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ABSTRACT

Estimates of the wave directional spectrum of fetch-limited sea states are made from measurements made
with a heave–pitch–roll buoy at the Maui location off the west coast of New Zealand. The fetch-limited sea
states have significant wave heights between 0.5 and 4.5 m and are observed during persistent southeast wind
events, which have a well-defined fetch of 200 km. The integrated properties of the estimated angular spreading
distributions are in general agreement with those observed in previous studies. However, the angular distributions
estimated for the Maui location are bimodal at frequencies greater than the spectral peak frequency. This result
for deep water ocean waves is in contrast to the generally accepted unimodal angular distribution for wind seas,
but it supports recently reported measurements of the angular distribution of fetch-limited waves in Lake George,
Australia. Parametric relationships that describe the characteristics of the bimodal distributions are derived, and
the importance of the bimodality for some applications is discussed.

1. Introduction

Many offshore applications require information on
the directional characteristics of the wave field. These
characteristics can be conveniently specified by the di-
rectional wave spectrum. Like the omnidirectional case,
our understanding of the nature of the directional wave
spectrum is best studied when some of the many vari-
ables that contribute to the general sea state are constant.
Fetch-limited sea states provide this situation, and the
directional distribution of fetch-limited sea states has
been the subject of a number of studies. The most sig-
nificant are those of Mitsuyasu et al. (1975), Hasselmann
et al. (1980), and Donelan et al. (1985), each providing
parameterizations of a unimodal directional distribution.
Young et al. (1995) report an interesting study of fetch-
limited waves in Lake George, Australia, where they
observed the directional distribution to be bimodal at
frequencies greater than twice the spectral peak fre-
quency.

This paper reports observations of fetch-limited di-
rectional spectra, made near to the site of the Maui-A
platform off the West Coast of New Zealand (Fig. 1).
An earlier study (Ewans and Kibblewhite 1990) showed
that at this location southeast winds produce well-de-
fined fetch-limited wind seas at the Maui location. The
southeast winds funnel through Cook Strait and the
Manawatu Gorge and may persist from just a few hours
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to several days and sometimes reach gale force. The
study showed that the omnidirectional spectrum asso-
ciated with these ‘‘southeast events’’ conformed closely
to the JONSWAP (Hasselmann et al. 1973) spectral
shape, and the fetch dependencies of the parameters of
the spectrum were quite similar to those observed in the
JONSWAP experiment.

Similarly, the southeast winds, which occur approx-
imately 25% of the time at the Maui location, provided
a number of well-defined fetch-limited conditions dur-
ing a subsequent wave directional measurement pro-
gram. The corresponding sea states, which were mea-
sured with a WAVEC heave–pitch–roll buoy are the
basis of this paper.

A brief review of the mathematical definitions com-
monly used to describe the directional distribution and
its parameters is given in section 2. The measurement
program, data processing, and the procedure for se-
lecting the fetch-limited sea states are described in sec-
tion 3; the procedures for estimating the directional dis-
tributions are given in section 4. Comparisons of the
Maui directional distributions with previously published
distributions are then given in section 5. This is followed
by a description of the particular properties of the Maui
distributions and the development of a parameterization,
which describes these properties in section 6. A dis-
cussion on the importance of the bimodality is given in
section 7, followed by the conclusions in section 8.

2. The directional distribution

The surface wave field can be described by the two-
dimensional frequency–direction spectrum S( f, u),
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FIG. 1. The Greater Cook Strait Region of New Zealand. The WAVEC buoy was installed close
to the Maui-A platform. The sector depicts a southeasterly fetch of 194 km from the measurement
location.

which is often expressed as the product of the omni-
directional variance density spectrum S( f ), and the di-
rectional distribution H( f, u), as follows:

S( f, u) 5 S( f )H( f, u). (2.1)

The directional distribution has the properties of a
probability density function, namely,

H( f, u) $ 0 (2.2)

and

2p

H( f, u) du 5 1. (2.3)E
0

In turn, H( f, u) is often expressed as a Fourier series

`1 1
H( f, u) 5 1 [a ( f ) cosnu 1 b ( f ) sinnu] ,O n n5 6p 2 n51

(2.4)

where an, bn are the Fourier coefficients.
Measures of the central tendency and variation of H( f,

u) can be defined in terms of the first (n 5 1) pair or
second (n 5 2) pair of Fourier coefficients. In terms of
the first pair of Fourier coefficients,

b ( f )1u ( f ) 5 arctan (2.5)1 1 2a ( f )1

and
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s1( f ) 5 {2[1 2 ( ( f ) 1 ( f ))1/2]}1/2.2 2a b1 1 (2.6)

Following Kuik et al. (1988), u1( f ) is referred to as
the mean wave direction and s1( f ) the circular rms
spreading.

The analogous definitions in terms of the second pair
of Fourier coefficients are

1 b ( f )2u ( f ) 5 arctan (2.7)2 1 22 a ( f )2

and
1/2

1
2 2 1/2s ( f ) 5 [1 1 (a ( f ) 1 b ( f )) ] . (2.8)2 2 25 62

The angle u2( f ) is referred to as the dominant wave
direction (Haring and Heidemann 1980), and the quan-
tity s2( f ) is referred to as the directional spreading fac-
tor (Forristall and Ewans 1998); s2( f ) corresponds to
the square root of the ratio of the variance in line with
u2( f ) to the total variance.

3. Measurement program and data processing

a. The measurement program

The wave measurements were made with a Datawell
WAVEC buoy moored near the Maui-A platform, 32
km off the west coast of the North Island of New Zea-
land, in a water depth of 110 m. Measurements com-
menced in November 1986 and concluded in November
1987. Wind measurements were made with a Lambrecht
anemometer installed on the Maui-A platform at a height
of 95 m above sea level.

b. Preliminary processing

The signals of heave and pitch and roll angles were
digitized at 1.28 Hz, and on each half hour, coincident
and quadrature spectra (co–quad spectra) were com-
puted from the previous 20 minutes of data. Spectral
analysis followed the Welch (1967) technique with the
final spectrum being an average of six subseries of 200-
s length and having approximately 12 degrees of free-
dom. The co–quad spectra were corrected for the re-
sponse of the buoy heave filter and then smoothed from
0.16 to 0.50 Hz, resulting in spectra with 0.005-Hz res-
olution from 0.03 to 0.155 Hz and 0.010-Hz resolution
from 0.16 to 0.50 Hz.

The first four Fourier coefficients of the directional
spectrum were calculated from the co–quad spectra in
the standard way (e.g., Long 1980), and subsequently
spectra for the mean wave direction u1( f ) and the cir-
cular rms spreading s1( f ) were calculated.

The wind data were recorded on a strip chart, from
which the 10-min mean speed and direction were ob-
tained at hourly intervals. The wind speeds were re-
duced to an equivalent wind speed at 10 m above sea
level using a neutral wind profile.

c. Selection and processing of steady sea states

A population of southeasterly spectra was established
by selecting all those spectra for which the wind direc-
tion was from the southeast and the mean wave direction
was within the sector 1008–1508. From this population
a subselection of steady spectra was made on the basis
that

1) the wind speed was steady to within 1 m s21 for at
least 4 hours (based on the last five wind estimates),
and

2) S( f ), s1( f ), and u1( f ) were approximately constant
for the last 3 hours (based on the last 7 half-hourly
spectra).

This selection process resulted in a subpopulation of
77 groups of co–quad spectra, each group containing
the half-hourly spectra for the last 3 hours. The co–quad
spectra in each group were averaged, resulting in 77
average co–quad spectra for fetch-limited conditions,
with each average spectrum having approximately 72
degrees of freedom. The first four Fourier coefficients
of the directional spectrum were again calculated from
these averages, and in turn spectra for the mean wave
direction u1( f ), the circular rms spreading s1( f ), and
the directional spreading factor s2( f ) were calculated.

A feature of the wave climate at the Maui location
is the presence of a more or less persistent swell from
the southwest. Fortunately, this component occurs at
low-frequency, generally having a peak frequency of
around 0.080 Hz (Ewans and Kibblewhite 1992), is well
separated from the wind sea frequency band, and can
easily be removed from the analysis by restricting fur-
ther calculations and analysis to the high-frequency
bandwidth corresponding to the local southeast wind
sea. In a few cases it was not possible to apply this
simple filter because the southeast sea bandwidth ex-
tended to low-frequency into the swell band, but these
cases corresponded to large local sea states in which the
local wind sea component completely swamped the
southwest swell component. In these cases, in the fre-
quency region in which the two components overlapped,
the spectral levels associated with the wind sea were at
least an order of magnitude larger than the swell com-
ponent, and the mean wave direction at these frequen-
cies was equal to the wind sea mean direction. Even so,
results presented later show that the buoy is still able
to resolve the directionality of the relatively small swell
component in these cases. The selection of the low-
frequency cutoff of the wind sea component was done
by eye, based on plots of the omnidirectional, mean
direction, and circular rms spreading spectra.

A number of parameters were calculated over the
band width of the local southeast wind-sea, including
the following:

R The maximum S( f p) of S( f ) and the frequency of the
maximum f p.

R The significant wave height, Hs 5 4 m0, and the meanÏ



498 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

wave period, T2 5 m0/m2, where the mi are the mo-Ï
ments of the omnidirectional spectrum.

In addition, the vector average wind speed and di-
rection, averaged over the three hours, were stored for
each spectrum.

The 77 spectra had significant wave heights ranging
between 0.54 and 4.2 m, mean wave periods between
3.3 and 6.9 s, and had associated vector average wind
speeds ranging from 4.6 to 18.3 m s21, and inverse wave
ages, u 10/cp [where u 10 is the 3-h vector average wind
speed reduced to 10 m above sea level and cp 5 g/(2pf )
is the deep water phase speed at the spectral peak],
ranging from 0.70 to 1.4.

4. Estimation of the directional distribution

a. Model-independent estimates

An estimate was made of the directional distribution
from the Fourier coefficients at each frequency, using
both the maximum entropy method (MEM) (Lygre and
Krogstad 1986) and the maximum likelihood method
(MLM) (Isobe et al. 1984). Both of these techniques
are model independent and allow for the possibility
that the distribution may be bimodal.

The resulting MEM and MLM estimates at each fre-
quency were subjected to further analysis, and the fol-
lowing parameters were computed for each:

R The local maxima and minima and their directions.
For each estimate there may be either one or two
local maxima/minima, depending on whether the par-
ticular distribution has respectively one or two peaks.

R Three directional distribution shape parameters as
defined by Kuik et al. (1988): p, the ratio of the area
of the distribution from umax to umax 2 p to the area
of the distribution from umax (the angle at which the
maximum of the distribution occurs) to umax 1 p; q,
the ratio of the largest minimum to the smallest max-
imum (if the distribution is bimodal); and r, the ratio
of the area of the secondary lobe over the area of
the main lobe. Kuik et al. (1988) used these param-
eters to evaluate whether directional distributions
could be categorized as unimodal and symmetric or
nearly unimodal and symmetric if either a distribu-
tion was unimodal but not exactly symmetric or a
distribution was strictly bimodal but the secondary
lobe was relatively insignificant compared with the
main lobe.

R A unimodal/symmetric parameter Upqr , which is set
to 1 if the distribution can be categorized as unimodal
and symmetric or nearly unimodal and symmetric
(based on the criteria specified in appendix B of Kuik
et al. 1988) and 0 if not.

b. Symmetric double Gaussian estimates

An alternative approach to deriving the directional
distribution is to assume the true distribution can be

described by a parametric model. Several unimodal
parametric models that have been proposed are given
by Borgman (1979). Included are the ‘‘cosine2s,’’
wrapped normal, and von Mises models. An advantage
of these models is that the number of parameters need-
ed to describe them is less than four, the number of
Fourier coefficients available for calculating them. The
disadvantage of unimodal distributions is that they can-
not describe the directional distribution at a given fre-
quency in which wave components are arriving from
different directions.

Bimodal distributions can, of course, describe up to
two components, but in general they require more than
four parameters to describe them. While four-param-
eter bimodal models have been proposed, by Hassel-
mann et al. (1980) and Borgman and Yfantis (1978),
they are not ideal. The bimodal model proposed by
Hasselmann et al. is a double cosine model in which
both spreading parameters are forced to be equal to
obtain a unique solution, and in the case of the Borg-
man and Yfantis model, the parameters cannot be di-
rectly related to the properties of the wave field.

More recently, Benoit (1993) describes an evaluation
of a bimodal Gaussian model containing five param-
eters, which are calculated from the co–quad spectra
by a least squares method. Benoit concluded that the
method gave good estimates, but the evaluations were
based on simulations of measurement arrays with at
least four elements. A heave–pitch–roll buoy is effec-
tively a three-element array, for which Benoit’s bi-
modal Gaussian model contains too many parameters.

The properties of the MEM and MLM directional
distributions of the Maui fetch-limited sea states pre-
sented in section 6b, suggest that the number of pa-
rameters in the bimodal Gaussian model can be reduced
for fetch-limited sea states. In particular, it is reason-
able to assume that the directional distribution is sym-
metric about the mean, and therefore that each of the
two components of the bimodal Gaussian distribution
can be assumed to have both the same amplitude and
the same spreading. The proposed bimodal distribution
then has the following form:

H( f, u)

2`1 1 u 2 u ( f ) 2 2pkm15 exp 2O 5 1 2[ ]2 s( f )k52`Ï8p s( f )

21 u2u ( f ) 22pkm21exp 2 ,1 2 6[ ]2 s( f )

(4.1)

where s ( f ) is the angular width and is a measure of
the spreading of each component and um1( f ) and um2( f )
are the locations of the peaks.

The Fourier coefficients for this function are given by
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2 22s 2s
a 5 exp cos(u ) 1 exp cos(u )1 m1 m21 2 1 22 2

2 22s 2s
b 5 exp sin(u ) 1 exp sin(u )1 m1 m21 2 1 22 2

2 2a 5 exp(22s ) cos(2u ) 1 exp(22s ) cos(2u )2 m1 m2

2 2b 5 exp(22s ) sin(2u ) 1 exp(22s ) sin(2u ).2 m1 m2

(4.2)

Equation (4.2) is a set of four equations with three
unknowns, s, um1, and um2, which can be solved by a
least square approach. The objective function O to be
minimized is

O 5 2 b1)2 1 (â2 2 a2)22 ˆ(â 2 a ) 1 (b1 1 1

1 2 b2)2,ˆ(b2 (4.3)

where, for example, â1 is the first Fourier coefficient,
estimated from the data.

Equation (4.3) was solved for each frequency of the
77 spectra by a nonlinear optimization with the con-
straints that 0 # s ( f), um1, um2 # 2p. Initial guesses of
the three parameters were obtained from the MEM es-
timates. The results are presented in section 6c.

5. Comparison with other distributions

a. Mitsuyasu distribution

Mitsuyasu et al. (1975) measured directional wave
spectra with a cloverleaf buoy, at open sea locations in
the Sea of Japan and the Pacific Ocean and in a bay on
the east coast of Japan. Meteorological data were col-
lected from a tending ship near each observation station.
They chose five datasets for estimating the directional
distribution, with wind speeds ranging from 7 to 10 m
s21 and significant wave heights from 0.74 to 2.34 m.
The cloverleaf buoy enables the first four pairs of the
coefficients in Eq. (2.4) to be calculated. However, the
higher-order coefficients, which are available from the
measurement of the wave curvature, were not used be-
cause they were thought to be inaccurate. Thus, the data
used by Mitsuyasu et al. (1975) were the same as if the
measurement instrument was a heave–pitch–roll buoy.

The Mitsuyasu distribution is based on the ‘‘cosine2s’’
form,

u 2 u ( f )12sH( f, u) 5 A(s) cos , (5.1)1 22

where A(s) is a normalization factor to ensure Eq. (2.3)
is satisfied. The parameter s is a function of frequency.

Based on their data, Mitsuyasu et al. (1975) proposed
the following parameterization for s:

 5f
s , f , fp p1 2 fp

s 5 (5.2)
22.5f

s , f $ f , p p1 2fp

where sp is the value of s at the frequency of the spectral
peak f p, given by

22.5u10s 5 11.5 , (5.3)p 1 2cp

where u10 is the wind speed at 10 m MSL. The directional
distribution defined by Eqs. (5.1), (5.2), and (5.3) will
be referred to as the Mitsuyasu distribution in the re-
mainder of this paper.

b. Hasselmann distribution

Hasselmann et al. (1980) report an analysis of data re-
corded during the JONSWAP experiment. The directional
wave data were collected with a heave–pitch–roll buoy
located in 22 m of water 52 km off the island of Sylt in
the North Sea. Meteorological data were also collected at
this site and a meteorological buoy located 27 km offshore
in a water depth of 18 m. The dataset chosen for analysis
ranged in wind speed from 6.8 to 15.0 m s21 and significant
wave heights from 0.55 to 1.88 m.

The parameterization proposed by Hasselmann et al.
(1980) for their directional distributions is also based
on the cosine2s form with the following parameteriza-
tion for s:

 4.06f
6.97 , f , 1.05 fp1 2 fp

s 5 (5.4)
mf

9.77 , f $ 1.05 f , p1 2fp

where m has a dependence on wave age as follows:

u10m 5 22.33 2 1.45 2 1.17 . (5.5)1 2cp

The directional distribution defined by Eqs. (5.1),
(5.4), and (5.5) will be referred to as the Hasselmann
distribution in the remainder of this paper.

c. Donelan distribution

Donelan et al. (1985) report an analysis of data re-
corded with an array of 14 wave staffs in Lake Ontario
and a similar, scaled down version in a large laboratory
tank. The wave staffs were mounted on a tower 1 km
offshore in a water depth of 12 m. Meteorological data
were also collected from the tower and with a buoy 11
km from the tower in deeper water. Eighty-five field
recordings and seven laboratory recordings were used
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FIG. 2. The s parameter of the ‘‘cosine 2s’’ distribution, plotted as
a function of f / f p for the Maui data and the Mitsuyasu and Hassel-
mann distributions.

in the analysis. Donelan et al. (1985) do not report the
absolute range of wind speed and significant wave
heights associated with their analysis dataset, but the
field data were in the range 0.83 , u10/cp , 4.6 and
the laboratory data in the range 7.2 , u10/cp , 16.5.

Based on the theoretical directional characteristics of
freely propagating, second-order Stokes wave groups
and analysis of their data, Donelan et al. (1985) pro-
posed the following directional distribution:

H( f, u) 5 0.5b sech2b(u 2 u1( f )), (5.6)

where

 1.3f
2.61 , 0.56 , f / f , 0.95p1 2fp

21.3f
b 5 2.28 , 0.95 , f / f , 1.6 (5.7)p1 2fp

1.24, f / f . 1.6. p

The Donelan et al. (1985) dataset only extended to
f / f p 5 1.6. Thus, the constant value of b 5 1.24 for
frequencies greater than 1.6 was assumed.

The directional distribution defined by Eqs. (5.6) and
(5.7) will be referred to as the Donelan distribution in
the remainder of this paper.

d. Donelan–Banner distribution

Based on high-frequency stereo photography, Banner
(1990) concluded that b was not a constant at values
of f / f p . 1.6 as specified by Donelan et al. (1985) and
proposed that

(5.8)2{20.410.8393 exp[20.567 ln( f / f ) ]}pb 5 10 , f / f . 1.6.p

Thus, this distribution, referred to as the Donelan–
Banner distribution in this paper, consists of the Donelan
distribution but with the Banner value for b for f / f p .
1.6.

e. Comparisons with the Maui data

1) THE s PARAMETER

The s parameter in the cosine2s distribution can be
estimated directly from the circular rms spreading as

2
s 5 2 1. (5.9)

2s 1

This parameter was calculated for all 77 Maui spectra
and is plotted as a function of f / f p in Fig. 2. Also plotted
in Fig. 2 are the s values from the Mitsuyasu and the
Hasselmann distributions for u10/cp 5 0.7 and 1.4. Fig-
ure 2 shows that the Maui data are in general agreement
with previous observations of this parameter—the
spreading is a minimum (s maximum) at the spectral
peak but increases with increasing and decreasing fre-

quency. With the exception of the Mitsuyasu u10/cp 5
0.7 distribution, the Maui distributions, with higher s
values, show less directional spreading than the other
distributions in the region of f p and over the high-fre-
quency range of the spectrum. The data also show a
more rapid increase in spreading with decreasing fre-
quency below f p.

Hasselmann et al. (1980) argue that, if the directional
spreading is controlled predominantly by nonlinear
wave–wave interactions, then s should depend mainly
on f / f p while, if atmospheric input was the controlling
process, then s should depend mainly on u10/cp. To in-
vestigate the behavior of the Maui s values, the spectra
were categorized into groups of inverse wave age, the
frequency normalized by f p and binned, and an average
s value calculated for each bin. This resulted in average
s curves for each category, and these are plotted in Fig. 3.

The curves in Fig. 3 are essentially superimposed
under the frequency normalization. There is, however,
some indication of a small systematic difference be-
tween the curves over the frequency range 1.5 , f / f p

, 3 and, hence, a possible weak dependence of s on
u10/cp.

For direct comparison with the Mitsuyasu and Has-
selmann functions a parameterization for s was estab-
lished for the Maui data. Following the same approach
as Mitsuyasu et al. (1975) and Hasselmann et al. (1980),
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FIG. 3. Maui s parameter curves. Each curve is the average of s
as a function of f / f p for the specified range of inverse wave age.

FIG. 4. Circular rms spreading s1 plotted as a function of f / f p for
the Maui data and the Mitsuyasu, Hasselmann, Donelan, and Do-
nelan–Banner distributions.

it was assumed that s could be determined by a relation
of the form

mf
s 5 k (5.10)1 2fp

and the constants k and m determined by linear regres-
sion analysis of log(s) versus log( f / f p).

The linear regression was performed on the data for
f / f p , 1 and for f / f p $ 1. On the basis of the lack of
a clear dependence of the Maui s parameter on u10/cp,
all 77 spectra were included in the regression.

The analysis resulted in the following s parameter-
ization for the Maui data:

 9.47f
15.5 , f / f , 1p1 2 fp

s 5 (5.11)
21.94f

13.1 , f / f $ 1. p1 2fp

2) THE s1 PARAMETER

Figure 4 gives a comparison of the circular rms
spreading calculated from the Maui data with the pub-
lished distributions. The Mitsuyasu and Hasselmann
curves have been included by applying Eq. (5.9); while
the Donelan and Donelan–Banner curves have been de-

termined from Eq. (2.6), where the Fourier coefficients
were derived from the respective distributions. Again,
good general agreement is seen between the Maui and
other distributions, but at the peak frequency the Maui
s1 values are closer to the Donelan and Donelan–Banner
distributions than to the Mitsuyasu (u10/cp 5 1.4) and
Hasselmann distributions (both of which suggest more
spreading in the region of the peak). The Mitsuyasu (u10/
cp 5 0.7) curve shows the least spreading in the region
of the peak. At higher frequencies, f / f p . 1.4, it is clear
that the spreading is not constant as given by the Do-
nelan distribution.

When the Maui s1 data are grouped into the same
wave age categories as the s data presented in Fig. 3,
no significant wave age dependency is apparent (Fig.
5); although as for the s parameter curves in Fig. 3, a
small systematic difference between the Fig. 5 curves
over the frequency range 1.5 , f / f p , 3 indicates the
possibility that a weak dependency may exist.

3) THE s2 PARAMETER

A comparison of the directional spreading factor cal-
culated from the Maui data with the published distri-
butions is given in Fig. 6. The curves have been deter-
mined from Eq. (2.8), where the Fourier coefficients are
derived from the respective distributions. Again there
is good qualitative agreement between the Maui data
and the published distributions. The directional spread-



502 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 5. Maui s1 curves. Each curve is the average of s1 as a func-
tion of f / f p for the specified range of wave age.

FIG. 6. Directional spreading factor s2 plotted as a function of f /
f p for the Maui data and the Mitsuyasu, Hasselmann, Donelan, and
Donelan–Banner distributions.

FIG. 7. Maui s2 curves. Each curve is the average of s2 as a func-
tion of f / f p for the specified range of wave age.

ing factor attains a maximum at the peak frequency and
decreases with increasing and decreasing frequency. At
around f / f p 5 2.8 the Maui s2 values tend to a mini-
mum, but at higher frequencies they increase again. The
increase of s2 above f / f p 5 2.8 results from an increase
in the in-line variance that occurs at these frequencies.

It is clear from the figure that the Maui s2 values are
significantly higher than the Hasselmann and Mitsuyasu
(u10/cp 5 1.4) curves in the region of the peak frequency,
and over most of the frequency range they are more or
less bounded by the Donelan–Banner and the Mitsuyasu
(u10/cp 5 0.7) curves.

As for the s1 data, the s2 values grouped by wave
age, presented in Fig. 7, show some but inconclusive
evidence for a weak dependence on wave age for f / f p

. 1.5.

6. The Maui directional distribution

a. Characteristics of the MEM and MLM
distributions

The cosine2s parameterization of the Maui data de-
rived in section 5e(1) permits a directional distribution
function to be ascribed to the Maui fetch-limited data,
which is unimodal, symmetric but based only on the
first pair of Fourier coefficients in Eq. (2.4). The esti-
mates of the directional distribution, using the maximum
entropy and maximum likelihood methods, make use of
all of the Fourier coefficients available from heave–
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FIG. 8. Shaded image plot of the MEM and MLM estimates for one of the spectra (Hs 5 3.8 m, T2 5 6.4 s). Dark corresponds to high
levels, light to low levels. The spectral levels at each frequency are normalized to have a maximum of one.

pitch–roll buoy data. The resulting distributions show
that a simple cosine2s form is not appropriate for the
fetch-limited Maui data. In particular, the estimates
show that for frequencies above the spectral peak a uni-
modal, symmetric distribution is not appropriate.

Figure 8 is an example of the MEM and MLM es-
timates for one of the spectra (Hs 5 3.8 m, T2 5 6.4
s), and Fig. 9 shows frequency slices through these spec-
tra. Both distributions are unimodal at the peak fre-
quency but become bimodal at frequencies above the
spectral peak, with the MEM estimate becoming bi-
modal at around 0.17 Hz (;1.4 f p) and the MLM at
around 0.25 Hz (;2 f p).

The observation that fetch-limited sea states have bi-
modal distributions at frequencies greater than the spec-
tral peak frequency has previously been reported by
Young et al. (1995), who showed that their directional
spectra, which were recorded with a wave gauge array,
demonstrated bimodality at frequencies greater than
2 f p. This provided experimental confirmation of earlier
work by Banner and Young (1994), who showed that
the directional distribution of components in the equi-
librium range of the spectrum were bimodal when cal-
culations were made using the full solution to the non-
linear wave–wave interaction source term. Young et al.
(1995) presented a comparison between a directional
spectrum calculated this way with their spectra and
showed that there was good agreement. Accordingly,
they concluded that the bimodal effect they observed

was caused by nonlinear wave–wave interactions. They
also speculated why the phenomenon had not been pre-
viously reported and cited a number of publications in
which the effect was visible but apparently given little
or no attention. They also made the observation that the
effect will clearly not be observed in studies based on
analyses where the directional distribution has been as-
sumed to be unimodal, such as reported by Mitsuyasu
et al. (1975).

The Young et al. (1995) data were collected with a
wave gauge array in Lake George, Australia. The lake
had a water depth of 2 m and the reported waves were
in the range 1.7 , u10/cp , 3. The Maui spectra show
that the effect is also present in open ocean conditions.
In addition as the effect has been observed with a heave–
pitch–roll buoy, it can be concluded that a three-element
system, which provides estimates of the first two pairs
of Fourier coefficients in Eq. (2.4), is capable of re-
solving the bimodality.

A feature of the estimates was that the MEM estimate
always gave an apparent improvement in the resolution
of the bimodal effect. Previous studies (e.g., Nwogu et
al. 1987) have noted the high resolving power of the
MEM estimate by comparison with the MLM estimate,
while others (e.g., Brisette and Tsanis 1994), based on
synthetic data, have concluded that the MEM estimate
may at times provide two peaks when there is actually
only one. Krogstad (1991) argues that this observation
is not necessarily a weakness of the MEM estimate on
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FIG. 9. Frequency slices through the shaded image plots in Fig. 8.

the grounds that, if the form of the directional distri-
bution is already known, then additional information is
known and the MEM estimate is no longer an optimal
estimate. While such a result has not been reported for
the MLM estimates, it has been observed to artificially
broaden the spectrum (Young 1994). Of course, when
we are estimating directional spectra from data mea-
sured in the open ocean, we do not know the directional
distribution a priori and therefore we cannot dismiss
either of the estimates. However, it should be noted that
the MEM estimate preserves the Fourier coefficients—
that is, the Fourier coefficients calculated from the es-
timate are identical to those used to estimate it; this is
not the case for the MLM estimate. In view of these
issues, both MEM and MLM estimates were made from
the Maui data, and both sets investigated in parallel.

The extent of the bimodality in the MEM and MLM
estimates was compared by estimating the percentage

of unimodal/symmetric estimates, as given by the uni-
modal/symmetric parameter Upqr. This is plotted as a
function of f / f p in Fig. 10. The figure shows that in the
region of the peak frequency both estimates produce
predominantly unimodal/symmetric distributions. How-
ever, while this occurs through to around f / f p ; 1.7 in
the case of MLM, the percentage of MEM unimodal/
symmetric distributions quickly diminishes with in-
creasing f / f p, and there are effectively no occurrences
above f / f p ; 1.7. The percentage of MLM unimodal/
symmetric distributions also decreases above f / f p ;
1.7, but increases again above f / f p ; 3. It is not clear
why this tendency occurs but, whenever the distribution
is unimodal/symmetric at f / f p . 3, the peak is located
at an angle close to that of one of the peaks of a neigh-
boring bimodal distribution. The figure also indicates
occurrences of distributions that are not unimodal/sym-
metric below f / f p 5 1.0 for both MEM and MLM dis-
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FIG. 10. The percentage of unimodal/symmetric MEM and MLM
estimates plotted as a function of f / f p.

tribution types, indicating the existence of bimodal dis-
tributions at frequencies below the peak, something
which was noted by Young et al. (1995) to occur in the
theoretical estimate of the directional spectrum. How-
ever, the increase in the number of bimodal distributions
below f / f p 5 1.0 in the Maui data may result from the
presence of a swell component in some of the spectra.

b. Characteristics of the components of the MEM and
MLM distributions

The results presented in the previous section clearly
indicate that at frequencies sufficiently greater than the
peak frequency a bimodal representation of the direc-
tional distribution is more appropriate than a unimodal
one; they also indicate that this may be the case at
frequencies less than the peak frequency. This suggests
that fetch-limited sea states have bimodal directional
distributions.

An ideal fetch-limited event will have a directional
distribution symmetric about the mean direction; and,
if that distribution is indeed bimodal, the two modes
will be identical. It is therefore of interest to assess the
degree of symmetry that exists in the Maui distributions.
This can be done by comparing the properties of the
two peaks or components identified in the MEM and
MLM estimates.

In order to quantify the properties of the components
that make up the MEM and MLM distributions, the
estimates were peak fitted with a pseudo–Voigt function.

The pseudo–Voigt function is a combination of a Gauss-
ian and Lorentzian (or Cauchy) distribution. The com-
bination allows for a flexible fit to a peak—the Lor-
entzian distribution allowing for a broad distribution and
the Gaussian distribution accommodating a peaked dis-
tribution. Thus, an equation of the following form (the
pseudo–Voigt function) was fitted to each distribution:

n

H( f, u) 5 A ( f )[F ( f )L(u) 1 (1 2 F ( f ))G(u)],O i i i
i51

(6.1)

where

25 u 2 u ( f ) 2 2kpiG(u) 5 exp 22.77 (6.2)O 1 2[ ]G ( f )k525 i

and
5 2G ( f )iL(u) 5 . (6.3)O 2 24(u 2 u ( f ) 2 2kp) 1 G ( f )k525 i i

The values of the parameters of the ith peak—Ai( f ) the
amplitude, Fi( f ) the fraction of Lorentzian to Gaussian
function, ui( f ) the direction, and G i( f ) the half-width
(or the full width at half height)—quantify the com-
ponents.

The summation in Eq. (6.1) allows for the possibility
of one (n 5 1) or two peaks (n 5 2) in the spectrum,
and the summation over k in the Gaussian and Lorent-
zian functions ensures the distributions are wrapped
over 2p (the range from 25 to 5 was found to be suf-
ficient to give a good fit to all the estimates).

Plots of the locations of the peaks of the two com-
ponent (n 5 2) fits to the MEM distributions and of
their angular separation are given in Fig. 11. When plot-
ted in this way the angular separation for each spectrum
essentially collapse onto a single curve, indicating that
the angular separation can be considered a function of
f / f p only. The continuous lines are the locations of the
maxima and their angular separation [respectively plots
(a) and (b)] of the Exact-NL distribution presented in
Young et al. (1995). It should be noted here that the
Exact-NL lines are derived from the maxima of the
Exact-NL distribution, whereas the Maui points are the
maxima of the component peaks. The locations of the
maxima of the Exact-NL distribution components,
which would be directly comparable with the Maui
points, are likely to be slightly different (larger sepa-
ration) to those given by the lines. This difference will
be small at higher frequencies where the peaks are well
resolved but larger at lower frequencies where the com-
ponents of the distribution begin to merge.

The data were also categorized into groups of inverse
wave age, binned into f / f p classes, and an average an-
gular separation calculated for each bin. The resulting
average angular separation curves for each category are
plotted in Fig. 12. As was found for the other parameters
where this type of plot was produced, there is no clear
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FIG. 11. Peak locations (a) and angular separation of peaks (b) of
the pseudo–Voigt function components fitted to the MEM distribu-
tions.

FIG. 12. Angular separation of peaks. Each curve is the average
separation of the peaks of the pseudo–Voigt function fits to the MEM
distributions, as a function of f / f p, for the specified range of inverse
wave age. The points are the values of the peak separation defined
by 2sec21(u/c) for the Maui data.

dependence of angular separation on wave age, but over
the frequency range 1.5 , f / f p , 3, the angular sep-
aration tends to be larger for higher values of u/cp or
equivalently for the ‘‘younger’’ wind seas. Thus, some
weak dependence of the angular separation on wave age
cannot be entirely discounted over this range of f / f p.

Figures 11 and 12 show clearly that the Maui distri-
butions are bimodal above the peak frequency. They
also indicate bimodality for frequencies below the peak
frequency, but the spread of some of these locations
around the southwest and west directions suggest that
a number of these points are small swell components.
In the analysis, the low-frequency swell was excluded
from further analysis (by excluding the frequency band
of the swell) except where the wind sea component
extended into low frequencies and ‘‘swamped’’ the swell
component. The figures show that the buoy and analysis
is still able to resolve the small swell component in these
cases.

The Phillips turbulent pressure fluctuation theory for
wave growth also predicts a bimodal wave direction
spectrum. The theory predicts that wave growth is larg-
est when the component of wind velocity in the direction
of propagation equals the wave speed. A ‘‘resonance’’
angle f 5 sec21(U/c) is defined (Longuet-Higgins et
al. 1963). The expected angular separation of peaks
based on f calculated from the Maui data (wind and
phase speeds) are plotted in Fig. 12. Clearly, these res-

onance angle peak separation values do not match the
observed Maui curves. This result, together with the
fact that the resonance angle is only a function of wave
age, whereas no clear dependency of any of the direc-
tional parameters on wave age could be identified in the
Maui data, suggests that the Phillips turbulent pressure
fluctuation theory for wave growth is not responsible
for the observed angular separation. On the other hand,
the Exact-NL lines on the plots (Fig. 11) show remark-
ably good agreement with the Maui data, leading to the
conclusion that it is nonlinear wave–wave interactions
that are primarily responsible for the bimodality.

The properties of the two components were examined
by categorizing them as either right or left, depending
on whether a clockwise or an anticlockwise rotation is
required to rotate from the mean direction to the direc-
tion of the component’s peak. These are plotted in Fig.
13. Figure 13a is a plot of the right and left peak location
relative to the mean u1 at that frequency, Fig. 13b is a
plot of the respective amplitudes, and Fig. 13c is that
of the half-widths. In the plots, points with f / f p , 1.3
are plotted as open circles.

If the right and left properties were equal, all the
points would lie on the straight line. If all points of all
the properties lay on the straight line, then the distri-
bution would be perfectly symmetrical. This is clearly
not the case, but in general, it can be seen that it is
mostly the higher amplitude (Fig. 3b) points with f / f p
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FIG. 13. Properties of the right (clockwise rotated from the mean
direction) and left (anticlockwise rotated) components of the pseudo–
Voigt function fits to the MEM distributions: (a) peak locations, (b)
peak amplitudes, and (c) peak half-widths. Points with f / f p , 1.3
are plotted as open circles.

, 1.3 that are farthest from the straight line—the points
with f / f p $ 1.3 more or less lie on the straight line.

Many of the total number of distributions with fre-
quencies in the region of the spectral peak were uni-
modal and symmetric (see Fig. 10); those that were not
(plotted in Fig. 13) were often nearly unimodal, in which
the distribution comprised one large peak and a sec-
ondary smaller one that accounted for a small sidelobe
to the main peak. These cases account for the majority
of the distributions that are not symmetric.

Nevertheless, the asymmetry that is evident to a larger
or smaller extent at all frequencies in Fig. 13 should
not be overlooked. For f / f p , 1.3, the right amplitude
is often substantially larger than the left one and closer
to the mean direction; this is consistent with a nearly
unimodal distribution. For f / f p $ 1.3, the points in Figs.
13a and 13b appear to follow a straight line with a slope
slightly different from unity. It is not clear what is re-
sponsible for the apparent asymmetry; but possible
causes might be some residual effect of the low-fre-
quency swell or some asymmetry in the fetch, which
would account for the increased asymmetry in the low-

frequency, older, components and the reduction in the
asymmetry at higher frequencies (larger f / f p). The mea-
sured directional distributions reported by Young et al.
(1995) also show some asymmetry, but they believed
this to be due to sampling variability—something that
is also present in the Maui data.

Comparable plots to those in Figs. 11–13, made for
the MLM data but not given here, showed similar ef-
fects. The more significant differences were that the
MLM plots had fewer points (i.e., fewer bimodal dis-
tributions in the MLM), the angular separation was
slightly smaller, and the half-widths slightly larger than
the MEM distribution points.

c. A proposed parameterization based on the
symmetric double Gaussian distribution

In this section, a new parameterization is developed
for the directional distribution of fetch-limited sea
states. The parameterization defines the bimodality for
frequencies above the spectral peak, while maintaining
consistency with the integrated spreading parameters s1

and s2.
Based on the characteristics demonstrated in the pre-

vious section it is assumed that the bimodality displayed
by the distributions above the peak is symmetric. This
is supported by the heuristic argument that, if the bi-
modality is a robust feature of nonlinear wave–wave
interactions, the growth of each peak should be equal.

In addition, while the general shape of the MEM and
MLM estimates are similar, it is clear that their differ-
ences (e.g., see Fig. 9), which arise because of the lim-
ited number of available Fourier coefficients, suggest
that there is a number of possible functions that will
give the same first four Fourier coefficients of the mea-
sured distribution. For convenience then, it is assumed
that the form of this bimodal, symmetric distribution
should be a bimodal wrapped Gaussian function of the
type defined in Eq. (4.1). This is a relatively convenient
function for computer applications, and the parameters
can be estimated directly from the Fourier coefficients
of the measurements by the method of least squares
described in section 4. The resulting estimates are no
less a valid realization as the MEM and MLM estimates.

The parameters resulting from the least squares fitting
are presented in Fig. 14. Figure 14a is a plot of the peak
locations, um1, um2, and Fig. 14b is a plot of the angular
width parameter s. Figure 14a also shows the Exact-
NL curves for comparison. The peak locations of the
symmetric double Gaussian are generally the same as
those of the MEM (Fig. 11), but the symmetric double
Gaussian does not, however, show as clear a separation
of the peaks as the MEM estimates for f / f p , 2. The
plot of the angular width parameter s (Fig. 14b) shows
that it has a minimum at f p and increases both for f /
f p , 1 and for f / f p . 1, but largely levels out for f /
f p . 1.7. The few points at f / f p . 2 with values of s
. 458 corresponded to estimates in which the peak lo-
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FIG. 14. Symmetric double Gaussian parameters, from fitting to
the Maui data. (a) Peak locations, continuous lines are the locations
of the Exact-NL data from Young et al. (1995), (b) spreading param-
eter s.

cations were closer together than the majority of neigh-
boring points at those values of f / f p—thus, the larger
angular width makes up for the smaller angular sepa-
ration of the peaks for those points.

The parameterization is established through two func-
tions of the normalized frequency—one which models
the angular separation of the peaks and another which
models the shape of the angular width parameter. Clear-
ly, there is a significant change in the behavior of the
data at f p, and to adequately account for this, a pair of
functions for f / f p , 1 and another pair for f / f p $ 1
are specified. There are any number of functions that
can adequately describe the shape of the angular sep-
aration and angular width respectively; but this number
is substantially reduced if the functions are also required
to give a distribution that adequately describes the
spreading parameters s1( f ) and s2( f ).

The functions selected, based on curve fits, are as
follows:

Du 5 14.93 for f , fp

21f
Du 5 exp 5.453 2 2.750 for f $ f , (6.4)p1 2[ ]fp

where Du is the angular separation, um2 2 um1, of the
peaks, and

27.929f
s 5 11.38 1 5.357 for f , fp1 2fp

22f
s 5 32.13 2 15.39 for f $ f . (6.5)p1 2fp

Thus, the angular separation is nonzero at all fre-
quencies but set equal to the fixed value of 14.93 degrees
for f , f p. Functions (6.4) and (6.5) together with Eq.
(4.1) constitute the symmetric double Gaussian distri-
bution. In the application of this parameterization the
peaks are assumed to be at the same but opposite angles
from the mean wave direction. The distribution param-
eters and the curves resulting from the parameterization
are plotted in Fig. 15. Figure 15a is the plot of the
angular separation of the peaks, Du; Fig. 15b is the
Gaussian angular width parameter s; Fig. 15c is the
circular rms s1; and Fig. 15d is the directional spreading
factor s2.

The shape of the symmetric double Gaussian with
this parameterization is given in the shaded image plot
in Fig. 16 and the frequency slices in Fig. 17. The fre-
quency scale is f / f p and the amplitudes have been nor-
malized to one in both plots. The figures demonstrate
clearly how the distribution is unimodal at low fre-
quency and bimodal at higher frequencies having a
shape rather like a tuning fork (Fig. 16). While the mod-
el is made up of two Gaussian components, the plots
show that the distribution does not become bimodal in
shape until f / f p . 2. This is more consistent with the
measured distributions when they are estimated from
the MLM procedure rather than the MEM distribution,
in which the bimodality becomes apparent at lower val-
ues of f / f p, and it is consistent with the observations
of Young et al. (1995).

7. Discussion

The Maui data suggest that fetch-limited sea states
have bimodal directional distributions, but how impor-
tant is it that this bimodality is included in calculations
for practical purposes? To investigate this, a model
fetch-limited sea state is constructed for a fetch of 200
km and a wind speed of 10 m s21. The omnidirectional
spectrum is modeled with a JONSWAP spectrum, and
a frequency–direction spectrum is computed, each for
the Hasselmann, Donelan–Banner, and symmetric dou-
ble Gaussian directional distributions. The resulting dis-
tributions are plotted in polar form in Fig. 18. Figure
18a is a plot of the direction spectrum for each distri-
bution type. The direction spectrum is calculated by
integrating the frequency–direction spectrum over fre-
quency. The radius at each angle is the spectral level
(in m2 deg21). The figure shows that the overall direc-
tional distribution of energy of the symmetric double
Gaussian remains unimodal; the more energetic com-
ponents in the region of the peak of the spectrum there-
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FIG. 15. Symmetric double Gaussian parameterization (continuous line) and Maui data (dots):
(a) peak locations, (b) spreading parameter s, (c) circular rms spreading s1, and (d) spreading
factor s2.

fore dominate the higher frequency, bimodal compo-
nents.

Figure 18b is a polar plot of the directional distri-
bution at f 5 0.3 Hz (ø3 f p) for each of the three
spectra. The radius at each angle is the spectral level
(in units of m2 Hz21 deg21). As expected, this plot shows
that at the higher frequencies the bimodality is signif-
icant.

Banner and Young (1994) conclude that the bimo-
dality is a robust feature of predictions made using the
full solution to the nonlinear wave–wave interaction
source term in the spectral energy balance equation for
wave growth. For computational efficiency, operational
numerical wave models employ various approximations
to the source terms. In 1G models the nonlinear wave–
wave interaction source term is not considered; in 2G
models the nonlinear source term is considered through
a parameterization of the nonlinear spectral energy
transfer and by constraining the spectral shape; and in
3G models the nonlinear interactions are approximated

with a parameterization. Clearly, the 1G and 2G models,
which assume a unimodal parameterization for the di-
rectional spreading, will not predict directional bimo-
dality at f / f p . 1. It is, however, not clear how well
the 3G models will predict directional bimodality; but
the results in Young et al. (1987) casts some doubt on
this, particularly their Fig. 5, which shows differences
in the directional spectra derived from the Exact-NL
model and the 3G-WAM models. The Exact-NL spec-
trum shows bimodality, but the 3G-WAM spectrum does
not.

Figure 18 shows that the prediction of bimodality is
not likely to be significant within the active sea state.
Thus, engineering calculations of, say, the forces acting
on a vertical pile in a sea state are unlikely to be com-
promised by assuming the directional distribution is uni-
modal. On the other hand, one can speculate that due
to dispersion the bimodality may become more signif-
icant in the prediction of swell at a location some dis-
tance from the source and at relatively large angles from
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FIG. 16. Shaded image plot of the symmetric double Gaussian spectrum. Dark corresponds to
high levels, light to low levels. The spectral levels are normalized to have a maximum of one.

the direction of the wind field of the source. At such a
location, the swell could be larger than predicted by
current numerical models. Even at a location directly in
line with the wind field of the source, it might be ex-
pected that, again due to dispersion, the energy of the
swell might attenuate more quickly with time than pre-
dicted by current numerical models.

8. Conclusions

The integrated properties of the moments of the Maui
directional distribution, and in particular the circular rms
spreading and the directional spreading factor, are con-
sistent with previously published results of Hasselmann
et al. (1980) and Donelan et al. (1985), but their values
are closer to those of the Donelan et al. (1985) distri-
bution, which has a narrower spreading than that pub-
lished in Hasselmann et al. (1980).

However, unlike the earlier results associated with a

unimodal directional distribution at all frequencies, the
Maui data provide convincing evidence for the presence
of bimodal directional distributions at frequencies high-
er than the peak frequency. This supports the work of
Young et al. (1995), who observed the same phenom-
enon but with observed bimodality occurring for f / f p

. 2. The Young et al. data were recorded in Lake
George, a 2-m-deep lake in Australia. The Maui data
were recorded in an open ocean location, where the
water depth is 110 m, and over a large range of wind
and wave conditions with wind speeds to 20 m s21 and
significant wave heights to 4.1 m. The bimodality re-
mained a dominant feature of all of these conditions;
thus the observations of the effect are extended to open
ocean scales by the Maui data.

The results support the conclusion that nonlinear
wave–wave interactions are responsible for the bimo-
dality. No clear dependency of any of the directional
parameters on wave age could be identified in the Maui
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FIG. 17. Frequency slices through the symmetric double Gaussian
spectrum presented in Fig. 15. Thin lines are the separate Gaussian
components.

FIG. 18. Polar plots of (a) the direction spectrum and (b) the di-
rectional distribution at 0.30 Hz for a fetch-limited sea state with a
fetch of 200 km and a wind speed of 10 m s21. Thin lines: the
symmetric double Gaussian distribution; medium thick lines: the Do-
nelan distribution; and thick lines: the Hasselmann distribution.

data. Therefore, any contribution to the bimodality by
the Phillip turbulent pressure fluctuation wave growth
mechanism must be weak.

The proposed symmetric double Gaussian parameter-
ization for the Maui directional distributions reproduces
the essential features of measured directional distributions,
giving a consistent circular rms spreading and directional
spreading factor over frequency, at the same time as re-
producing the bimodality at higher frequencies and ap-
proximating the peak width of the two peaks in the high-
frequency directional distribution. This parameterization is
useful for evaluating the qualitative aspects of the direc-
tional spreading and is probably as good as previously
proposed distributions for quantitative evaluation, but it is
expected that datasets acquired with higher-resolution in-
strumentation, together with more extensive analyses of
the data than has been possible in this study, will ultimately
lead to a more precise parameterization.

The parameterization has shown that, because the bi-
modality occurs at higher frequency with lower spectral
levels, the total directional distribution of energy of a

sea state remains unimodal. It therefore seems likely
that, unless there is a particular application that has a
strong frequency dependence, engineering calculations
that make use of a simple unimodal description of the
directional distribution are adequate. It is possible, how-
ever, that the existence of a bimodal directional distri-
bution in real sea states may produce levels of swell at
certain locations that are not well predicted by current
numerical models.
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