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Abstract

The last decade has seen a significant increase in the number of studies de-
voted to wave turbulence.Many deal with water waves, as modeling of ocean
waves has historically motivated the development of weak turbulence the-
ory, which addresses the dynamics of a random ensemble of weakly non-
linear waves in interaction. Recent advances in experiments have shown that
this theoretical picture is too idealized to capture experimental observations.
While gravity dominates much of the oceanic spectrum, waves observed in
the laboratory are in fact gravity–capillary waves, due to the restricted size
of wave basins. This richer physics induces many interleaved physical ef-
fects far beyond the theoretical framework, notably in the vicinity of the
gravity–capillary crossover. These include dissipation, finite–system size ef-
fects, and finite nonlinearity effects. Simultaneous space-and-time-resolved
techniques, now available, open the way for a much more advanced analysis
of these effects.
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1. INTRODUCTION

Wave turbulence is generically a statistical state made of a large number of random nonlinearly
coupled waves. The canonical example is ocean waves. Stormy winds excite large-scale surface
gravity waves and, due to their nonlinear interaction, the wave energy is redistributed to smaller
scales. This energy transfer leads ultimately to an energy cascade from the large (forcing) scale
down to small (dissipative) scales.

Weak turbulence theory was developed in the 1960s to describe the statistical properties of
wave turbulence in the limits of both weak nonlinearity and an infinite system. It was initially mo-
tivated tomodel the ocean wave spectrum (Hasselmann 1962) and has since been applied in almost
all domains of physics involving waves [see books by Zakharov et al. (1992) andNazarenko (2011)].
Despite its success at deriving a statistical theory and analytically predicting the wave spectrum in
an out-of-equilibrium stationary state, weak turbulence theory does not capture all phenomena
observed in nature or in the laboratory. For instance, the formation of strongly nonlinear struc-
tures (called coherent structures), such as sharp-crested waves, results from strong correlations of
phases between waves, which is at odds with the theoretical hypotheses. For a long time,measure-
ments were mostly restricted to single-point measurements that limited the wave field analysis and
specifically the detection of such coherent structures. The last decade has seen the development
of measurements simultaneously resolved in space and time that shed new light on the field of
wave turbulence. These have indeed opened the possibility of probing in detail the spectral con-
tent of turbulent wave fields simultaneously in wavevector k and frequency ω space, as required
to discriminate propagating waves from other structures with distinct dynamics. Following these
developments, experiments have explored a broader range of systems beyond water waves, includ-
ing vibrating plates (Cobelli et al. 2009b), hydroelastic waves (Deike et al. 2013), inertial waves
in rotating fluids (Monsalve et al. 2020), and internal waves in stratified fluids (Davis et al. 2020,
Savaro et al. 2020) (this list being far from exhaustive), not to mention the numerical simulations.
It is not an exaggeration to claim that the topic of wave turbulence is currently blooming.

Here, we focus our review on experiments concerning gravity–capillary waves at the surface of
a fluid. Laboratory experiments are restricted to wavelengths typically smaller than a meter, even
in large-scale wave basins.At these scales the physics is rendered highly complex by the interplay of
many physical effects. First,waves are supported either by gravity or by capillarity,with a transition
at wavelengths close to the centimeter scale, at which the two contributions are deeply entangled.
Second, the finite–system size effects induce the existence of discrete Fourier modes that affect the
energy cascade. Third, viscous dissipation, often strongly amplified by surface contamination, also
alters the energy flux cascading through the scales. Finally, the degree of nonlinearity required for
the development of wave turbulence at the surface of water in experiments is not vanishingly weak
as assumed in theory, and thismay lead to the formation of coherent structures in addition towaves.
Due to new experimental techniques developed since the turn of the twenty-first century, the
interplay of all these effects can now be explored. In this article, we review the experimental works
of the last two decades that address all these aspects of wave turbulence. Complementary details
can be found in previous reviews on wave turbulence (Falcon 2010, 2019; Newell & Rumpf 2011;
Nazarenko & Lukaschuk 2016; Zakharov et al. 2019; Galtier 2021) or in theoretical textbooks
(Zakharov et al. 1992, Nazarenko 2011).

The review is organized as follows. We first briefly describe in Section 2 the general fea-
tures of gravity–capillary surface waves, and in Section 3 we look at the fundamental mecha-
nism of wave turbulence, i.e., the nonlinear wave interactions. We then introduce in Section 4
the phenomenology and the assumptions of weak turbulence theory, and we discuss in Section
5 the various timescales involved in wave turbulence. We then present in Section 6 the main
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Crossover: the
wavelength λgc or
frequency fgc at which
the gravity term gk is
equal to the capillary
term γ

ρ
k3 in Equation

1

Gravity wave regime:
wavelengths much
larger than λgc for
which the restoring
force is gravity

Capillary wave
regime: wavelengths
much smaller than λgc
for which the restoring
force is capillarity

Parasitic capillarities:
generated near steep
crests of
gravity–capillary waves
as the result of a phase
velocity matching
between a long
gravity–capillary wave
and a shorter capillary
one

Wave steepness ε:
ε � kpηrms with kp the
wavenumber at the
spectrum peak
(maximum) and ηrms
the standard deviation
of the wave elevation

Resonant
interactions: the two
conditions of Equation
2 are satisfied exactly
with all waves
following the
dispersion relation

experimental techniques, including single-pointmeasurements and space-and-time-resolvedmea-
surements.We discuss the main experimental results in Sections 7 and 8 by comparing them with
weak turbulence predictions and highlighting the abovementioned effects not taken into account
at the current stage of theoretical developments. Finally, we present in Section 9 a short discus-
sion of large-scale properties in wave turbulence before ending with lists of Summary Points and
Future Issues.

2. GRAVITY–CAPILLARY DISPERSION RELATION

The linear dispersion relation of inviscid deep-water waves is (Lamb 1932)

ω =
√
gk+ γ

ρ
k3, 1.

with ω = 2π f the angular frequency, k= 2π/λ the wavenumber, g the acceleration of gravity, ρ the
density of the liquid, and γ the surface tension. The crossover between the gravity wave regime
and the capillary wave regime occurs for a wavelength λgc = 2π

√
γ /(ρg) close to one centimeter

for most fluids. Weak turbulence theory is developed for systems with a power law dispersion re-
lation (i.e., either pure gravity or pure capillary waves), which is not the case for the dispersion
relation above (Equation 1). For intermediate scales (i.e., 0.6 � λ � 5 cm or 6 � f � 40 Hz for
water waves) easily observed with tabletop experiments, both capillary and gravity forces are im-
portant and should be taken into account. This coexistence leads to several phenomena related to
the nonmonotonic feature of the phase velocity ω/k of linear waves, such as Sommerfeld precur-
sors (Falcon et al. 2003), parasitic capillarities (Fedorov et al. 1998), or Wilton waves (Henderson
& Hammack 1987). The minimum of the phase velocity corresponds to the transition between
the gravity and capillary regimes and it occurs at kgc ≡ √

ρg/γ (the inverse of the capillary length)
or, equivalently, at the frequency fgc ≡ (ρ/γ )1/4g3/4/(

√
2π ). As the ratio ρ/γ is constant for usual

fluids, working in high-gravity or low-gravity environments provides a way to tune fgc signifi-
cantly and expand the observation ranges of gravity wave (Cazaubiel et al. 2019b) or capillary
wave (Falcón et al. 2009) turbulence.

3. NONLINEAR WAVE RESONANT INTERACTIONS

Resonant interactions between nonlinear waves constitute the fundamental mechanism that
transfers energy in weak nonlinear wave turbulence. Generally speaking, N waves interact with
each other when the following conditions on angular frequencies ωi and on wavevectors ki are
satisfied:

k1 ± k2 ± . . . ± kN = 0 and ω1 ± ω2 ± . . . ± ωN = 0, with N ≥ 3. 2.

Each wave follows the dispersion relation (Equation 1) as well so that ωi = ω(|ki|). The magnitude
of the nonlinear effects is quantified by the wave steepness ε, and the weak wave turbulence theory
is based on an asymptotic expansion in ε. As a result, it only captures the dominant nonlinear
interactions characterized by a single value of N: N is thereafter the smallest integer for which
Equation 2 has nontrivial solutions for a given ω(k) law. The different signs ± need to be the same
in each instance of Equation 2.

As first suggested by Vedenov (1967) and disseminated byNazarenko (2011), Equation 2 can be
solved graphically.Three-wave resonant interactions are only possible ifω(k1 = k2 + k3)= ω(k2)+
ω(k3) has a solution, i.e., if the surface ω(kx, ky) (in red in Figure 1a) has a nonempty intersection
with the same surface (in blue) in a reference frame whose origin is on ω(k2). For pure power
laws ω = akb this is only possible for b > 1. In particular, three-wave resonant interactions occur
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Nonlocal
interactions: the
wavelengths of
interacting waves have
very different orders of
magnitude contrary to
those involved in local
interactions

Nonresonant
interactions: the two
conditions of Equation
2 are fulfilled, but at
least one of the
involved Fourier
modes is not a free
wave (it does not
follow the dispersion
relation)
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Figure 1

Graphical solutions of Equation 2 for N-wave resonant conditions. (a) An N = 3 solution of Equation 1 exists for gravity–capillary
waves (shown) or for pure capillary waves (ω ∼ k3/2; not shown), but (b) only an N = 4 solution exists for gravity waves (ω ∼ k1/2).
Panel a adapted with permission from Aubourg & Mordant (2016). Panel b adapted with permission from Aubourg et al. (2017).

for capillary waves (b = 3/2), but they are forbidden for pure gravity waves (b = 1/2), and thus
four-wave interactions must be considered (see Figure 1b). However, at scales near the crossover,
nonlocal interactions can exist involving three-wave resonances between a gravity wave and two
capillary waves due to the change of curvature of the dispersion relation (Equation 1) (McGoldrick
1965, Simmons 1969). Furthermore, unidirectional interactions (i.e., collinear wave vectors ki) are
allowed (which are not possible for pure power laws with b �= 1).

To extend early experiments on gravity wave resonances (Longuet-Higgins & Smith 1966,
McGoldrick et al. 1966,Tomita 1989),Bonnefoy et al. (2016) performed experiments on four-wave
resonant interactions among surface gravity waves crossing in a large basin (see Figure 2a,b). This
experimentally validated the theory of four-wave resonant interactions (Phillips 1960, Longuet-
Higgins 1962) for a wave steepness smaller than 0.1. Generating mother waves of a resonant
quartet, they observed the growth of a daughter wave in the expected direction (see Figure 2c)
and, notably, characterized its resonant properties (growth rate, response curve with the angle, and
phase locking between waves). For stronger nonlinearities, departures from this weakly nonlinear
theory were observed, such as additional daughter wave generation by nonresonant interactions
(Bonnefoy et al. 2017), which have been well described theoretically by Zakharov & Filonenko
(1968) (see Figure 2d).

For capillary waves, the inviscid theory of three-wave resonant interactions (McGoldrick 1965,
Simmons 1969) has been tested qualitatively in early experiments (McGoldrick 1970, Henderson
& Hammack 1987) and then verified quantitatively experimentally and extended to more general
cases by Haudin et al. (2016) and Abella & Soriano (2019).

For pure gravity or capillary waves, as for all dispersive waves, resonant interactions following
Equation 2 involve waves propagating in distinct directions. However, close to the gravity–
capillary crossover, unidirectional resonant interactions involving a gravity wave and two capillary
waves are possible and have been observed experimentally to be the most active (Aubourg &
Mordant 2015, 2016).

4 Falcon • Mordant

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
2.

54
:1

-2
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
2a

01
:e

0a
:9

bc
:5

3e
0:

78
3d

:8
70

5:
bb

39
:4

4d
f 

on
 0

1/
19

/2
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Quasi-resonant
interactions: the two
conditions of Equation
2 are approximately
fulfilled, with weak
nonlinear or
dissipative corrections
to the dispersion
relation

Stronger steepness (ε1 = ε3 = 0.14)
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Figure 2

Nonlinear wave interaction. (a) Mother gravity waves are generated at wavevectors k1, k2 = k1, and k3, crossing at an angle θ in a
large-scale basin.Wave probes are located in the expected direction of the daughter wave (k4) that should satisfy the four-wave resonant
conditions (2k1 − k3 = k4 and 2ω1 − ω3 = ω4), graphically solved as (b) Phillips’ (1960) so-called figure of eight. (c) For weak
nonlinearity (ε = 0.05), the wave elevation spectrum shows the observation of a daughter wave (f4 = 2f1 − f3) as well as second-order
harmonics of the mother waves (2f3 and f1 + f3, i.e., so-called bound waves). Panels a–c adapted with permission from Bonnefoy et al.
(2016). (d) For stronger nonlinearity (ε > 0.1), there is pumping of a mother wave by daughter waves and a cascade of quasi-resonances
between mother waves (f1 or f3) and primary daughter waves (f4), then with secondary daughter waves (f5) and ( f6), and so on. (Insets)
Typical wave elevation monitored at the same distance. Panel d adapted with permission from Bonnefoy et al. (2017).

Although weak turbulence theory is restricted to strict resonant wave interactions in the limit
of vanishing ε, quasi-resonant interactions among waves are also found to play a significant role in
experiments. As discussed in Section 8, nonlinear widening of the dispersion relation at a nonzero
value of ε enables approximate resonances. Another physical mechanism is dissipation that in-
creases the resonance bandwidth (as for the damped forced oscillator) and authorizes three-wave
interactions at nonresonant angles (Cazaubiel et al. 2019a).

4. WEAK TURBULENCE THEORY

4.1. Kinetic Equation

Details on the development of weak turbulence theory can be found, for instance, in textbooks
by Zakharov et al. (1992) and Nazarenko (2011) and in the review by Newell & Rumpf (2011).
The Hamiltonian equation in Fourier space reads i ∂ak

∂t = ∂H
∂a∗k

, with H the Hamiltonian of the sys-
tem and ak the canonical variables associated with complex wave amplitudes in Fourier space. An
asymptotic expansion of the Hamiltonian, using a scale separation hypothesis between the slow
time of nonlinear interactions and the fast time of linear wave oscillations, leads to

i
∂ak
∂t

= ∂H
∂a∗

k
=ωak + ε

∫
Vk,k1,k2ak1ak2δ(k1 + k2 − k) dk1k2

+ ε2
∫
Wk,k1,k2,k3ak1ak2ak3δ(k1 + k2 + k3 − k) dk1k2k3 + . . . ,

3.

with Vk,k1,k2 the three-wave interaction coefficient andWk,k1,k2,k3 the four-wave interaction coef-
ficient (Hasselmann 1962, Zakharov et al. 1992, Nazarenko 2011). For ε � 1, one can consider
only the smallest nonzero coefficient in this development. As discussed above, N = 3 for capil-
lary waves and N = 4 for gravity waves. To reach statistical properties, weak turbulence theory
computes the second-order moment of the canonical variable 〈akak′ 〉 using the random phase
hypothesis (wave phase and amplitude are assumed quasi-Gaussian) (Nazarenko 2011) or the
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Kinetic equation:
equation for the slow
temporal evolution of
the wave action
spectrum nk

Kolmogorov–
Zakharov (KZ)
spectra: constant-flux,
out-of-equilibrium,
stationary solutions of
the kinetic equation

hierarchy of the cumulants of the canonical variables (Newell et al. 2001), where 〈·〉 denotes a
statistical average. Assuming spatial homogeneity and based on the linear and nonlinear timescale
separation hypothesis, an asymptotic closure arises in the limit of infinite system size and of van-
ishing nonlinearity. The resulting kinetic equation describing the long-time evolution of the wave
action spectrum nk = 〈aka∗

k〉 reads, for three-wave interactions (capillary case),
∂nk
∂t

= 4πε2
∫

|Vk,k1,k2 |2nknk1nk2δ(k − k1 − k2)
[(

1
nk

− 1
nk1

− 1
nk2

)
δ(ω − ω1 − ω2)

+
(
1
nk

− 1
nk1

+ 1
nk2

)
δ(ω1 − ω − ω2) +

(
1
nk

+ 1
nk1

− 1
nk2

)
δ(ω2 − ω1 − ω)

]
dk1dk2,

4.

and, for four-wave interactions (gravity case),

∂nk
∂t

= 4πε4
∫

|Wk,k1,k2,k3 |2nknk1nk2nk3δ(k + k1 − k2 − k3)
[
1
nk

+ 1
nk1

− 1
nk2

− 1
nk3

]

δ(ω + ω1 − ω2 − ω3) dk1dk2dk3.

5.

Note that the collision integral contributes to the spectrum evolution only when the resonant
interaction conditions are satisfied due to Dirac’s δ functions. For the complete gravity–capillary
system, most likely both terms should be taken into account, although this has never been inves-
tigated.

4.2. Constant Flux Solutions

By definition of canonical variables, the spectral energy density (or wave energy spectrum) Ek is
related to the wave action spectrum nk by Ek = ω(k)nk, the total wave energy E = �Ekdk being
conserved. The energy flux P is defined by the following balance: ∂Ek

∂t + ∂P
∂k = 0. Stationary solu-

tions of the kinetic equation cancel the collision integral and thus correspond to a constant energy
flux P across scales (in practice, between the energy source and sink). For power law dispersion
relations, ω = akb, Zakharov’s transformation (Zakharov et al. 1992, Nazarenko 2011) provides
the stationary isotropic solutions as power laws in k:

nk = 2πC0P1/(N−1)a−αk−β , 6.

where N is the leading-order interaction in the system and C0, α, and β are constants that can
be computed and that depend on the wave system considered. By analogy to the Kolmogorov
spectrum in 3D hydrodynamic turbulence, these solutions are called the Kolmogorov–Zakharov
(KZ) spectra.

Since the exact analytical computation of the above solutions is rather long and technical,
one way to find the KZ spectrum scalings is to use dimensional analysis (Zakharov et al. 1992,
Connaughton et al. 2003,Nazarenko 2011). Let us consider waves propagating in two dimensions
according to ω = akb, where the dimension of a is [LbT−1]. The dimension of the energy density
Ek, normalized by unit of surface and density, is [L4T−2]. The energy flux P, similarly normalized,
has the dimension [L3T−3]. For a system dominated by N wave interactions, the energy flux is
proportional to the power N − 1 of the spectral energy density (and thus Ek ∼ P

1
N−1 ) (Kraichnan

1965, Connaughton et al. 2003). Dimensional analysis thus yields

Ek ∼ P
1

N−1 aξkζ , with ξ = 2 − 3/(N − 1) and ζ = 2b− 4 + (3 − 3b)/(N − 1). 7.

One has also β = b − ζ and α = 1 − ξ . Most experiments rather consider the power spectral
density Sk = 2πk〈| ∫∫ L

0 η(x, y)ei(kxx+kyy) dxdy|2〉/L2 or Sω = 〈| ∫ T
0 η(t )ei(ωt )dt|2〉/T of the measured

wave elevation, η(x, y) or η(t), with L the window size and T the recording time. Sk is related to
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Conservation of the
number of
interacting waves: for
N = 3, the number of
interacting waves is
never conserved (2 ↔
1 process); for N = 4,
it is either conserved
(2 ↔ 2) or not (3 ↔ 1)

the energy spectrum by Eg
k = 1

2gS
g
k for gravity waves, and E

c
k = γ

2ρ k
2Sck for capillary waves. These

densities can be changed to frequency space using Ek dk = Eω dω, Sk dk = Sω dω, and the linear
dispersion relation. For deep-water gravity waves (N= 4, b= 1/2, a = √g), Equation 7 thus yields
the spectrum predictions of the direct energy cascade:

Eg
k ∼ P1/3g1/2k−5/2, Sgk ∼ P1/3g−1/2k−5/2, Sgω ∼ P1/3gω−4. 8.

The exact solution was derived by Zakharov & Filonenko (1967a). For capillary waves [N = 3,
b = 3/2, a = (γ /ρ)1/2], the spectrum predictions are

Ec
k ∼ P1/2

(
γ

ρ

)1/4

k−7/4, Sck ∼ P1/2
(

γ

ρ

)−3/4

k−15/4, Scω ∼ P1/2
(

γ

ρ

)1/6

ω−17/6. 9.

The exact solution was derived by Zakharov & Filonenko (1967b).
The nondimensional KZ constant C0 was estimated experimentally for gravity waves by Deike

et al. (2015) and found to be of the same order of magnitude as the theoretical value (Cg
0 = 2.75)

estimated by Zakharov (2010). For capillary waves, the KZ constant was first analytically evaluated
as 9.85 by Pushkarev & Zakharov (2000) and corrected by Pan & Yue (2017) toCc

0 = 6.97. Using
a low dissipation level, direct numerical simulation by Deike et al. (2014b) led to Cc

0 = 5 ± 1,
whereas Pan & Yue (2014) found a value that depends on the system’s finite size. Experimental
estimation of the KZ capillary constant (see Section 7.2) led to Cc

0 ≈ 0.5 (Deike et al. 2014a).
For the full gravity–capillary system, since the dispersion relation is not a pure power law, so

far no analytical solution for the KZ spectrum exists, and dimensional analysis is not conclusive.
One might expect to recover the pure gravity or capillary cases at scales far from the crossover,
but the connection between the two solutions in the intermediate region remains unclear. Be-
cause the scalings in P of the two pure cases are different, one may expect the transition be-
tween both regimes to occur at distinct scales when changing the energy flux. When equating
the two KZ spectra of Equations 8 and 9, one obtains the transition between the two spectra Sk
at k = kgc(Cc

0/C
g
0 )

4/5(P/Pb)2/15, where Pb = (γ g/ρ)3/4 is the energy flux breaking weak turbulence
(see Section 5.1). The transition should thus slightly increase with P and be equal to kgc only for
P = Pb(C

g
0/C

c
0 )

6  Pb/265.
When N is even and a conservation of the number of interacting waves occurs (as for grav-

ity waves), the total wave action N = ∫
nk dk is conserved as well, and the wave action flux Q is

defined as ∂nk
∂t + ∂Q

∂k = 0. An inverse cascade (from small scales to large ones) is then predicted,
characterized by a constant wave action flux through the scales once a stationary state is reached.
Since [Q] = [P]/[ω], the dimension of Q is [L3T−2], and dimensional analysis leads to the inverse
cascade spectrum:

E i
k ∼ Q

1
N−1 aξkζ , with ξ = 2 − 2/(N − 1) and ζ = 2b− 4 + (3 − 2b)/(N − 1). 10.

For deep-water gravity waves (N = 4, b = 1/2, a = √g), the inverse cascade spectra are
E i
k ∼ Q1/3g2/3k−7/3, Sik ∼ Q1/3g−1/3k−7/3, Siω ∼ Q1/3gω−11/3. 11.

The exact solution was derived by Zakharov & Zaslavskii (1982).

4.3. Zero-Flux or Independent-Flux Solutions

Other solutions of the wave action spectra exist beyond those of Section 4.2. For example, for cap-
illary waves, no inverse cascade is predicted (N = 3 is odd), and the dynamics at scales larger than
the forcing scale is thus expected to follow the statistical (or thermodynamic) equilibrium state,
that is, the kinetic energy equipartition among the Fourier modes with no wave action flux toward
large scales (Balkovsky et al. 1995). The spectrum of large-scale capillary wave turbulence is thus
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predicted as Sthk = kBT/(2πσk) or Sthω = 2kBT/(3σω) (Michel et al. 2017) with kB the Boltzmann
constant and T a constant effective temperature related to the total energy within this out-of-
equilibrium stationary state. This is the analog of the Rayleigh–Jeans spectrum of the blackbody
radiation.

Beyond weak turbulence, a flux-independent solution for gravity waves was proposed dimen-
sionally by Phillips (1958) as SPhω ∼ P0g2ω−5. It is interpreted as a saturated spectrum, a situation
that in practice corresponds to nonlocal interactions where localized coherent structures (white-
caps, wave breaking) associated with steep gravity waves dissipate all the injected energy (Newell
& Rumpf 2011). At intermediate stages (between weak turbulence and saturation), Kuznetsov
(2004) proposed that the spectrum would be proportional to the density n of singularities with an
exponent in k that depends on the geometry of the structures. If these dissipative structures occur
along lines rather than locally (sharp-crested waves) then SKω ∼ nω−4 is expected (Kuznetsov 2004,
Nazarenko et al. 2010). Numerical simulations have shown some evidence of Phillips’ spectrum
in the inverse cascade regime (Korotkevitch 2008, 2012).

5. TIMESCALES OF WAVE TURBULENCE

Weak turbulence theory assumes a timescale separation: τ lin(k) � τ nl(k) � [τ diss(k) and τ disc(k)].
In the whole inertial range, the timescale of nonlinear interactions between waves, τ nl, is assumed
to be large compared with the linear time, τ lin = 1/ω, so that the nonlinear evolution is slow
compared with the fast linear oscillations of the waves. In addition, τ nl must be short compared to
the typical dissipation time τ diss and the discreteness time τ disc. Let us discuss all these timescales.

5.1. Nonlinear Timescale

From scaling arguments on the kinetic equation, the nonlinear interaction time reads (Newell &
Rumpf 2011)

τ
g
nl ∼ P−2/3g1/2k−3/2 (gravity), and τ c

nl ∼ P−1/2(γ /ρ )1/4k−3/4 (capillary). 12.

For gravity waves, one must have τlin/τ
g
nl ∼ P2/3k1/g � 1 (Newell & Rumpf 2011). As this ratio in-

creases with k, breakdown of the weak nonlinearity hypothesis is expected to occur at small scales
for k > kgb ∼ g/P2/3. By contrast, for capillary waves, breakdown occurs at large scales since the
ratio τlin/τ

c
nl ∼ P1/2(kγ /ρ )−3/4 � 1 decreases with k and thus exceeds one for k < kcb ∼ P2/3ρ/γ .

At small enough P one has kgb > kcb, and thus a weak regime of gravity–capillary turbulence may
develop at all scales. Equating these two breaking scales, kb = kgb = kcb, leads to a critical energy
flux, Pb = (γ g/ρ)3/4, that breaks weak gravity–capillary wave turbulence (Newell & Zakharov
1992). For P > Pb, one has kgb < kcb and a window in k-space exists (typically k ∈ [kgb, k

c
b], near

the gravity–capillary transition) where the dynamics is expected to be dominated by strongly non-
linear structures (whitecaps, sharp-crested waves) (Newell & Zakharov 1992, Connaughton et al.
2003) or by nonlocal interactions, such as parasitic capillary wave generation (Fedorov et al. 1998),
as evidenced experimentally by the occurrence of stochastic energy bursts transferring wave en-
ergy nonlocally from gravity waves to all capillary spatial scales quasi-instantaneously (Berhanu &
Falcon 2013, Berhanu et al. 2018). However, no such transition from a weak turbulence spectrum
to a strong turbulence spectrum (Phillips’ spectrum) at high wavenumbers has been reported ex-
perimentally so far.This independent-flux solution (i.e., Phillips’ spectrum of sharp-crested waves)
has a k-independent ratio, τ lin/τ nl ∼ k0 (Newell & Rumpf 2011). For usual fluids, Pb is roughly
constant, about 4,200 cm3/s3. Experimentally, the cascading energy flux P can be indirectly mea-
sured (see Section 7.2) and is found to be more than one order of magnitude smaller than the
critical flux Pb (Deike et al. 2015, Cazaubiel et al. 2019b). The value of τ nl can be measured with
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a local probe by decaying wave turbulence experiments either in the gravity regime (Bedard et al.
2013, Deike et al. 2015) or in the gravity–capillary regime (Cazaubiel et al. 2019b), and by the
broadening of the dispersion relation in stationary experiments using space-time measurements
(Herbert et al. 2010, Berhanu et al. 2018). In the latter case, the width of the energy concentration
around the dispersion relation can be quantified either in frequency space by δω ∝ 1/τ nl or in
wavenumber space by δk ∝ ∂k

∂ω
δω.

Similarly, for the inverse cascade of gravity waves, the nonlinear timescale reads τ i
nl ∼

g1/6Q−2/3k−11/6, and thus we have the ratio τlin/τ
i
nl ∼ Q2/3g−2/3k4/3 � 1 (Newell & Rumpf 2011).

As this ratio increases with k or with the wave action flux Q, breakdown of weak turbulence is
expected to occur at small scales for k > kb = √

g/Q or for Q > Qb = g/k2. Here also, wave action
flux in experiments is much smaller than this critical value (Falcon et al. 2020).

5.2. Dissipation Time

The scale separation τ nl(k) � τ diss(k) is taken for granted in the theory but it is not so straightfor-
ward in real life. Energy dissipation in water waves occurs mainly through three distinct mech-
anisms: viscous linear damping (very small for large-scale waves, λ � 0.5 m), energy extraction
by generation of parasitic capillaries near steep crests of longer waves (Longuet-Higgins 1963,
Fedorov et al. 1998), and wavebreaking (i.e., a multivalued interface) at very large steepnesses.
When assuming a stress-free water/air interface, the typical linear viscous dissipation timescale is
due to the water bulk viscosity and thus we have τ diss = 1/(2νk2) (Lamb 1932, Miles 1967, Deike
et al. 2012). For a contaminated interface, the air/water surface boundary layer due to an inextensi-
ble film gives τ s

diss = 2
√
2/(k

√
νω) (van Dorn 1966,Henderson &Miles 1990) [which is negligible

for f � 2 Hz (Campagne et al. 2018)]. The boundary layer on the lateral walls (for experiments)
yields τL

diss = 2
√
2LxLy/[3

√
νω(Lx + Ly )] (Miles 1967, Cazaubiel et al. 2019b), whereas the bottom

boundary layer dissipation is negligible for deep-water waves. The term τ diss is usually measured
with a local probe by decaying wave turbulence experiments either in the gravity regime (Bedard
et al. 2013, Deike et al. 2015), in the gravity–capillary regime (Cazaubiel et al. 2019b), or in the
capillary regime (Deike et al. 2012).

5.3. Discreteness Time

Finite-size effects often play a role in wave turbulence experiments, as the presence of confining
lateral walls cannot be avoided. A closed basin exhibits eigenmodes that depend on its size and ge-
ometry. Indeed, the boundary conditions lead to a discretization of possible wave vectors. For ex-

ample, for a rectangular basin of size Lx and Ly, the eigenmodes are kd =
√
(mπ/Lx )2 + (

nπ/Ly
)2,

with m, n ∈ N (Lamb 1932). The discreteness time τ disc can be computed as the number of eigen-
modes found in a frequency band divided by this bandwidth (Falcon et al. 2020). When the non-
linear spectral widening δk is greater than the half separation �k/2 between adjacent eigenmodes,
they are no longer separated and this prevents any effect of discreteness. It occurs when τ nl(k) <

2τ disc(k), with τ disc = 1/�ω and �ω = (�ω/�k)�k. In this case, one expects to recover a kinetic
regime with effectively continuously varying wavenumbers in the limit of infinite system size con-
sidered in the theory. In the opposite case, τ nl(k) > 2τ disc(k), discrete wave turbulence is expected.
The intermediate regime, τ nl ∼ 2τ disc, is called frozen or mesoscopic wave turbulence (Nazarenko
2011). For instance, in a system of size L, one has �k = π/L, and the discreteness time reads
τ
g
disc = (2L/π )

√
k/g for gravity waves and τ c

disc = [2L/(3π )]
√

ρ/(γ k) for capillary waves (G. Ricard
& E. Falcon, manuscript in preparation). The frozen scale occurs for τ nl(kfr) = 2τ disc(kfr), that is,
using both parts of Equation 12, kgfr = √

πg/(4L)P−1/3 and kcfr = [3π/(2L)]4(γ /ρ )3P−2 for each
regime (G. Ricard & E. Falcon,manuscript in preparation). The finite–system size effects are thus
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more significant when L or P decreases. Taking these effects into account in theories is an impor-
tant challenge (Zakharov et al. 2005, Nazarenko 2006, Kartashova et al. 2008, L’vov &Nazarenko
2010, Pan & Yue 2017, Hrabski & Pan 2020).

5.4. Timescale Separation

The physical properties of water provide constraints on the scale separation. For large-scale grav-
ity waves (λ > 1 m), one has τ lin/τ diss < 10−5 since the dissipation due to bulk viscosity is almost
negligible (Campagne et al. 2018), and one thus expects a proper scale separation in field obser-
vations at these scales. In laboratory experiments, the system size most often restricts the studied
scales to wavelengths below 1 m, even in large-scale tanks. Near the crossover and for smaller
wavelengths, the ratio is τ lin/τ diss � 10−2 for water, and further increases in the case of surface con-
tamination (Campagne et al. 2018). This means that the forcing (and so the wave steepness) must
be high enough to reach an adequate scale separation (τ lin � τ nl � τ diss) at these wavelengths, at
the risk of not being so weakly nonlinear (typically ε  0.05 − 0.1). To decrease capillary viscous
dissipation, researchers have performed experiments with mercury (Falcon et al. 2007a,b, 2008;
Ricard & Falcon 2021) or with liquid hydrogen (Brazhnikov et al. 2002, Kolmakov et al. 2009) as
the working fluid. A direct estimation of the nonlinear timescale is not straightforward and was
accomplished only in a few cases (see Section 5.1). The timescale separation was found to be well
validated experimentally for gravity wave turbulence (Deike et al. 2015, Falcon et al. 2020) and for
gravity–capillary wave turbulence (Cazaubiel et al. 2019b), as well as numerically for pure capil-
lary wave turbulence (Deike et al. 2014b) [see also Deike et al. (2013) and Miquel et al. (2014) for
such tests in other experimental wave turbulence systems]. However, when the finite-size effects
are significant, the nonlinear and dissipative timescales are found to be independent of the scale,
contrary to weak turbulence predictions (Cazaubiel et al. 2019b).

6. EXPERIMENTAL METHODS

Water waves are commonly generated by a localized forcing using a wave maker made of one or
multiple independently controlled paddles (see Figure 3). Injected power into the fluid can be
measured (Falcon et al. 2008), as can the energy flux P, indirectly (see Section 7.2).

6.1. Single-Point Measurements

In field observations, surface wave elevations are usually measured by buoys, lidar, or mi-
crowave radars. In laboratory experiments, resistive or capacitive wire gauges are widely used (see
Figure 3a). Capacitive probes are made of a thin insulated wire in water, considered as an annular
capacitor with a capacity proportional to the immersed length of the wire. Although intrusive,
they are easy to implement and have a wide measurement range (from 10 µm to tens of centime-
ters, with a frequency cutoff up to a few hundred Hz and no limitation in wave steepness) (Falcon
et al. 2007a,b; Deike et al. 2012). They are more adequate for small-scale resolution than resistive
probes, which are restricted to gravity wave studies. The resistive probe accuracy for the height
detection is �100 µm with a rather low frequency cutoff of �20 Hz (Cazaubiel et al. 2019b).

To avoid possible disruption of the wave field by gauges, several authors have used nonintrusive
optical methods based on tracking by a position-sensitive detector of the partial adsorption (Henry
et al. 2000), reflection (Brazhnikov et al. 2002, Lommer & Levinsen 2002, Kolmakov et al. 2009),
or refraction (Snouck et al. 2009) of a laser beam at one point of the fluid surface to study capillary
wave turbulence with a parametric forcing. Other authors have used single-point laser Doppler
vibrometers to study capillary wave turbulence (Holt & Trinh 1996), depth-induced properties
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e Camera 1 Camera 3

Camera 2

Wavemaker

d
Wavemaker

Homogeneous lighting

Camera

Wavemakerscb

Wavemaker

CCD

Laser

Video
projectorCamera

Wavemaker

a
Capacitive
wire gauge

Wavemaker

Figure 3

Typical surface wave elevation measurements: (a) capacitive wire gauge, (b) 3D wave field reconstruction by FTP, (c) 2D spatial profile,
(d) 3D DLP, and (e) 3D stereo-PIV. Panels a, c, and e adapted with permission from Cazaubiel et al. (2019b), Nazarenko et al. (2010),
and Aubourg et al. (2017), respectively. Panel b courtesy of P. Cobelli; panel d courtesy of J.-B. Gorce. Abbreviations: CCD,
charge-coupled device; DLP, diffusing light profilometry; FTP, Fourier transform profilometry; PIV, particle image velocimetry.

in gravity–capillary wave turbulence (Falcon & Laroche 2011), wave turbulence in a two-layer
fluid (Issenmann et al. 2016), and gravity–capillary wave resonant interactions (Haudin et al. 2016,
Cazaubiel et al. 2019a). Laser vibrometry consists in a reference laser beam that interferes with
light backscattered by the moving free surface. It infers the normal wave velocity by the Doppler
effect and the wave elevation by interferometry, with high displacement measurement accuracy
(up to ∼0.3 µm or 0.1 µm/s), thin spatial extension of the probe region (of the order of 10 µm,
which is a few times the laser beam diameter), and a high temporal dynamics (timescales down to
microseconds). It requires the addition of light scattering particles in water and is limited to low
wave steepness (<0.1).

Beyond the above Eulerian specifications of the wave field, recent articles report the use of
particle tracking velocimetry of Lagrangian buoyant particles or floaters to study gravity–capillary
wave turbulence (Del Grosso et al. 2019, Cabrera & Cobelli 2021).

6.2. Space-Time Measurements

Simultaneous measurements in the time and space domains enable one to discriminate weakly
nonlinear waves that verify the dispersion relation from other more complex dynamics.

Space-and-time-resolved imaging of the free surface along a line can be achieved by using a
laser sheet impinging the water surface (Lukaschuk et al. 2009) (see Figure 3c) or scanning a laser
beam refracted by the free surface (Snouck et al. 2009). In linear flumes with transparent side walls,
laterally positioned cameras can image the 2D spatial profile along the flume (Redor et al. 2020;
Ricard & Falcon 2021).
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Nowadays, full 3D spatial wave field reconstructions are achieved using high-speed cameras.
Fourier transform profilometry (FTP), introduced by Takeda &Mutoh (1983) and further devel-
oped by Cobelli et al. (2009a), was used by Herbert et al. (2010) to obtain the nonlinear dispersion
relation and spatial statistics of gravity–capillary wave turbulence. It is now the most widespread
3D reconstruction technique for small-scale experiments (Cobelli et al. 2009b, 2011; Deike et al.
2013; Aubourg & Mordant 2015). The principle is to project a grayscale pattern made of parallel
lines at the water surface. A fast camera records the pattern deformed by the waves; the water
height can be recovered by a demodulation algorithm (see Figure 3b). The spatial horizontal res-
olution is of the order of the distance between the projected lines (a few millimeters, typically),
and the resolution of the measurement of the water elevation is about 100 µm. A white dye must
be added to render the water diffusive to light. A paint dye was first used (Herbert et al. 2010),
followed by titanium dioxide (TiO2) particles, which led to much lower modifications of the fluid
properties (surface contamination, viscosity) (Przadka et al. 2012).

Diffusing light profilometry or photography (DLP) is a technique more adapted to capillary
wave turbulence since its horizontal and vertical resolutions are higher (∼10 µm) than those of
FTP.Wright et al. (1996, 1997) introducedDLP to study capillary wave turbulence, but the spatial
wave height reconstruction was achieved using photographs with no temporal resolution (only
collections of snapshots). By associating this technique with a fast camera, Berhanu & Falcon
(2013),Haudin et al. (2016), andCazaubiel et al. (2019a) obtained the full space-and-time-resolved
measurements of gravity–capillary wave turbulence (see Figure 3d). This optical method is based
on the light absorption of a diffusing fluid (water and microspheres). The surface topography is
reconstructed from the variations of the light intensity transmitted through the liquid illuminated
from below and captured by a fast camera from above. Contrary to usual optical methods based
on the wave slope measurement (reflection or refraction), DLP works well for steeply sloping
waves and is thus well adapted to study strong capillary wave turbulence (Berhanu et al. 2018). A
similar absorption technique was implemented at an interface between two index-matched liquids
(a transparent upper liquid and a dyed lower liquid) to reconstruct Faraday surface wave patterns
(Kityk et al. 2004).

Synthetic Schlieren was first developed to image internal waves (Peters 1985, Dalziel et al.
2000) and has since been applied to image water waves (Kurata et al. 1990,Moisy et al. 2009) and,
more recently, to test surface three-wave resonant interactions (Abella & Soriano 2019). This
method is based on the analysis of the image of a random dot pattern (placed below the wave
tank) refracted through the water surface. The reconstruction of the wave field is obtained using
a digital cross-correlation PIV (particle image velocimetry)-type algorithm. Despite its extreme
sensitivity (∼1–10 µm), this method based on light refraction provides the gradient of wave height
and is thus limited to small wave steepnesses (to prevent the formation of caustics) and small wave
amplitudes.

Time-and-space-resolved wave field measurements from video using multiple camera views
are currently booming, notably for gravity waves, as in stereoscopy (Benetazzo 2006, Leckler et al.
2015, Zavadsky et al. 2017) or stereo-PIV (Prasad 2000, Turney et al. 2009, Aubourg et al. 2017)
(the latter requires tracers, with a vertical resolution of the order of millimeters and a horizontal
resolution of a few centimeters; see Figure 3e).

7. SINGLE-POINT WAVE SPECTRUM

The wave elevation, η(t), measured at a single point of the fluid surface, is generally found to ran-
domly fluctuate over time.The corresponding spectrum,Sω, leads to power law scalings coexisting
in the gravity and capillary regimes, for high enough nonlinearity (see Figure 4a). Each regime
leads to different conclusions when compared to the predictions of Equations 8 and 9.
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Bound waves: in a
stochastic wave field,
bound waves are
generated by
nonresonant wave
interactions and do
not follow the linear
dispersion relation

Free waves: Fourier
modes that follow the
dispersion relation

Intermittency: when
the probability density
function of the wave
elevation increments is
Gaussian at large
scales and departs
strongly from being
Gaussian at small
scales

7.1. Gravity Regime

In the gravity regime, the main experimental observation is that the exponent of the power law
wave spectrum differs significantly from the prediction of Equation 8, Sgω ∼ ω−4. The exponent
was found to depend strongly on the wave steepness in experiments in laboratory basins with
sizes ranging from 0.5 to 50 m (Denissenko et al. 2007, Falcon et al. 2007b, Lukaschuk et al. 2009,
Nazarenko et al. 2010,Cobelli et al. 2011,Deike et al. 2015, Aubourg et al. 2017) (see Figure 4b,c),
as well as in field observations (see, e.g., Huang et al. 1981). The exponent depends also on the
shape of the basin (Issenmann & Falcon 2013). The gravity spectrum was indeed found to be
independent of the forcing for a cylindrical container but not for a rectangular one. The role
of the boundary conditions (absorbing, i.e., with a beach, or reflecting, i.e., with a wall) has also
been addressed (Deike et al. 2015). Although the observed stochastic wave field pattern depends
strongly on these boundary conditions, their spectral properties have been found to be similar (see
Figure 4c). This self-similar gravity wave spectrum (depending on the wave steepness) has been
shown to be due to the presence of bound waves (Campagne et al. 2018, Michel et al. 2018) (see
also Section 8) instead of free waves. Note that for very small wave steepness (0.02), the gravity
spectrum has been found to be much steeper than the weak turbulence prediction, suggesting a
strong impact of dissipation, although care was taken to avoid surface contamination (Aubourg &
Mordant 2016).

In decaying wave turbulence experiments, the mean energy flux is estimated from the gravity
wave energy decay rate. It is observed to be much smaller than the flux Pb breaking weak tur-
bulence theory (see Section 5.1) (Bedard et al. 2013, Deike et al. 2015, Cazaubiel et al. 2019b).
Nevertheless, a deeper analysis of the space-time spectrum (see Section 8) shows the presence of
various structures associated with a finite level of nonlinearity.

The probability density functions of wave elevation are found to be well described by the first
nonlinear correction to a Gaussian distribution (i.e., a Tayfun distribution), as a confirmation of
weak nonlinearity of the wave field but also of the presence of effects due to a small but finite level
of nonlinearity [see, e.g., Falcon et al. (2007b) and Figure 4e].Moreover, intermittency in gravity–
capillary wave turbulence has also been reported (Falcon et al. 2007a, Lukaschuk et al. 2009) (see
Figure 4f ). High-order differences of wave elevation need to be used when testing intermittency
for signals with steep spectra as in the case of gravity-capillary waves (Falcon et al. 2010a). This
small-scale intermittency is enhanced by coherent structures (wavebreakings, capillary bursts on
steep gravity waves) (Falcon et al. 2010b) and is reduced by thewave directionality level (Fadaeiazar
et al. 2018). It also depends strongly on the forcing (Falcon et al. 2010b, Deike et al. 2015) but
not on the basin boundary conditions (Deike et al. 2015). Its origin is still an open problem and it
may be related to the fractal dimension of possible singularities (e.g., peaks or wave-crest ridges)
involved in the wave field (Connaughton et al. 2003, Nazarenko et al. 2010). Statistics of Fourier
modes (in space or in time) also reveals heavy-tail distributions attributed to the presence of large-
scale coherent structures (Nazarenko et al. 2010). Finally, numerical simulations of weak gravity
wave turbulence have confirmed the KZ spectrum of Equation 8 (Dyachenko et al. 2003, 2004).

7.2. Capillary Regime

Capillary wave turbulence was first studied using parametric forcing and optical measurement
methods (Holt & Trinh 1996; Wright et al. 1996, 1997; Henry et al. 2000; Brazhnikov et al.
2002; Lommer & Levinsen 2002; Kolmakov et al. 2009; Snouck et al. 2009; Xia et al. 2010). This
peculiar forcing led to a discrete spectrum of peaks with amplitudes decreasing as a frequency
power law, since this forcing does not generate traveling waves and thus cannot be really related
to kinetic wave turbulence. The use of randomly driven wave makers then led to the observation
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of a continuous power law wave spectrum with an exponent verifying accurately Equation 9
(Scω ∼ ω−17/6) at moderate forcing, typically 0.05 � ε � 0.15 (Falcon et al. 2007b; Herbert et al.
2010; Cobelli et al. 2011; Deike et al. 2012, 2014a; Issenmann & Falcon 2013).

For low enough viscosity, the mean energy flux scaling as Scω ∼ P1/2 has also been verified
experimentally from the estimation of the dissipated energy spectrum (Deike et al. 2014a). This
estimation of the mean energy flux scaling is more reliable than the one estimated from the mean
injected power, which includes an unknown amount going in the bulk of the fluid (Falcon et al.
2007b, Xia et al. 2010, Issenmann & Falcon 2013). Note also that strong temporal fluctuations of
the injected power have been reported (Falcon et al. 2008).With the P- and ω-scaling agreements,
the KZ capillary constant can thus be estimated experimentally and is found to be one order of
magnitude smaller than the theoretical one (Deike et al. 2014a) (see Section 4.2). This discrepancy
may be ascribed to dissipation occurring at all scales of the cascade, leading to a nonconstant energy
flux (Deike et al. 2014a).

The broadband dissipation is also evidenced in nonstationary wave turbulence experiments.
After switching off the wave maker, the energy decay was shown to be mainly driven by the longest
container eigenmodes, each Fourier mode decaying with the same damping rate (Deike et al. 2012,
Cazaubiel et al. 2019b). These long waves provide an energy source during the decay that sustains
nonlinear interactions to keep capillary waves in a turbulent state with the expected spectrum
prediction because nonlinear interactions occur faster at each scale of the cascade than dissipative
processes (see, e.g., Cazaubiel et al. 2019b).

When dissipation increases (higher viscosity fluids), the wave spectrum becomes steeper and
the capillary exponent departs from its theoretical value and depends on the forcing strength,
which is reminiscent of results obtained in the gravity regime (Deike et al. 2012). For wave turbu-
lence in vibrating plates, the effect of dissipation has also been unambiguously shown to steepen
the spectra (Humbert et al. 2013, Miquel et al. 2014).

Pure capillary wave turbulence has been reached experimentally either in low-gravity envi-
ronments [in parabolic flight experiments (Falcón et al. 2009) or onboard the International Space
Station (Berhanu et al. 2019)], or at the interface of two immiscible fluids of close densities, either
in the presence of an additional interface with air (Issenmann et al. 2016) or without such an
interface (Düring & Falcón 2009). It leads to an excellent agreement with the ω−17/6 spectrum
of more than two decades within the inertial range for weak enough forcing (Falcón et al. 2009,
Issenmann et al. 2016) (see Figure 4d). The additional spatial symmetry in the experiments of
Düring & Falcón (2009) theoretically imposes four-wave resonant interactions at the leading
order, and thus a different spectrum prediction.

Numerical simulations of isotropic weak capillary wave turbulence have confirmed the KZ
spectrum of Equation 9 (Pushkarev & Zakharov 1996, 2000; Deike et al. 2014b; Pan & Yue 2014,
2015).

Recently, quasi-1D wave capillary turbulence has been reported experimentally (Ricard &
Falcon 2021) and numerically (Kochurin et al. 2020). Although this geometry theoretically for-
bids low-order resonant interactions, a weak nonlinearity leads to the observation of unidirectional
capillary wave turbulence due to high-order resonant interactions (N= 5) (Ricard& Falcon 2021).
This simple geometry should give new perspectives in wave turbulence due to simplified calcula-
tions and measurements.

8. SPACE-TIME WAVE SPECTRUM

Simultaneous space-and-time-resolved measurements have been possible for a decade (see
Figure 5) (Herbert et al. 2010) and provide a major technical improvement and a significant step
forward in the understanding of wave turbulence. Spatiotemporal measurements (see Section 6.2)

www.annualreviews.org • Experiments in Surface Gravity–Capillary Wave Turbulence 15

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
2.

54
:1

-2
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
2a

01
:e

0a
:9

bc
:5

3e
0:

78
3d

:8
70

5:
bb

39
:4

4d
f 

on
 0

1/
19

/2
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



a

5

–5

0

z 
(m

)

0.5

–0.5

1

–1

0

z 
(m

)

× 10–2

× 10–3

0.1

0.15

0.05

0.15

0.15
0.2

0.2

0.1 0.1
0.1

00 0.050.05

0

0

y (m)
y (m) x (m)x (m)

b

Figure 5

Wave field space-time reconstruction using the FTP (Fourier transform profilometry) method (20 × 20 cm2). (a) Weak forcing: short
capillary waves coexisting with longer gravity–capillary waves. (b) Strong forcing: steep long waves with sharp crest ridges (coherent
structures). Smaller gravity–capillary waves are not visible (the vertical scale is 50 times larger in panel b than in panel a). Panels a and b
adapted with permission from Aubourg et al. (2017) and Herbert et al. (2010), respectively.

are now able to reveal the nonlinear dispersion relation, the homogeneity of the wave field, the
role of finite amplitude on the wave resonant interactions, and the role of coherent structures
(bound waves, parasitic waves, sharp-crested waves, etc.) on wave turbulence.

Figure 6a–c displays the full space-time Fourier power spectrum S(|k|,ω) of the gravity–
capillary wave elevation for different nonlinearity levels. At weak forcing, most of the energy in-
jected at low k is transferred to high k following the linear dispersion relation (Figure 6a). Isotropy
in k-space is well verified at a given frequency in the inertial range (Figure 6a inset), although the
forcing at low frequency is often strongly anisotropic. At intermediate forcing, a nonlinear broad-
ening of the energy distribution around the dispersion relation clearly occurs (Figure 6b), thus
authorizing numerous quasi-resonant wave interactions. The width of the nonlinear dispersion
relation is a measurement of the nonlinear timescale (see Section 5.1). At strong enough forc-
ing, additional branches can appear as a consequence of bound waves (Figure 6c) (Herbert et al.
2010, Campagne et al. 2018, Michel et al. 2018). The most visible ones are harmonics [nk, nω(k)]
that propagate with the same velocity as a longer carrier wave [k, ω(k)], as shown by the constant
phase velocity in Figure 6c. The number n of branches depends on the power injected within the
waves. These coherent structures occur mainly in the gravity regime, whereas no bound waves are
reported in the capillary regime.This may be due to the fact that bound waves result from nonres-
onant interactions at the leading order in ε, while weak gravity turbulence results from resonant
interactions at the next order. Bound waves may contribute much less in the capillary regime, since
they occur at the same leading order as the numerous resonant wave interactions. In the gravity–
capillary regime, capillary bursts (parasitic waves) are routinely observed near the crests of steep
gravity–capillary waves (see Figure 6d,e and Section 5.1). Both coherent structures lead to non-
local energy transfer. The departure from the predictions of gravity wave turbulence, observed
in field observations and in most well-controlled experiments, is thus most likely related to the
spectral signature of these bound waves or other nonlinear coherent structures (see Section 7.1).

At large levels of nonlinearity (0.15 � ε � 0.35), in the capillary range, the spectrum scalings
in f and in k are surprisingly robust (Berhanu & Falcon 2013, Berhanu et al. 2018) and remain
close to the KZ prediction, although the steepness is far from the weak turbulence validity range
since various finite-amplitude effects are present. The space-time measurements show that wave
field homogeneity and isotropy are not verified and that there is a nonlinear shift to the linear
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Figure 6

The experimental nonlinear dispersion relation k/(2π ) versus ω/(2π ). (a) Weak forcing. (Inset) Wave field isotropy at fixed frequency
10 Hz. (b) Intermediate forcing widening the dispersion relation. (c) Strong forcing: an enlargement showing several branches in the
dispersion relation as a signature of bound waves, [nk, nω(k)], with n an integer. (d) The wave field η(x, y) (25 × 25 cm2) showing
gravity–capillary wave generation on steep longer waves. (e) The same as panel d, recorded at a single location: wave amplitude η(t) (red;
left axis) and the corresponding wave gradient δη(t) (gray; right axis). ( f ) Bicoherence. The solid line indicates three-wave resonant
solutions of Equation 2. Dotted lines indicate boundaries of authorized three-wave quasi-resonance, i.e., solutions of approximated
Equation 2 affected by a nonlinear spectral spreading. Panels adapted with permission from (a, f ) Aubourg & Mordant (2015),
(b) Aubourg & Mordant (2016), (c) Herbert et al. (2010), and (e) Falcon et al. (2010b). Panel d courtesy of P. Cobelli.

dispersion relation (Berhanu & Falcon 2013) that is larger than Stokes’ (Whitham 1999) and
Crapper’s (1957) corrections.Moreover, strong temporal fluctuations of the spatial spectrum have
also been reported,which show stochastic bursts that transfer energy quasi-instantaneously toward
small spatial scales (Berhanu & Falcon 2013) due to the generation of parasitic capillary waves
arising from a nonlocal transfer (Fedorov et al. 1998). To what extent this effect is related to
small-scale intermittency is an open question (Falcon et al. 2010b).

Beyond computing the wave spectrum (second-order correlation), higher-order correlation
analyses are usually performed to quantitatively estimate the influence of three- and four-wave in-
teractions. To verify the existence of three-wave interactions (resonant and quasi-resonant ones),
researchers have computed the normalized third-order correlation,∼|〈ηω1ηω2η

∗
ω1+ω2

〉t |, also called
bicoherence (Punzmann et al. 2009, Aubourg & Mordant 2016), as shown in Figure 6f . The
term ηω1 is the Fourier transform of the wave elevation at ω1, 〈·〉t denotes averaging in time, and ∗
is the complex conjugate. Similar correlations can be computed in wavevector space as well. It has
been shown that collinear three-wave resonant interactions are dominant in the gravity–capillary
regime as a result of the nonmonotonic dispersion relation (Aubourg & Mordant 2015, 2016).

www.annualreviews.org • Experiments in Surface Gravity–Capillary Wave Turbulence 17

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
2.

54
:1

-2
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
2a

01
:e

0a
:9

bc
:5

3e
0:

78
3d

:8
70

5:
bb

39
:4

4d
f 

on
 0

1/
19

/2
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



It thus becomes possible to quantify the ratio between the number of resonant waves and the
number of quasi-resonant interactions (Kochurin et al. 2020). To highlight four-wave interac-
tions, researchers have also computed the fourth-order correlation of the wave height Fourier
transform, ∼|〈η∗

ω1
η∗

ω2
ηω3ηω1+ω2−ω3 〉t |, called tricoherence (Aubourg et al. 2017, Campagne et al.

2019b). Notably, it has been shown that the four-wave quasi-resonant interactions are dominated
by bound waves in the gravity regime, and can be thus filtered out to better describe their role in
wave turbulence (Campagne et al. 2019b).

An intermediate level of nonlinearity generates coherent structures in the wave field (such as
bound waves) that modify the gravity wave spectrum. At higher nonlinearity, no Phillips’ spec-
trum has been reported experimentally so far. This is probably due to the interplay of numer-
ous effects, including dissipation, nonlinearity, and the coexistence of gravity and capillary waves.
Such a strongly nonlinear regime was nevertheless observed in another system involving me-
chanical plates, in which a set of coherent structures coexists with weak turbulence (Miquel et al.
2013). For gravity–capillary wave turbulence, a transition near fgc was clearly observed on the wave
spectrum separating the gravity range and the capillary range (see, e.g., Figure 4a). This transi-
tion is expected from weak turbulence to change with the forcing, i.e., with P (see Section 4.2).
Experimentally, the transition was found to be dependent (Falcon et al. 2007b) (see Figure 4b)
or independent (Issenmann & Falcon 2013, Cazaubiel et al. 2019b) of the forcing according to
whether the exponent of the gravity spectrum is dependent (reflecting the effect of bound waves)
or independent of the forcing, respectively.

The role of confinement on gravity–capillary wave turbulence has been tested by continuously
decreasing a lateral dimension of a rectangular tank and keeping the other one constant (Hassaini
& Mordant 2018). A discretization of the spectrum of waves propagating in this lateral direction
was observed but the wave spectrum remained continuous in the unconfined direction.The differ-
ence between the confined and unconfined directions highlights the specificity of gravity–capillary
waves in that unidirectional three-wave resonant interactions are possible (which is not the case
for pure capillary waves).

The role of dispersion on gravity–capillary wave turbulence has also been investigated by de-
creasing the fluid depth. Finite-depth effects lead to the formation a depth-dependent hump in
the capillary spectrum that could be interpreted as an analog of a bottleneck effect due to the
nonlinear timescale dependence on the fluid depth (Falcon & Laroche 2011). A transition has
also been observed from a wave turbulence regime to a solitonic (nondispersive) regime when the
forcing increases at weak depth (Hassaini & Mordant 2017). This so-called soliton gas regime is
predicted by integrable turbulence (Zakharov 1971), a state basically different from wave turbu-
lence that involves coherent structures (solitons) within stochastic waves (Cazaubiel et al. 2018;
Redor et al. 2019, 2020; Suret et al. 2020). Rather than decreasing the fluid depth, the transition
from a dispersive to a nondispersive regime of hydrodynamic wave turbulence can be reached us-
ing a magnetic fluid (ferrofluid) within a magnetic field (Boyer & Falcon 2008, Dorbolo & Falcon
2011; G. Ricard & E. Falcon, manuscript in preparation).

9. LARGE-SCALE WAVE TURBULENCE

The large-scale properties (i.e., larger than the forcing scale) in wave turbulence have been much
less investigated experimentally, although their understanding is of primary interest (e.g., for cli-
mate modeling and long-term weather forecasting). Strong differences are expected between sys-
tems that support an inverse cascade (such as gravity waves) and systems that do not (such as pure
capillary waves).

For capillary waves, since no action inverse flux is expected at large scales, their statistics are
predicted to follow statistical equilibrium (Balkovsky et al. 1995) (see Section 4.3). This state was
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recently observed by Michel et al. (2017) in capillary wave turbulence using low-viscosity fluids,
whereas Abdurakhimov et al. (2015) found another cascade in place of the expected equilibrium
state because of large-scale dissipation (Lvov et al. 2015).

For deep-water gravity waves, the inverse cascade spectrum of Equation 11 has been confirmed
by direct numerical simulations (Annenkov& Shrira 2006; Korotkevitch 2008,Korotkevich 2012).
Laboratory observations of the inverse cascade in gravity wave turbulence were limited to a nar-
row inertial range due to the small size of the container used (Deike et al. 2011), while recent
attempts have been inconclusive using a larger cylindrical basin (Campagne et al. 2019a) or an-
other type of forcing (Nazarenko & Lukaschuk 2016). Michel (2019) showed that in a cylindrical
container, gravity waves may sustain three-wave resonant interactions due to confinement as a
consequence of a new conserved quantity (angular pseudo-momentum). These interactions have
been evidenced in a gravity wave turbulence experiment in a high-gravity environment (Cazaubiel
et al. 2019b). Thus, the absence of an inverse cascade in the Campagne et al. (2019a) study may
be due to finite-size effects due to the specific shape used. By replacing the usual absorbing beach
of a large-scale rectangular wave basin with a reflective wall and by forcing multidirectional ran-
dom waves to foster wave interactions and homogeneity, Falcon et al. (2020) observed an inverse
cascade of gravity wave turbulence, compatible with the predictions of weak turbulence theory.
However, the inverse cascade was found to stop well before a condensate state is reached, i.e.,
before wave action piles up at the largest scale due to finite basin size effects. The limitation of
the inverse cascade results from the emergence of dissipative coherent structures (sharp-crested
waves) that are necessary in order to balance fluxes and allow the system to reach a statistically
stationary state (Falcon et al. 2020).

SUMMARY POINTS

1. The basic mechanism of energy transfer in weak turbulence theory (wave resonant inter-
actions) is validated experimentally in the gravity (four-wave interactions) and capillary
(three-wave interactions) regimes. However, dissipation and nonlinearity broaden the
dispersion relation and thus authorize more quasi-resonant interactions than just reso-
nant ones. Among them, unidirectional resonant interactions occur near the crossover,
as the gravity–capillary dispersion relation is not a pure power law.

2. Experimental capillary wave turbulence is well described by weak turbulence theory for
weak enough nonlinearity, although broad-scale dissipation must be taken into account.
On the contrary, the gravity wave spectrum is in strong disagreement because of the
presence of bound waves.

3. Boundary conditions and finite-size effects play a significant role in gravity–capillary
wave turbulence, and their effect is beginning to be considered.

4. Finite-amplitude effects have a crucial role in experiments in that they regularize fluxes
by means of coherent structures (e.g., sharp-crested waves, parasitic waves, bound waves,
wave breakings) involving nonlocal interactions, sinks of dissipation, and energy flux
fluctuations that are not taken into account theoretically.

5. Thanks to advances in experiments, it is now possible to achieve full spatiotemporal
reconstruction of the wave field in a weakly or strongly nonlinear regime in order to infer
wave statistics, waves’ nonlinear dispersion relationship, and the wave field homogeneity
level so that these can be accurately compared with theoretical predictions.
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FUTURE ISSUES

1. The role of finite-size effects on wave resonant interactions and on wave turbulence
deserves further studies with accurate space-time measurements.

2. Investigating the role of strongly nonlinear waves (coherent structures, bound waves,
sharp-crested crests, parasitic waves, etc.) and the corresponding nonlocal interactions
in strong wave turbulence should facilitate better modeling of field observations.

3. Performing direct numerical simulations of gravity–capillary wave turbulence including
dissipation is necessary for comparison with experiments and theories.

4. Extending the theory to more realistic conditions (e.g., broadband dissipation, finite
nonlinearity, finite size) would help researchers to understand observations and to de-
velop numerical codes for sea state forecasting.

5. Better identifying the mechanisms (such as inverse cascade, statistical equilibrium, and
condensate) governing large-scale properties of gravity–capillary wave turbulence is of
paramount interest, notably for climate modeling.
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