means of
the eddy viscosity coeficient v(z). The forcing from in-
cident waves is given by the radiation stresses, which
read ok )
(2
k_ZJ + Eéij]E 3)
where k and E are the wave number and the energy of
incident waves, respectively [Horikawa, 1988]. Since we
are dealing with shallow water waves, the phase and the
group celerities are assumed to coincide approximately,
¢p = ¢4 = c. The morphological evolution is given by
the sediment conservation equation
sz

5 (4)

where q(v, z) is the horizontal sediment flux vector.

Sij = | i,j=1,2

+ q]»] = 0’

2.2. Basic state

We now consider regular incident wind or swell waves
approaching the beach normally with energy distribu-
tion E = Eo(z) and look for a basic undisturbed state,
which is a steady and motionless solution of (1), (2),
and (4), that is,

v1 =02 =0 s

zs = (o(z)

The radiation stresses will be of the form

(5)

2y = —do(z)

3 1
Sze = §E0($), Syy = §E0($), Say = 0. (6)

Furthermore, we will assume that both the bottom
shear stress and the sediment flux are proportional to
some power of the mean flow velocity. Therefore, since
v = 0, the bottom friction and the sediment flux will
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vanish: 7 = 0, and q = 0. As a result, the cross-shore
component of (1) reads

do _ 3 1 dh
gd:L‘ B 2pdo + (o dx ’

(7)

with the other governing equations being verified. Thus
the basic undisturbed state is defined as a steady
setup/setdown of the mean water level given by 2z, =
{o(z) over a fixed topography without mean motion.

2.3. Linear stability equations

Any departure from the basic planar topography will
produce a modification of the incident wave field. The
wave energy distribution will change, and as a result,
the setup and the setdown of the basic state, (o(z),
will not be in equilibrium any longer, and a mean flow
will thus be generated. This flow will carry sediments
so that the initial topographic disturbance will evolve.
A morphodynamic loop will thus be formed, and if a
positive feedback occurs, a new topography coupled to
a horizontal circulation will develop in time. To look
at this possibility, a small perturbation will be assumed
on the topography and on the mean free surface:

zp(z,y,t) = —do(z) + h(z,y,t)

zs(myyat) = <0($) +77(-’177y»t)7 (8)
and a small horizontal mean flow,
v = (u(z,y,t),v(z,9,1)), (9)

will be assumed as well. We will look at the dynamics of
these small perturbations by linearizing the governing
equations (1), (2), and (4) with respect to them.

A difficult and crucial point is how this disturbance
will affect the incident wave field. In a saturated surf
zone this will be basically through three effects: wave
energy redistribution, wave refraction by depth varia-
tions and currents, and the modification of the break-
ing point by growing shoals and pools at the breaking
line. Both thewave refraction and the modification of
the breaking point are first-order effects (with respect to
the perturbations). The influence of a varying breaking
line will be analyzed in detail as will the importance of
such a "localized” effect on the growth of morphological
patterns. On the other hand, the effect of wave refrac-
tion, because diffused over much wider areas, will be
assumed to be comparatively small, at least in a linear
analysis, with respect to the other effects and will be
neglected in this study. Thus we will keep waves ap-
proaching normally to the shore, while their energy will
suffer small modifications because of depth variations.
For this purpose [see also Falgués et al., 1999a), we will
assume that wave energy in the nearshore is a known
function of the total depth:

E=E(D). (10)

This allows us to describe one source of coupling be-
tween morphology and waves in a quite simple manner.
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How wave refraction affects this mechanism is left for
future research. Note that (10) is not valid in the case
of barred beaches. Thus we will hereinafter assume a
planar beach profile. Equation (10) can easily be deter-
mined for a saturated surf zone, where

1
E= gPQ’YZDZ

is usually assumed with v, ~ 1 being a breaking index.
The Green’s law for wave amplitude in the shoaling zone
is also in accordance with the form of (10) [Mei, 1989].

Sediment transport parameterization is another im-
portant point. The sediment flux is usually parame-
terized as being proportional to some power m of the
mean flow and the wave orbital velocity. Since there is
no flow in the basic state, the sediment transport in the
perturbed state will be proportional to the power m of
v which is first order. Then, if m > 1, the linearized
problem would have no sediment transport. Therefore
we will assume that m = 1 in our linear analysis, and
we will leave for future research the nonlinear problem,
checking the robustness of the instability mechanism to
the choice of m. Thus we will assume that

q = a&(z)v — 4(z)Vh.

(11)

(12)

This linear parameterization of sediment transport can
be interpreted as the sediment’s being stirred by wave
motion and then advected by the mean current. Thus
a(z) is a wave stirring coefficient, which is expected
to have a cross-shore gradient (see Appendix A). Fur-
thermore, because of both wave oscillations and wave-
breaking turbulence, any bump superimposed on the
nearshore sea bottom will be potentially smoothed out
if no positive feedback occurs into the water motion.
This is parameterized through a morphodynamic diffu-
sion coefficient y(z) in (12).

Bottom shear stress will also be parameterized as be-
ing proportional to the mean flow through a coefficient
that depends on the wave orbital velocity Uy :

Thz N

Toy o
A T HyV,

oD figu oD (13)

where i, = 21, = 4cfUp/(nDy) and where, in the surf
zone, Uy = (v5/2)v/9Do [Horikawa, 1988]. Here c; is
the drag coefficient that relates the instantaneous bot-
tom shear stress to the squared instantaneous velocity
7 = pcsv®. The momentum diffusion in the surf zone
will be parameterized as

v(z) = Nz+/gD

and as an exponential decay beyond the breaking line.
The constant N is estimated to range between 0.01 and
0.06 [Bowen and Inman, 1972] although smaller values
have also been suggested [Longuet-Higgins, 1970a, b].
Now we are going to introduce a scaling. The width
of the surf zone, X}, is chosen as the horizontal length
scale and a vertical length scale 38X, will be introduced
where (3 is some mean slope of the basic topography
O(ddy/dz) = B. An arbitrary velocity scale U is also

(14)
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considered. The natural timescale for hydrodynamics is
then X,/U. However, morphological evolution is much
slower, with a timescale T that will be defined later.
We will have ¢ = (X;,/U)/T < 1. Then we will define
the nondimensional variables as:

($7y) = Xb(mlyyl)a h:ﬂthI) DO :ﬂXbDé)

U2
(u,v) =U(',v"), n= ?n’, t="Tt".

Hereinafter primes will be dropped for simplicity. Then
the linearized nondimensional form of the governing
equations (1) and (2) in the surf zone will read

Ou 3 200 ., _ 37 0h
e + pgu+ (1 + 87”)_891: V, = SFZ 0’ (15)
v 1 ,.0n 142 8h
i Sy = 2 T (g
eat+uyv+(1+8vb)ay Vy SFZ 9y’ (16)
4, 0 0
— — _ —_— ey 1
eat(F n—nh)+ 6x(D0u) + 8y(DOU) 0, (17)

where a Froude number F' = U/+/gBX, has been in-
troduced and p, = (3, Xp/U and py = fiyXs/U have
been defined. The nondimensional coefficients p, and
py depend on the drag coefficient ¢y through r = ¢ /8,
which will be adopted as the frictional parameter for
our simulations [see Falqués et al., 1996a). Notice that
the same equations will be valid out of the surf zone,
but, since there are no perturbations on the radiation
stress, 7, must be substituted by 0. The momentum
diffusion terms read

ou 0 0u Ov

V= D—Og—(VDO'a—z) +V5§(8_y +5-)
1 0 ou Ov 0%v

Equations (15)-(16) describe the linearized momentum
balance only in the case of a fixed breaking line. As
shown in Appendix C, a moving breaking line changes
the linearization of the cross-shore momentum balance.
To scale the sediment conservation equation (4), we
first define a nondimensional wave-stirring coefficient:

() = aa(z),

where a(z) is now order one. By carrying out the scal-
ing of (4) the coefficient UT@&/BX, appears in front of
a(z) in the divergence of the sediment flux. Therefore,
if we want significant morphological changes during one
time unit, we must choose a morphological timescale

T = ﬂg—i. (18)

Then, from (4) the bottom evolution equation becomes

I 9 0h 8 oh
Bt an (@t g, (o0 = g ) tg (g0, (19)

where v = 4T/ X}.
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Now, in case of a fixed breaking line the linear stabil-
ity analysis proceeds in its standard way by assuming
alongshore periodic perturbations of the form

(z, )Mwwﬂ
6()77 (z), ()]},

where 27 /k is its alongshore wavelength and o is its
growth rate. By inserting this form of the solution into
the system of the governing equations (15), (16), (17)
and (19) an eigenproblem is obtained, where o is the
eigenvalue and (a(z), 3(z), A(z), h(z)) is the eigenfunc-
tion. Its structure is the same as that of (15), (16), (17)
and (19) but with the substitutions of /8t by o and
0/0y by ik.

A spectral numerical technique based on the use of
rational Chebyshev functions has been applied in order
to solve the eigenvalue problem posed by the linear sta-
bility analysis. This method has already been success-
fully applied to other morphodynamical models (see,
for instance, Falqués et al. [1996a, b]) where a descrip-
tion of the technique can also be found) and allows for
the determination, for a given wavenumber, of as many
eigenvalues as the number of discretization points. The
numerical model that solves the present eigenproblem is
called morfo13. The relevant morphodynamic instabil-
ity modes have real o in this case. This means a growth
(if o > 0) in place without migration. The model is also
able, however, to describe purely hydrodynamic modes
like edge waves. In this case the imaginary part of ¢ is
the frequency, and it gives the alongshore phase speed.
The relevant extension of the model, taking into ac-
count the effect of a moving breaking line, is described
in detail in Appendix C.

[u(z,y,1),v(z,y,t),n

_ %6{eat+zky[ ( ) (20)

3. Analysis of the Instability
Mechanism

In sections 4 and 5, the use of the numerical model
morfol8 will show that morphodynamic instability in-
deed develops, and the properties of such a process will
be explored for quite realistic conditions. However, the
use of analytical tools, when possible and perhaps in
very idealized situations, gives a better understanding
of the outputs of the numerical models and a higher
confidence in them. This section is devoted to some
analytical developments concerning the bed-surf inter-
action.

3.1. Bottom Evolution Equation

A very useful tool for analyzing morphodynamic in-
stabilities is a bottom evolution equation where only
the cross-shore flow component is involved [Falqués et
al., 1996a]. This form of equation can easily be obtained
by substituting dv/dy from the mass conservation equa-
tion (17) into the sediment conservation equation (19).
Since the morphologic evolution is much slower than
the fluid motions, we can safely consider € = 0 in this
section. Then the bottom evolution equation will read
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6h 0,6 Oh

_ 9 ) — 3(3h d a
9t 9z 0z’ "y oy

)= —ua—In(=).

The conditions leading to the instability are immedi-
ately found from (21). The growth of any bed form
requires Oh/0t > 0, where h > 0, and 9h/0t < 0, where
h < 0. In the linear theory each of these conditions
implies the other. So, let us examine when the first
condition occurs. The second and the third terms on
the left-hand side are diffusive so that they play just a
damping role, and any instability will be related to the
right-hand term. Thus, since a > 0, instability requires
that

(22)

where h > 0, that is, over the shoals. This means that
the shoals grow if the cross-shore flow opposes the gra-
dient of the a(z)/Dgy(z) function. In other words, if
the stirring function increases seaward faster (slower)
than the water depth, the growth of bed forms needs a
shoreward (seaward) flow over the shoals.

This can be understood as follows. Assume first a
constant a. A seaward flow over a sloping beach has
to converge in order to preserve mass, as the depth is
increasing in the direction of the water motion. Since «
is constant, this implies a convergence of sediments and
therefore sedimentation. Assume now a constant depth
but an increasing wave stirring o and assume again a
seaward flow. Its divergence will now vanish. However,
given a control volume, the sediment concentration will
be smaller at its shoreward side than at its seaward side.
Therefore more sediment will go out than will enter the
control volume, so erosion will occur. Thus we get two
counteracting effects, one related to the gradients in the
depth, Dy(z), and the other related to the gradients in
the stirring function, a(z).

To conclude this stability analysis, we now need to
know, for any given topographic pattern, whether the
cross-shore flow will be seaward or shoreward over the
shoals. This requires solving the flow equations (15),
(16) and (17) for a given bottom perturbation h, that
is, the ”flow over topography problem” (FOT problem).

3.2. FOT Problem

In this section and in section 3.3 the variations of
the breaker line will be disregarded. We will assume
that the bottom perturbation and the flow related to
it are alongshore periodic; that is, we will assume the
form given by (20). Lateral momentum mixing will be
neglected here since it is not essential for the instability
mechanism. Its effects will be investigated numerically
in section 5. Also, the quasi-steady approximation, € =
0, will be adopted as in the section 3.1. For simplicity
the hats on u,v,n and h are dropped. With all these
assumptions, and defining the parameters

l 2 Y

“gh ST gpe
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the flow equations (15), (16) and (17) read

sz + (14 3m)§2 = 35@

Oz Oz (23)
Hyv + k(1 + m)n = iksh, (24)
%(D@ +ikDgv = 0. (25)

Substitution of v and n from (25) and (24) into (23)
leads to a single equation in u:

018y 9 poy -

__[__ 1+m 9
Oz " Do Oz

1+ 3m Hoku
__ 2 k2 %
143m 0z’

As for the flow equations (15), (16) and (17), (26) is only
valid within the surf zone. However, (26) works outside
the surf zone if we substitute 7, with 0; That is, if we
make s = m = 0. Appropriate boundary conditions are
a vanishing mean cross-shore flow at the shoreline and
far offshore, u(0) = u(co) = 0.

An interesting property of the solutions of the FOT
equation (26) is that they satisfy the inequality

(26)

z2
/ Dou@ de >0 (27)
o Oz

where z; and zo are any cross-shore positions within the
surf zone with u(z;) = 0 and either u(z3) = 0or zo =1
(breakpoint). This can be shown by means of an integral
identity, which is obtained by integration by parts after
multiplying (26) by Dou. The mathematical details are
left for Appendix B. Essentially, this inequality means
that a decrease of the bottom slope with respect to the
equilibrium (0h/dz > 0 makes —0z,/0z smaller) pro-
duces an offshore flow, u > 0 (on average). This can be
understood because a smaller bottom slope induces a
smaller cross-shore gradient in radiation stress so that
the equilibrium setup becomes too large and induces
a seaward current. A priori, however, this is not so
straightforward since there is also a contribution from
free surface variations, which are implicitly taken into
acccount.

3.3. The Instability Mechanism in a Simple
Case

We now turn to a simple idealized situation where
morphodynamic instability can be predicted by the an-
alytical tools developed in sections 3.1 and 3.2. The
basic assumption now is that a/Dy is a monotonically
increasing function. This may be realistic in the surf
zone but not beyond the breaking line. However, this
case provides an example of how bed-surf interaction
can indeed lead to morphodynamic instability. More
realistic situations will be dealt with in sections 4 and
5 by means of numerical experiments. The example we
now describe provides some confidence in the numeri-
cal model set up to solve the instability equations in
realistic conditions.
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In this study we assume a shoal with a monotoni-
cally decreasing amplitude seaward, 0h/0z < 0. Then,
according to (27) the cross-shore velocity is shoreward
(u < 0) everywhere on the shoal. Indeed, assume
that there was a cross-shore location z = z3, where
u(x3) > 0. Then, by continuity, there would exist z
and z) such that co > x4 > x3 > z} > 0 such that
u(z}) = u(zh) = 0 and u(z) > 0 for all 2, >z > z{. In
this case, (27) would not be satisfied. Therefore such a
shoal would produce a shoreward current (and of course,
because of the alongshore periodicity, a seaward current
in the troughs between shoals). Then, according to the
bottom evolution equation (21), since a/Dy is an in-
creasing function, an inshore flow over the shoals will
produce a growth of such shoals (see Figure 2). Thus
the motionless equilibrium on a plane sloping beach
would be unstable with respect to this kind of topo-
graphic perturbations. Of course, this depends on the
basic assumption of an ever increasing o/ Dy function,
which is not realistic. By numerical simulation we will
see that the topographic and flow patterns emerging

o

v

A 4

Figure 2. Sketch of the bed-surf instability mechanism
in the idealized case of a monotonically increasing o/ Dy
function.
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from the instability are very sensitive to the sediment
transport parameterization.

4. Numerical Simulation With a Fixed
Breaking Line

The previously described eigenvalue problem has been
here solved numerically in order to assess the sensitivity
of the morphodynamic instabilities and their alongshore
spacing to parameters such as the bottom friction, the
eddy viscosity, and the morphodynamic diffusion. The
numerical model has also been used to evaluate the sen-
sitivity of the results to the quasi-steady hypothesis and
the convergence of the numerical solution for a differ-
ent number of discretization points. Finally, the depen-
dence of the results on the way the stirring function
is parameterised in the sediment transport formulation
has been carefully analyzed. A plane sloping beach has
been assumed through all the numerical simulations.

Physically realistic ranges of parameter values have
been used. The parameter related to the bottom fric-
tion, r, has been varied between 0.01 and 0.5, and that
representing the eddy viscosity, N, has been varied be-
tween 0.001 and 0.02. For the morphodynamic diffusion
parameter vy a profile changing with the cross-shore ve-
locity gradients has been considered with a maximum
value ranging between 0.01 and 0.1, chosen at the be-
ginning of the simulation. Values of these parameters
from out of the defined ranges have sometimes been
used in order to understand their effect and importance
for the growth of the instability. The simulations show
robustness toward all the parameters concerning hy-
drodynamic and morphodynamic behavior but a very
strong dependence on the form of the stirring function
a used in the sediment transport formulation. For this
reason, results will be analyzed separately for a series
of qualitatively distinct forms of the stirring function
a(z).

4.1. Crescentic Bar Pattern

For simplicity the first case analyzed is a stirring func-
tion a(z) quadratically increasing from a small shore-
line value to the breaking line. Seaward of the surf zone,
the stirring function is kept constant and equal to the
value at the breaking line (simulations have also been
run with an exponential decrease beyond the breaking
line, but the results are not significantly affected by such
a change). Figure 3 shows a typical growth rate curve
(the real part of the frequency o) for a defined and real-
istic set of the parameters. In general, results are quite
robust and indicate an along-shore spacing of the re-
sulting features between 3 and 5 times the width of the
surf zone. Significantly different values are obtained
only when the input parameters are extended toward
non-realistic values. A feature that all these simulations
as well as most of the ones that will be shown in the
following sections, have in common is the lack of other
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modes displaying unstable wavenumbers (6 > 0). Other
modes are obviously present, but they are all character-
ized by negative growth rates unless unrealistically low
values for the parameters related to the damping of the
topography (bed friction and diffusivity) are chosen.

The typical perturbation pattern and the related flow
pattern are shown in Figure 4. Because of the lin-
ear analysis, the amplitude of the topographic distur-
bance is arbitrary. A 3-D view is given in Figure 5 that
clearly shows the presence of periodic features, resem-
bling what in the literature have been defined as cres-
centic bars [Bowen and Inman, 1971; Lippmann and
Holman, 1990] , around the breaking line. A form of
"mirroring effect” offshore of the breaking line is also
present such that opposite to deposition, an area of
erosion is present and viceversa. In agreement with
the theoretical analysis of section 3, the flow pattern
is such that onshore flow is present over the shoals, and
offshore flow is present over the troughs within the surf
zone, where /D increases. Beyond the breaking line
the opposite occurs since a/D decreases.

Simulations have also been performed with a sedi-
ment transport parameterization that is very similar to
the approach given by Bowen [1980] and Bailard [1981].
As shown in Appendix A, this results in a stirring co-
efficient and in a morphodynamic diffusion increasing
inside the surf zone as offshore distance to a power of
3/2 and 5/2, respectively, and decreasing out of the
surf zone to a power of —9/4 and —15/4, respectively.
The pattern obtained through this simulation is quali-
tatively similar to that for the quadratic function of off-
shore distance. The only difference is that the growth
rate is smaller than that shown in Figures 4 and 5. The
use of such exponents should not be considered as an
attempt to obtain more realistic results but an attempt
to indicate the robustness of the results and the possible
link to already accepted approaches.
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Figure 3. Nondimensional growth rate ¢ as a function
of nondimensional alongshore wavenumber k in the case
of r=0.1, N =0.01,y = 0.02, and «(0) = 0.1
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x (cross-shore direction)

y (along-shore direction)

Figure 4. Topographic perturbation and flow pattern (k = 3.0,7 = 0.5, N = 0.01,y = 0.02, and
a(0) = 0.1). Shoals are white, and deeper areas are shaded. The shoreline is at £ = 0.0 and the

breaking at z = 1.0.

4.2. Giant Cusp Pattern

So far, we have considered only a sediment transport
stirring function a(z), which increases through the surf
zone. The use of a constant value of o throughout the
whole cross-shore section does not affect the process
generating the instability, and compared to the previ-
ously analyzed case, results seem to indicate a higher
variability of the wavelength such that the spacing of
the bed forms may vary between 2 and 8 times the width
of the surf zone (see, e.g. Figure 6).

The difference between an increasing a(z) and a con-
stant a(z) is much more evident when the bottom per-
turbation and the flow pattern are analyzed ( Figure
7). For constant o the shape of the bottom perturba-
tion now extends to the shoreline and is not restricted
to the region around the breaking line. Also, the mir-

roring effect present for the case of a varying stirring
coefficient is not now present, as can be clearly seen
from the 3-D view given in Figure 8. The flow (Figure
7) is offshore over the shoals so that the final pattern,
for both flow and topography, is very similar to that
related to rip currents and giant cusps as reported by
different authors [Shepard, 1963; Komar, 1971]. This
is again in accordance with the theoretical analysis in
section 3 since /D is now decreasing through the surf
zone. The case of constant o does not present any other
mode characterized by a positive growth.

As an example of a stirring coefficient a(z) that is de-
creasing from the shoreline, an exponentially decaying
form has also been studied. As discussed in Appendix
A, such runs might simulate conditions where reflec-
tion at the shoreline or infragravity motions are pre-
dominant. The morphology resulting from such sim-

Figure 5. A 3-D view of the topographic perturbation (basic slope and perturbation amplitude
have chosen arbitrarily) for k¥ = 3.0,r = 0.5, N = 0.01,y = 0.02, and «(0) = 0.1. The shoreline

is at £ = 0.0, and the breaking line is at z = 1.0.
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Figure 6. Nondimensional growth rate o as a function
of nondimensional alongshore wavenumber £ in the case
of r =0.1, N = 0.01,y = 0.02, and a(z) = const.

ulations is always that previously associated with the
"giant cusps” patterns (Figure 7), and the only effect
of increasing the power of the exponential decay is a
shift of the maximum of the perturbation toward the
shoreline.

5. Numerical Simulations Including
Breaking Line Variation

The introduction of a moving breaking line, described
in detail in Appendix C, has a significant effect on the
formation of morphological patterns in the nearshore re-
gion. Not only the growth rates but also the existence
of the patterns can significantly depend on the inclu-
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sion of a moving breaking line in the model. For this
reason the flow patterns produced by the topographic
perturbations previously obtained have been considered
in order to check if a further finite development is pos-
sible or if any growth of the features is prevented. The
study of the wave-driven flow over a given small topo-
graphic perturbation has been achieved by solving the
linear FOT problem (equation 26) for a fixed h.

5.1. Crescentic Bar Pattern

The influence of a varying breaker on the crescen-
tic bar pattern appears to be limited. Growth rates
slightly decrease, but the pattern appears to be very
stable. A sensitivity analysis has been performed in
order to check the variations in the growth rates with
changing parameters. The results, shown in Figure 9,
clearly indicate the presence of a maximum character-
ized by a wavelength around twice the width of the surf
zone. In particular, Figure 9 (a), shows the variations
induced by using different values of the friction parame-
ter r. Evidently such changes only affect the maximum
growth rate but not the wavelength of such a maxi-
mum. Furthermore, in reality the value of r should be
considered quite constant, and a value of 0.1 seems to
be acceptable. Variations in the momentum diffusion
N and morphodynamic diffusion y have relative impor-
tance in the growth of the instability (Figures 9b and 9¢
respectively). As expected, the higher their values the
smaller the perturbation growth rates. Another inter-
esting result that has revealed its consistency through-
out all the simulations, with and without the inclusion
of the breaking line effect, concerns the quasi-steady hy-
pothesis. The model, in fact, allows this hypothesis to

X (cross-shore direction)

y (along-shore direction)

Figure 7. Topographic perturbation and flow pattern (k¥ = 3.0,7 = 0.5, N = 0.01,y = 0.02, and
a(z) = const.). Shoals are white, and deeper areas are shaded. The shoreline is at z = 0.0, and

the breaking line is at z = 1.0.
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const. The shoreline

0.5, N = 0.01,v = 0.02, and a(z)

Figure 8. A 3-D view of the topographic perturbation (basic slope and perturbation amplitude
=3.0,r

have chosen arbitrarily) for &
is at £ = 0.0, and the breaking line is at x = 1.0.
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Figure 9. Effects of (a) friction r, (b) momentum diffusion N, (c) morphodynamic diffusion 7,

(d) € parameter, and (e) and (f) stirring function on crescentic pattern growth rates. Default

parameters are r
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be verified by changing the value of the previously de-
fined coefficient €. Figure 9d shows that the adoption of
relatively small values (e = 0.01) results in an instabil-
ity curve that does not differ much (< 2%) from € = 0.
This is because the instability is on a morphological
scale that is much larger than the hydrodynamical one
so that the fluid adjusts instantaneously to the topo-
graphic changes. However, differences appear, though
primarily more in the magnitude of the growth rate than
in the wavelength, when comparable values are used for
the morphological and hydrodynamical timescale (i.e.,
e = 0.1). Figures 9e and 9f are instead related to the
sensitivity of the instability toward the parameteriza-
tion of the stirring function. The usual form considered
through the simulations is given by a quadratically in-
creasing expression with a small nonzero value at the
shoreline (a(0) = 0.1). Variations in the shoreline value
are shown in Figure 9e and, intriguingly, indicate a de-
pendency of a such value also on the spacing of the
features. As expected, higher shoreline values of the
stirring coefficient, and so tending toward a constant
profile, result in smaller growth rates, and for values
a(0) > 0.3, no instability is present. As previously in-
dicated, a quadratic expression has been used in order
to describe the stirring coefficient throughout the surf
zone. The use of other exponents, here indicated with
the letter p, results in strong variations in the growth
rates which increase with higher powers (Figure 9f).
The variation of the stirring coefficient profile offshore
of the breaking line has also been investigated by us-
ing a constant value (equal to the one at the breaking
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line) or exponentially decreasing function. Results in-
dicate that the growth rates are independent from the
variation of the stirring function profile offshore of the
breaking line.

5.2. Giant Cusp Pattern

Surprisingly, when the breaker line variations due to
the perturbations in the water level and in the topogra-
phy are included, the model does not predict any insta-
bility in the case of a constant stirring function. This is
the case also for the other choices of the stirring func-
tion that for fixed breaker line produced the growth of
the giant cusp pattern (like those exponentially decay-
ing from the shoreline). Therefore, the movement of
the breaker line inhibits the formation of the giant cusp
pattern.

In order to understand this behavior, the circulation
produced by the giant cusp topography was investi-
gated by solving the FOT problem in the case including
breaker line variations. As can be seen in Figure 10, a
strong onshore current is created over the transverse
bars while rip currents appear in the troughs. So, the
flow pattern is reversed with respect to the case where
the breaker line is kept fixed (Figure 7), and the cross-
shore flow component has now the same direction as
the gradient in a(z)/Do(z). Therefore, in accordance
with the bottom evolution equation (21) the bottom
perturbation tends to decay, as predicted by the stabil-
ity analysis.

The flow reversal can be understood as follows. The
transverse bars crossing the breaker line produce a wa-
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Figure 10. Linearized flow pattern over a fixed small-amplitude cuspate topography including
the effect of the breaking line variation (solution of the linear FOT problem). Shoals are white,
and deeper areas are shaded (shoreline at = = 0.0).
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ter depth reduction, so that the breaker line moves sea-
ward. This implies that the surf zone extension is in-
creased and that waves that were not breaking in the
basic state are now breaking in this new portion of
surf zone. This produces a strong additional shoreward
force that is capable of reversing the current. Similarly,
an additional seaward force is created in between the
bars. Figure 10 also shows how the onshore force due
to the moving breaker line produces a strong increase
(decrease) of setup over the bars (troughs).

Since the flow is onshore over the transverse bars, ac-
cording to the predictions of section 3 this topographic
pattern should grow if we assume an a(z)/Do(z) func-
tion that increases seaward. However, the only unstable
mode in this case is the crescentic pattern. The explana-
tion for this is that any pattern that arises as a growing
linear eigenmode has not only a positive growth rate
but also (by definition) a uniform growth rate. Accord-
ing to the bottom evolution equation (21) this implies
that h should be proportional to |ua d[ln(a/Dy)]/dz|.
This condition is not met in the case of the giant cusp
pattern since the maximum sediment transport would
be located where the perturbation is relatively small.

In order to make a comparison with the behavior of
the giant cusp pattern we also include a similar FOT
simulation for the crescentic pattern topography. The
circulation and the free surface elevation are shown in
Figure 11. There is an offshore flow over the shoals out
of the surf zone and an onshore flow over the shoals
within the surf zone. Comparison with Figure 4 reveals
that this flow is almost the same as that observed in
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the case of a fixed breaker line. This is due to the fact
that the crescentic pattern consists of alternating shoals
and pools on both sides of the breaker line, so that the
bathymetric perturbation vanishes at the breaker line.
Therefore there is no perturbation of the breaker line,
so the flow remains unchanged.

6. Discussion

Perturbations of the incident wave radiation stress
induced by the topographic irregularities in a saturated
surf zone can drive a cellular flow with a sediment trans-
port pattern that is able to reinforce the bottom pertur-
bations. In this way a positive feedback that leads to
the coupled growth of nearshore large-scale bed forms
and horizontal circulation with rip currents may occur.
Basically, two instability modes may appear depending
upon the form of the sediment stirring function a(z).
The perturbation in water depth due to the instabilities
produces a shift in the breaking line. Such an effect had
not been accounted for in earlier similar studies. The
present research has considered both fixed and varying
breaking line cases.

For an « function with a significant increase seaward
across the surf zone a ”crescentic pattern” is generated.
This consists of alternating shoals and pools on both
sides of the breaking line, showing a mirroring effect.
The associated flow pattern extends through the whole
surf zone but has its maximum strength at the vor-
tices developed around the breaking line. The along-
shore wavelength of such features ranges between 3 and
5 times the surf zone width X, and depends on the bot-

LR S O N O

x (cross-shore direction)

1.00 0.50 0.00

y (along-shore direction)

Figure 11. Linearized flow pattern over a fixed small amplitude crescentic bar topography
including the effect of the breaking line variation (solution of the linear FOT problem). Shoals
are white, and deeper areas are shaded (shoreline at z = 0.0).
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tom friction, lateral momentum diffusion, and morpho-
logical diffusion, which have a damping effect. However,
for realistic values of the damping parameters, growth
rates are usually positive. This instability mode turns
out to be essentially unaffected by the variations of the
breaking line.

An interesting issue following these results is the
shape of the crescentic pattern obtained in the present
study, which is very similar to the one obtained by Vit-
tort et al. [1999]. This is striking since their analysis
aims to features outside the surf zone and the mean
flow is generated by a very different mechanism (syn-
chronous edge waves). However, a closer look reveals
that this is not so surprising as they adopt the same sed-
iment transport parameterization with a similar struc-
ture for the stirring function. Once again, we obtain a
confirmation of something that can be unexpected at
first sight: the coastal self-organization is often domi-
nated by the sediment transport mode rather than by
the mean hydrodynamics. This is clearly the case for
the present investigation, where the emerging topog-
raphy and the flow pattern depend ultimately on the
distribution of wave stirring on the sediment. Another
example is the orientation of oblique bars with respect
to the coastline, upcurrent or downcurrent, which could
sometimes depend on the a(z) function [Falgués et al.,
1999b].

An indication of the order of magnitude of the growth
time of these features can be obtained from our mor-
phological time scaling defined in (18). According to
the data reported by Antsyferov and Kos’yan [1990] or
by Russell [1993], 5 kg m~2 seems to be an appropriate
order of magnitude of the suspended sediment concen-
tration. Assuming a reference depth of 0.5 m, we then
have & ~ 1073 m. The velocity scale can be calculated
from the Froude number we used in the computations,
F = 0.12, so that U = 0.124/98Xs. Thus we find the
estimate

Tyro ~ 2.6 x 10382 X2 51

By assuming a nondimensional growth rate of o ~ 1,
a beach slope of 8 ~ 0.05, and a surf zone width of
Xp ~ 10 m, the features, whose wavelength would be
~ 30 m, would grow significantly within some 5 hours.
According to this, bed forms for X ~ 5 m, would grow
within 1.8 hours, while very large bed forms for X, ~ 20
m would not grow significantly until some 14 hours.
These figures seem very sensible and perhaps suggest
that the larger scale bed forms are not observed very
often perhaps because of the fact that their growth time
is longer than the typical time scale of the variability of
wave conditions.

Alternatively, for an « function more or less constant
or even decreasing seaward across the surf zone, a ”giant
cusp pattern” occurs if the breaking line is considered
to be fixed. This consists of transverse bars attached
to the shoreline and extending across the whole surf
zone. The associated circulation has offshore flow over
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the crests and a return flow in between. The along-
shore spacing between the bars is ~ 2 and 8 times X,
typically somewhat shorter than the wavelength of the
crescentic pattern. However, the breaking line displace-
ment has a strong impact on this instability mode so
that the associated flow pattern becomes reversed, the
currents now being onshore at the crests and offshore at
the troughs. Therefore, the circulation causes a damp-
ing of the bed forms whose growth becomes now in-
hibited. Which flow pattern results in the formation
and development of giant cusps remains unclear, as is
also testified to by the contradictions present in the lit-
erature (for a review, see, e.g., Carter [1988, p.120]).
The possibility that the flow pattern providing the ini-
tial growth of the features differs from the one observed
over finite amplitude features, where other effects like
wave refraction [Niedoroda and Tanner, 1970] can be-
come dominant, has to be considered.

The dependence of the instability modes upon the
wave-stirring distribution suggests that crescentic pat-
terns are likely to occur under relatively low wave con-
ditions, while in principle, giant cusp patterns would be
more likely under high wave conditions, when reflected
long-period motion becomes significant. However, the
varying breaking line effects rule out this latter pos-
sibility. Therefore we should conclude in agreement
with Carter [1988] that the generation of giant cusps
and more in general transverse bars, although observed
in several circumstances, still remains something of an
”enigma.” Thus morphodynamic instabilities of an un-
bounded coast in case of normal wave incidence deserves
further research.

The most obvious limitation of the present analysis
is the assumption of regular waves, which results in a
nonsmooth wave energy distribution. This introduces
a singularity in the linear stability analysis and makes
the mathematical procedure seem somewhat artificial.
However, even with the common smooth energy distri-
butions in the case of random waves, there are strong
changes in the energy gradient at the location where
the majority of the waves start to break. Therefore,
even though there is no singularity in this case, there
are strong variations in wave forcing with respect to the
basic equilibrium in a narrow region. Thus the present
idealized analysis seems to be representative of more
realistic conditions.

Another limitation is the assumption that long-period
motion is simply a stirring mechanism affecting the re-
sults only through a neglects its direct contribution to
the hydrodynamics. Direct influence through the bot-
tom shear stress (equation 13) is not expected to be
qualitatively significant (see Figure 9). However, work
is in progress to add long-period motion to the coupling
of incident waves and sediment response to determine
its effect on the morphodynamic instabilities discussed
in this paper.

We should finally mention that the present study has
been based on the assumption of a sediment transport
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related only to the mean flow. The transport directly
related to the waves should be also considered in future
research through suitable parameterizations of under-
tow, wave asymmetry, etc.

The effect of incident wave refraction by the growing
bed forms and the currents on the instability mechanism
has been neglected. We do not think that this effect has
a significant influence at the initial stage. However, as
suggested by Niedoroda and Tanner [1970], it can be
very important for the finite amplitude development of
these features. This requires a nonlinear stability anal-
ysis, which is now under way. This kind of study of the
finite amplitude evolution will also allow for the investi-
gation of a different sediment transport, nonlinear in the
mean flow. This will permit checking of the robustness
of the crescentic pattern, gaining of new insight into the
giant cusp pattern, and looking for possible subcritical
finite amplitude instabilities.

Appendix A

In this appendix we show the link between the sedi-
ment transport parameterization described through (12)
and other already accepted models based on an energet-
ics approach. Bowen [1980] applied the Bagnold [1963]
energetics equation to the case of a sinusoidal wave ve-
locity and a much smaller mean flow and showed that
the net sediment transport rate for both suspended and
bedload transport takes the same form as (12). In par-
ticular, the suspended sediment transport rate takes the

form 16 8
EsCfP 3 5
= —— | uUy + —U
e 3rw ( 07 sw 0) ’
where ¢, is the suspended sediment transport efficiency,
cr is the drag coefficient, p is the water density, w is
the settling velocity, 8 is the slope, Up is the maximum
wave orbital velocity, and u is the steady current. A
comparison between such a formulation and that given
in (12) implies that
a(z) = CiU; ~(z) = - 15w
where C; = 16e5csp/3mw .

A simple model of wave velocities under normally in-
cident shallow water waves provides a form for the cross-
shore dependence of these functions a(z) and v(z). If
we assume shoaling waves out of the surf zone and depth
limited waves inside the surf zone with H = v,D, we

obtain
v2 = {

where: z = D/D;, and C; = gy2D;/4. Thus obtaining
the expression for the variation of the maximum orbital
velocity Uy thus of a(z) and y(z) with the offshore dis-
tance is possible. In fact, outside the surf zone

sz—a/z
Cz.’L‘

D > D,
D < D,

_9102/235—15/4,

a(z) = GG % ™% y(z) = =
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while inside the surf zone:
a(o) = 1OV (a) = — G305,

These are the functions of z that have been modeled in
this paper.

The case of a(z) and v(z) increasing toward the
shoreline is related to the possibility of an environment
dominated by the presence of edge wave motions. The
edge wave theory is already well established [Eckart,
1951 ; Ursell, 1952] and for the present purposes it is
important to note only that a standing edge wave in
shallow water has a velocity potential given by

3 =9%
w

n(2kz)e™*® cos ky coswt ,

where a,, is the amplitude of order n, w is the frequency,
L, (2kz) is the Laguerre polynomial of order n, z and y
are the horizontal coordinates in the offshore and along-
shore direction, t is the time, and k is the long-shore
wavenumber of the edge wave. The cross-shore orbital
velocity field is given by the gradient of the velocity
potential, and it results in a cross-shore profile of the
form 5

—kz

In nature one would expect to find the coexistence of
edge waves characterized by different modes and wave-
lengths. For example, Figure 12 shows the effect of
superimposing the velocity squared of the first seven
modes of an edge wave of arbitrary wavelength. The
rapid increase toward the shoreline is at least qualita-
tively modeled by the exponential forms used in the
simulations in this paper.

For suspended sediment transport the function «
in (12) models the cross-shore profile of the depth-
integrated mean suspended sediment concentration. The

us(z) =

114

> 054

X

Figure 12. The sum of squares of the cross-shore ve-
locities (Y') for the first seven edge wave modes on a lin-
ear slope (arbitrary units; X indicates the cross-shore
direction).
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relatively small number of published observations of
mean concentration in the nearshore zone confirm that
this cross-shore profile can take any of the qualita-
tively different forms that have been used in this study.
Antsyferov and Kos’yan [1990] show measurements from
a natural beach under ”relatively constant small swell”
(estimated breaker height around 1 m), where mean
concentrations increase seaward from near zero at the
shoreline, reach a maximum at the breakpoint, and then
decay farther seaward. This profile shape is qualita-
tively similar to the form of a that we have found to
create crescentic topography (figure 4). On the other
hand, observations described by Hwang et al. [1996],
from a beach of mild slope and offshore wave heights of
between 1.6 and 2.2 m, show almost constant concen-
tration through the surf zone, a form found to create
giant cusp topography (figure 7). The observations of
Russell [1993], for a breaker height in excess of 3 m, sug-
gest that during storm conditions the concentration can
even increase toward the shoreline, a form that could
potentially create giant cusp topography.

Breaking incident waves alone would be expected to
result in concentrations that decrease toward the shore;
the simple model of the stirring effect of breaking wave
currents described here is in fair agreement with the
observations of Antsyferov and Kos’yan [1990]. How-
ever, waves reflected at the beach would have signifi-
cant amplitude at the shoreline. There is strong ev-
idence that long-period reflected wave height and ve-
locity increase approximately linearly with breakpoint
wave height [Guza and Thornton, 1982; Huntley et al.,
1993 ]. Thus the cross-shore concentration profiles ob-
served by Hwang et al. [1996] and Russell [1993] for
larger incident waves heights may be the result of the
addition of significant long wave stirring, with a pro-
file that would generally increase toward the shoreline.
In fact Russell [1993] shows that long wave motion was
dominant for his observations from the inner surf zone.

Appendix B

In this appendix we derive an integral identity and
an inequality that are useful to show some of the prop-
erties of the solutions of the FOT equation (26) (flow
over topography problem) in case of a fixed breaker line.
To this end, let us multiply this equation by Dou and
choose two arbitrary cross-shore locations in the surf
zone 1 > x5 > xz; > 0 where the cross-shore velocity
vanishes:

u(z1) = u(z2) = 0.
Then integration by parts leads to
T2 T2

Ly O 2 1+m , / 9

—=|=—(Dou)|" dz + k Dou®d
/ml Dy L5z Dov)] 1+3m J, o™

2s T2 Oh
= k2 Dou—d
14+3m /ml Ouax ’

If both cross-shore positions were out the surf zone,
o > 1 > 1, one then would obtain
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T2 a T2
/zl %yg[é;(Dou)]zdx + k? /21 ,u,zDouzda: =0.

Since pg, py, Do > 0, it then follows that u(z) = 0 for
zo > T > x;. By taking u(oo) = 0 and by choosing
zs — 00, we then have u(z) = 0 for z > z,. Finally, by
continuity, z; can be lowered to the breaker line z = 1.
Therefore either u(z) = 0 for all z > 1 or u(z) # 0 for
all z > 1. Another possibility would be zo > 1> 2; >0
with zo — oco. In this case we get

1

1
+m M,CDQu2 dz

1+3m J,,

2s o, [t Oh
1+3mk /21 Doua—mdx.

Thy o 2 2
/z1 Dq [837(D0u)] dz + k

+ k2 / ,uzDou2 dz =
1
Therefore we conclude that

o2 Oh .
/ﬂ61 Doua;da: >0 (B1)

whenever u(z;) = 0 and either u(zz) =0 or z3 = 1.

Appendix C

The model equations in case of a fixed breaker line
presented in section 2 are now extended to allow for a
variable breaker line. Since the position of the breaking
line z = X, is defined by the condition

')’bD(Xb) = Hb ) (Cl)
where Hj is the wave height and D(z) is the total wa-
ter depth, the perturbations in water depth due to the
instability result in a perturbation of the breaking line,
AXy(y,t). To first order in the perturbations, equation
(C1) reads

Yo [DO(Xb) + n(Xb,y1t) - h(Xbay, t)
+ Doz (Xs) AXy(y,t)] = Hp,
so that

n(Xb) Y, t) - h(Xb’ Y, t)

AXy = —
b Doz (Xo)

(C2)

as Hy = 1 Do(X}p) and where X, is the position of the
breaker line in the basic state. Notice that since the
depth perturbations are assumed to be infinitesimal, the
gradient of total water depth, Doy + 1 — hy, is always
positive, and the assumption of H = v, D does not pro-
duce any spurious wave amplitude increase shoreward.

As we will see, when the breaking line moves from ¢ =
Xp to z = X + AXp, there is an unbalanced zero-order
term in the cross-shore momentum equation. This term
is nonvanishing only in an infinitesimal interval of A X,
width so that the resulting contribution is first order
and should be considered for the stability analysis. The
procedure is as follows. By inserting the radiation stress
(equation (3)) and the expresion of the wave energy
(equation (11)) in the governing equations (1), the z
momentum balance to first order reads
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Ou _ dmo+n) 3 ,0(Do+n-h)
- 9 e 89T g T 9

0<z<X,+AX,, (C3)

within the surf zone, and

Ou __ Om+tn) o
ot~ 9 o =
out of the surf zone, where it is assumed that there are
no gradients in the radiation stress. The dissipation
terms (friction and viscosity) are indicated by ©,, and
no and Dy are the free surface elevation and the total
depth in the basic state (zero-order). We have assumed
an alongshore position where AX, > 0. The opposite
case can be treated in a similar manner. The momen-
tum balance in the basic state then reads

Xp+AXp <z, (C4)

__ 0(m) 3 ,0(Do)
0=—g—5 = —39m—Qp, » 0<e<Xp, (C5)
within the surf zone, and
_ d(mo)
» 0=-g oz , Xp<cz (C6)

out of the surf zone. By substracting the zero-order
equations from (C3)-(C4) we then obtain

ou  0n 3 ,0(n—nh)
ot~ gz 89" gy O
0<z <Xy, (C7)
Ou  On 3 ,0(n—h) 3 50Dy
ot 99z 89" b +0: - 89" 5z
X,,<z<X,,+AX,,,(08)
3u_ on
5% ga 40, Xp+AX,<=z. (C9)

The important fact in these equations is that the last
right-hand side term in (C8) is zero order. After a sim-
ilar development in the case where AX, < 0, the three
equations can be written as a single one that reads

0 0
8:: ” —0,-Fi-F,=0 , 0<z<oco. (Cl0)
The first wave forcing term is
P = ——g’sz 0<z <X,
Xy <=z

and the second one is
28Dg
B = {

gfy Bz Xb<CU<Xb+AXb
0
in case where AX, > 0 and

otherwise

Fy = +§g'y2%‘l X+ AXpy<z<Xp
0 otherwise
in case where AX, < 0.

Assume now that the perturbations w,v,n,h, and
AX, are of order ¢ < 1. If we divide (C10) by ¢ and
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then make ¢ — 0, all the terms will be of O(1) except
F5 /e which will tend to co but only in an infinitesimal
interval of a width of order e. We then get a Dirac
4, and the way to deal with it is to solve the differen-
tial equation (C10) in (0, X3) and in (X3, 00) (i.e., with
F, = 0), with the restriction that the integral of the left
hand side over the whole (0, co) must vanish:

n =]
—dw+ / dw—/ O, dz
/0 o st |, o

(-Xb-l-'AXb]

Fz dr = 0.
Xp—|A X
Since to first order in the perturbations

Xb+|AXb| 3
/ Fodr ~ ——g¢
Xo—|AX| 877

y? aD 0 (X,,) AXy,

we finally obtain
3 5 3 *
91+ g1 )la=0 = 597 hlo=o + | O:dz
0

=a/ udz (C11)
0

as the integral condition on the eigensolution, where it
has already been assumed that u ~ e’* and where use
of (C2) has been made.

This formulation has been implemented in the nu-
merical model morfo18 by just substituting the differ-
ential equation (C10) at the first collocation point with
z; > X, by the discrete version of the integral equa-

tion (C11). Very small sensitivity to z; — X} has been
observed.
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