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Curvature Effects in Ocean Surface Scattering
Geir Engen, Ida Friestad-Pedersen, Harald Johnsen, and Tanos Elfouhaily

Abstract—Curvature effects in EM scattering from ocean sur-
face are described using a generalized curvature expansion of the
fields at an elevated nonperfect conducting surface. The new ex-
pansion formalism allows us to describe analytically and in gen-
eral, without separating into different scales, the scattering of EM
waves from an undulated ocean surface. The model is exact to first
order in curvature for nonshadowing imaging geometry, and obeys
the law of reciprocity and tilt invariance. Explicit expressions for
EM fields at the surface, including both the projection and the
self induced fields, are derived up to first order in surface curva-
ture. Analytic closed form expressions for the scattered fields are
derived from the surface field solutions, and applied to the case
of backscattering, providing a general expression for the normal-
ized radar cross section. The analytic expression for the normal-
ized radar cross section is implemented for a linear surface model
using both the Eulerian and the Lagrangian frame of reference.
The results show that the model is capable of describing the ex-
pected dependency on polarization, incidence angle, and wind field
with minimal restrictions in terms of range of validity. Comparison
of polarization ratio shows good agreement between the model and
measurements from the Envisat ASAR instrument.

Index Terms—Electromagnetic scattering, ocean surface, syn-
thetic aperture radar.

I. INTRODUCTION

SATELLITES probing the Earth surface with electromag-
netic waves (EM) will increase in both numbers and

complexity within the coming years. Dedicated Earth observa-
tion (EO) satellites such as Radarsat-I and Envisat are already
in operation, and new and even more advanced radar satellites
are under preparation such as Radarsat-II, ALOS-PalSAR,
and TerraSAR. In addition various constellations for utilizing
sources of opportunity satellites such as the existing EO satel-
lites, the GPS satellites, and the upcoming Galileo satellites
will further increase the potential of EM probing of the Earth
surface [1]–[4]. There is a wealth of information that possibly
can be extracted from the EM scattered signal of ocean surfaces.
Already demonstrated is the capabilities to extract geophysical
information such as ocean gravity waves, surface winds, sur-
face currents, and geoid [3], [5]–[7]. These are all parameters
directly linked to the circulation of the ocean surface layer, and
thus very important in climate modeling. Additionally these pa-
rameters are also of importance within marine meteorology and
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operational oceanography. It is foreseen that new concepts of
space-borne observation and new satellites will further improve
the benefits of such observations in terms new products, higher
quality, and better coverage. However, the interpretation of EM
scattering from an ocean surface (stochastic dielectric) is not
trivial in general, and requires treatment of both EM scattering
and ocean surface wave statistics [8]. Of particular impor-
tance for future mission is the interpretation and utilization
of dual-polarimetric measurements over ocean surfaces, such
as provided by the Envisat ASAR Alt-Pol instrument. In that
respect, the effect of the local surface curvature on the scattered
signal plays a key role, and need to be modeled properly. With
such knowledge, a combined analysis of both Doppler and
radar cross section measurements in dual-polarization mode
can be done with respect to retrieval of ocean surface features.
This is believed to be the key issue for future utilization of
space-borne Synthetic Aperture Radar (SAR) measurements in
the modeling of ocean circulation in coastal areas.

Elementary wave scattering approximations were well devel-
oped and generalized before the end of the sixties. Two funda-
mental limits were hence identified: the low-frequency limit or
the small perturbation method (SPM) [9] and the high-frequency
limit or the Kirchhoff approximation (KA) [10]. These two limits
were already generalized to be applicable to the full three-di-
mensional electromagnetic wave scattering from dielectric or
penetrable surfaces. Shortly after, Lynch [11] had identified the
need for curvature correction on the high-frequency limit or the
Kirchhoff approximation (KA). His technique consisted of a
variational method were the correct curvature terms can be found
but in the restrictive context of scalar waves and quasispecular
geometries. Rodriguez [12]–[14] have extended Lynch’s tech-
nique to the vectorial electromagnetic waves but for perfectly
conducting surfaces only. Rodriguez’s model is termed the uni-
fied perturbation expansion (UPE). One of the major finding in
the Rodriguez series of publications is the formal expression of
curvature correction. The correction to KA is functionally a gen-
eralized curvature correction where all derivatives of the rough
surface are involved through a Fourier kernel. Similar functional
developments were also present in the tilt invariant approxima-
tion(TIA)[15]but for theacousticDirichletboundaryconditions.
Both previous approaches are based on the extinction theorem
which is as first principle as the Maxwell equations themselves.
A more general approach was initiated by Voronovich [16]–[18]
where similar curvature corrections were obtained even though
the starting point is not the extinction theorem, per se, Voronovich
[17] had reached a very general theory of diffraction by simply
imposing some fundamental symmetry properties, such as reci-
procity, shift invariance, and compliance with SPM to first and
second orders. Voronovich’s model is called the small-slope ap-
proximation (SSA) owing to the correspondence between orders
of the model with orders of the slope and consequently curvature
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for higher surface slopes. Another major difference between SSA
and TIA or UPE is that the first SSA order is not the high-fre-
quency limit of KA. SSA-1 is similar to KA but with the SPM-1
coefficients instead. This a priori minor difference has deep
repercussions on the curvature kernel. Indeed, the kernel now
might still have slope corrections which may enter in conflict with
the curvature terminology. This subtlety was fully understood in
the developments undertaken by Elfouhaily et al. [19]–[21]. It
was demonstrated among other things, that if the tilt invariance is
formally required then the curvature kernel can be induced. This
model was termed the local curvature approximation (LCA).
The procedure followed by Elfouhaily et al. [21] is similar
to that by Voronovich [18] in a sense that symmetry proper-
ties were invoked instead of first principle equations such as
Maxwell, Helmholtz, Stratton-Chu, etc.

In this paper, we intend to derive similar models such as UPE,
TIA, SSA, LCA but by using the Stratton-Chu formalism [22],
[23] to derive the surface current and the corresponding closed
form expression for the scattered field. A generalized curvature
expansion of the fields at a rough dielectric surface is performed.
We will thus for simplicity call our method for GCM (general-
ized curvature method). The scattered EM-field is described up
to first order solution in this generalized curvature kernel. This
new development captures the effect of curvature on the scat-
tering of EM waves from an ocean surface where both the pro-
jection fields and the self induced fields are included. The latter
is important in order to properly describe the polarization effect
of EM scattering from conducting curved surfaces.

Our derivation preserves the well known small perturbation
method (SPM) and Kirchhoff approximation (KA) in its low and
high frequency limits, respectively, and the model obeys the fun-
damental laws of reciprocity and tilt invariance. Multiple scat-
tering and shadowing are not accounted for in this current de-
velopment and hence both second order SPM and geometrical
optics limits are not ensured. These previous limitations are not
too stringent for ocean surface applications where most of the
scattering happens locally, since the typical realistic sea surface
slopes are always less than the highest radar incidence angle (50
degrees) considered in this study. This is also within the imaging
geometry of typical space- or airborne SAR systems. The va-
lidity of the curvature model is solely connected to the radius of
the curvature and the scattering angles, whenever nonlocal ef-
fects are neglible. For surfaces with Gaussian like spectra, which
is the case for ocean surface, the key parameter is the correlation
length [24]. The correlation length of the surface must be much
longer than the radar wavelength. Since the radar wavelength of
interest here is around 5 cm (C-band), and the sea surface cor-
relation length is typical around 2.4 m (for wind speed of 6 m/s)
[25], the validity of the curvature expansion is obtained.

The theoretical derivations are described in Section II where
we start by describing in Section II-B the general curvature ex-
pansion. In Section II-B.1 and Section II-B.2 we solve explicitly
for the EM field on the surface up to first order in curvature.

The solutions for the fields on the surface are then in Sec-
tion III used to derive a closed from expression for the scattered
EM field.

In Section IV we have applied the results of Section III to the
special case of backscattering at C-band from an ocean surface,

Fig. 1. Boundary surface between Medium 1 (air) and Medium 2 (ocean).

and derived expression for the ensemble-averaged normalized
radar backscatter cross-section. Based on this, a numerical im-
plementation is done.

In Section V numerical results are shown for different polar-
izations, wind speeds and incidence angles. Comparison with
existing semi-empirical model (CMOD) [26], [27] is done for
the VV polarization. The predicted polarization ratio is com-
pared with existing models [28], [29] and measurements from
the Envisat ASAR AP instrument.

II. SURFACE FIELD

A. Background Theory

The general problem of finding the EM-field at a boundary
surface is illustrated by Fig. 1, where we have an EM plane-wave

incident to an interface between two media with
different dielectric constant, , and/or different magnetic perme-
abilities . We assume and to be constant for any position
inside the same medium. On both sides of the interface the dy-
namic conditions given by Maxwell’s equations must be satis-
fied for the total field , and at the interface the boundary
condition requiring that , , and are
continuous. Here is the unit normal vector of .

Equivalent to satisfying Maxwell’s differential equations,
is to satisfy the Stratton-Chu [22], [23] integral equations for
an observation point on an integration surface or
for Medium 1 or 2, respectively. We will thus establish the
Stratton-Chu equations for the EM fields at the surfaces and

, and letting approach the boundary surface . We can
then solve for the EM fields at the surface using the boundary
conditions and by performing a generalized curvature expan-
sion of the fields. Without loss of generality, we can define the
complex envelope of the total EM-field trough

(1)

where is the angular frequency and is the wave vector of
the incidenct wave, and write the Stratton-Chu for the magnetic
field of Medium 1 on the following form:

(2)
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where the Green’s function is given by

(3)

with and the radar wave-number of medium 1 as
.

We then let approach . The Stratton-Chu equa-
tion for Medium 2 will then in combination with the boundary
conditions, give the following new relation for the Medium 1
field at the surface

(4)

where is the complex reflection index be-
tween the two media. The latter equation will in the following
be used to iteratively give boundary conditions for the EM-field
at the interface . In the following we will assume that ,
which holds for the air-water interface.

B. Curvature Expansion

The basic idea of the (generalized) curvature expansion is to
solve the equation-set (2), (4) with respect to the electromag-
netic field on by expanding the field into different order of
(generalized) curvature of the surface and then solve each
order separately. For the fields inside the integrals of the equa-
tion-set, the shift in position: , generates additional cur-
vature terms since the surface slope in position may be
different from the slope in position . We thus have for
the fields

(5)

(6)

(7)

The same expansion is also used for the vector-fields: and .
The upper indexes indicates the order of (generalized) curvature.
The position differences are expanded in the following way:

(8)

(9)

(10)

Here is the horizontal components of , where
and are the horizontal components of and , respectively,
and is the identity tensor. We shall in the next sub-sections use
the above expansion to derive the zero and first order curvature
solutions of (2) and (4).

1) Zero Order Curvature Solution: If we approximate by
its tangential plane in , or equivalently if the surface itself
contains no curvature, the fields inside the integrals of (2) and
(4) can be written as

(11)

The solution of applying the assumption above,
represents the tangent-plane solution. With those assumptions,
all fields and normal vectors can be put outside the integrals and
(2) takes the form

(12)

where is the new integration variable. A similar zero-order
curvature relation can be found from (4). By using the integral
identity [30]

(13)

we get the following set of linear equations to solve for the EM
fields:

(14)

(15)

where the abbreviations: , and
are used for zero argument of the following functions:

(16)

(17)

Here, and , represents the cosines and sine of the
local incidence angle, respectively, and represents
the unit projection direction of the incidence radar wave vector
onto the surface (see Fig. 2). By solving the equation-set (14),
(15) with respect to the orthogonal directions ,
and of , we get:

(18)

Rewriting (15), gives

(19)

For the special cases when (e.g., Medium 1 is air
and Medium 2 is water) we have that and (19) be-
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Fig. 2. Reference systems.

comes equal to the Leontovich impedance boundary condition
[31]. The special case applies here since we operate at C-band
(5.3 GHz) and the sea water conductivity is 4 S/m.

2) First and Higher Order Curvature Solutions: By using
the curvature expansion of (7) and (9) for the vector fields and
position offsets, respectively, and defining the th-order transfer
functions of the fields in the following way:

(20)

the th order generalized curvature versions of (2) and (4) can
be written as

(21)

(22)

where the abbreviations: and
are used for the functions defined in (16)

and (17). is the th order transfer function of the curvature
source term

(23)

Here the following short-hand notation is used for the Greens-
function: and the marks on the fields are
used to indicate that the fields are given at position . By the
notation: , we mean the sum of all order in curvature less
than . Explicit expressions for the transfer functions of are
derived in Appendix A.

Solving equation-set (21), (22) with respect to as a func-
tion of the curvature source term transfer functions, yields

(24)

(25)

(26)

From (22) we get the following impedance boundary condition
for the th order curvature term:

(27)

Since the leading term of is (see the results of next
section), the criteria gives

(28)

This shows that Leontovich impedance boundary condition
holds for the case of air/sea interface up to first order in curva-
ture. However, we will in the derivation of the scattered field,
use the general expression given by (27).

III. SCATTERED FIELD

The curvature solutions of the fields on the surface as given
in Section II-B.1 and Section II-B.2 are now used to derive ex-
pression for the scattered magnetic field. The scattered magnetic
field in position (above the surface) can be expressed by the
complex envelopes of the electric and magnetic surface currents
using Frans formula [23], [32]

(29)

where the complex envelope of the electric and magnetic sur-
face currents are defined by: and ,
respectively.

In the Fraunhofer zone (far field zone) the complex envelope
of the relative scattered magnetic field, at a given polarization

, becomes

(30)

where is the distance between the radar platform and the
center of the illuminated area , is the differ-
ence between the incidence and scattered wave-vectors and

, and

(31)

Here is the unit scattering direction vector. Combining this
with the results of the curvature expansion done in the previous
chapter it is natural to write as

(32)

where represents the th order generalized curvature term
coming from substituting the expressions for the complex en-
velopes of the total surface currents in (31) with
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and . Before going any further in the develop-
ment of the theory, we need to keep in mind whats is causing the
different order in generalized curvature of the surface EM-field:
the zero order curvature term represents the projection of the in-
coming field onto the surface whereas the first and higher order
terms represent the self induced EM-field on the surface.

A. Geometric Curvature Expansion

Since is inside the scattering integral of (30) the self in-
duced field is not the only effect expandable in terms of gen-
eralized curvature. The same expansion can be done with the
geometric effects caused by the slope dependence of the fields.
Instead of writing on the form given in (32), where we have
an explicit dependence of the slope, we want to find a new
representation

(33)

with no explicit slope dependence, and where the th order term
represents the th order in generalized curvature of the combi-
nation of self-induced and geometric effects.

1) Zero Order Term: Given the scattering integral of (30)

(34)

represents the zeroth order generalized curvature term. The re-
maining terms are clearly of order one or higher in generalized
curvature, since a Taylor expansion of around
in combination with integration by part, gives the following
relation:

(35)

where

... (36)

This relation is valid inside the scattering integral when
(i.e neglecting the contribution from the border of the illumi-

nated area). By setting for the term of the
scattering integral, the order is terminated to zero order in gen-
eralized curvature.

2) First Order Term: The transfer function of the first order
term

(37)

is given by the sum of and the remaining part from the zero
order termination of

(38)

where the first order termination is used. With
this termination, can be written as

(39)

The remaining part of the first order termination can, in a similar
way as for the zero order termination, be shown to yield terms
of order two or higher in generalized curvature.

B. Explicit Expression for the Scattered Field

We will in this section give the expressions for the both the
zero and first order generalized curvature terms for the gen-
eral case of bi-static scattering. The results will be expressed by
the radar reference frames, where the sets of orthogonal vectors

and are representing the incidence and
scattered geometry, respectively. The local vertical magnetic po-
larization vectors are given by . The local
angle between the two reference frames are defined through

and .
1) Zero Order Term: Setting in for and

into (31), and using the zero order GCM termination condition,
gives

(40)

where the coefficients are given by:

(41)

(42)

Here, all the scalars , , and , and the unit vectors
and are to be computed with the termination condition:

. The latter fractions in (41) and (42) are the well
known reflection coefficients. Since and
for this termination condition, the zero order term obviously
satisfies the reciprocity property.

2) First Order Term: The first order generalized curvature
transfer function is given by (38) and (39), where the
transfer function of is given by

(43)

Since and with the first order generalized
curvature termination condition: , the transfer
function of the first order generalized curvature term can
be written as

(44)
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where the coefficients are given by

(45)

(46)

(47)

(48)

The -coefficients, here computed at local incidence angles,
are similar to the SPM1 results of Valenzuela [9]. The local inci-
dence angles are given through the first order termination condi-
tion for the slopes. Except for all quantities are to be com-
puted with this termination condition. The results above means
that also satisfies the reciprocity property.

IV. COMPUTATION

A. The Normalized Radar Scattering Cross-Section

Expressions for the normalized radar cross-section (NRSC)
can now be derived in terms of the scattered field and surface
statistics. By using the definition of the normalized radar
cross-section

(49)

where is the horizontal size of the illuminated area and the
operator represents the ensemble average, and assume statis-
tical stationarity, we obtain

(50)

Further, if we assume that the surface elevation field obeys
Gaussian statistics, the Fourier kernel becomes

(51)

where the covariance functions , , , and
are defined by the following convention:

(52)

B. Numerical Computations

Equations (50) and (51) are now implemented for the
case of backscattering, , and for two linear surface
models—the usual Eulerian model and a Lagrangian model (de-
scribed in Appendix B). Here, the model spectrum of Elfouhaily
et al. [33] is used as the input wave-number spectrum needed

Fig. 3. Computed normalized radar cross section (NRCS) at C-band, VV and
HH polarization for 10 m/s wind speed along the range (radar line of sight)
direction. The lines are: Lagrangian surface model (solid) and Eulerian surface
model (dashed).

in the computations of the covariances. This wave-spectrum is
a closed form analytical model, derived for seas that are wind
generated, and it is valid over all wave-numbers.

In the numerical computations, wavelengths ranging from
0.5 mm to 5 km are used. To efficiently compute the covari-
ance functions for this wide range of wavelengths, the Fourier
transforms are performed on a log-polar grid. The typical radar
configurations used are: C-band (5.3 GHz), VV/HH polariza-
tion and incidence angles from 0 to 45 . The computations are
performed for different wind speeds and wind directions. The
sea water conductivity is set to 4 S/m.

V. RESULT

In this section we show the properties of the GCM, and per-
form a comparison of the NRCS and polarization ratio with
semi-empirical model (CMOD-IF2) [26] and real data (Envisat
ASAR). The CMOD-IF2 is a semi-empirical scattering model
function derived for wind retrieval from ERS-1 Scatterometer in-
strument (C-band, 23 degree incidence angle) measurements of
the ocean surface radar cross-section. The Envisat measurements
are acquired in ASAR Alternating Polarization (AP) mode, and
co-located with buoy or platform measurements. The ASAR data
are acquired at three different locations (66.0 N, 8.1 E), (56.5 N,
3.2 E), (40.5 N, 69.43 E) and in the periods July–August 2003,
and July–September 2004. Furthermore, the data are acquired
in different swaths in order to have a larger range of incidence
angles. The significant waveheight varies between 0.4 m–6.9 m
with a mean value of 1.8 m. The wind speed varies between
2 m/s–18 m/s with a mean value of 6.2 m/s.

In Fig. 3, the NRCS as function of incidence angle is plotted
for VV and HH polarizations using a Lagrangian and a Eulerian
surface model. The use of Lagrangian surface model mimics
weak nonlinearities in the wave field, and Fig. 3 quantifies the
reduction in the dynamic range of the NRCS by introducing
nonlinearities in the wave field.
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Fig. 4. Normalized radar cross section (NRCS) at C-band and VV polarization
for wind speed of 5 m/s (upper), 10 m/s (middle) and 15 m/s (lower). The lines
are: computed NRCS based on GCM using a Lagrangian surface model (solid)
and CMOD-IF2 (dashed). The wind direction is along the range (radar line of
sight) direction.

In Fig. 4 a comparison between the GCM and the semi-empir-
ical CMOD-IF2 derived NRCS is shown for three different wind
speeds for a range wind direction. Within the valid region of
CMOD-IF2, we observe largest deviations in the range between
25 and 35 degree incidence angle where the GCM predicts lower
values than the semi-empirical model. This discrepancy is most
likely related to the surface model used. We see from Fig. 3 that
introducing weak nonlinearities increase the predicted NRCS,
but not sufficiently. This indicates that the probability of spec-
ular reflection is higher than predicted by the surface model
used.

One of the main applications of the GCM function is to be
able to better predict the polarization dependency in the NRCS
from ocean surfaces. This is one of the major limitations of the
existing semi-empirical models such as the CMOD [27]. The
standard approach to predict the NRCS of HH polarization has
been to use the CMOD in combination with a semi-emphirical
polarization ratio such as given by Thompson et al. [28].

In Fig. 5 the VV/HH polarization ratio of the predicted NRCS
is plotted for different wind speeds and directions (relative to
radar line-of-sight) as function of incidence angle, and over-
layed measurements from Envisat ASAR AP data, as well as
results of some existing models from literature. We see that
the agreement is reasonably good, but for incidence angles be-
tween 27–33 degrees, our model predicts slightly higher values
than the measurements. The GCM model predictions also agrees
well with the semi-empirical model of Kudryavtsev et al. [34].
Fig. 5 also show that the GCM model performs better in pre-
dicting the VV/HH polarization ratio than the commonly used
models from literature such as the model by Thompson et al.
[28] and Elfouhaily [29]. Additionally the GCM model has built
in both wind speed and wind direction dependency, which is
not the case for the models of [28] and [29]. The deviation be-
tween GCM model and measurements for incidence angles be-
tween 27–33 degrees may come from imperfect calibration of

Fig. 5. VV/HH polarization ratio as function of incidence angle measured
by Envisat ASAR AP instrument (C-band) and predicted by the GCM using a
Lagrangian surface model. The red and blue lines represent computed ratio for
range (� = 0 ) and azimuth (� = 90 ) wind direction, respectively, at two
different wind speeds 5 m/s (dashed) and 15 m/s (solid). The polarization ratio
of two existing models from literature [29] (dash-dot-dot) and [28] (dash-dot)
are plotted for comparison together with the Bragg and Kirchoff limits (dotted).

Fig. 6. VV/HH polarization ratio measured by Envisat ASAR AP instrument
(C-band) versus computed ratios based on the GCM using a Lagrangian surface
model. Simulations results based on two existing models from literature [28],
[29] are plotted for comparison.

the ASAR AP data, since these points cover different sea-states
(wind speed between 2–18 m/s). This is further likely to be the
case since we can see some nongeophysical pattern in the data
related to each swaths.
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The in-situ data co-located with the ASAR AP measurements
are used to simulate the VV/HH polarization ratio as predicted
by various models. A comparison with measurements are shown
in the scatter-plot of Fig. 6. The figure clearly shows that the
GCM models better agrees with measurements than the existing
models of literature. At low polarization ratios the agreement
is good, while for higher ratios the deviations becomes signifi-
cant. The deviations at higher polarization ratios (higher swaths)
may come from a combination of reduced SNR of the ASAR
instrument at higher incidence angles, imperfect calibration of
the ASAR data, and limitations in the surface wave field de-
scription. The underestimation of specular reflection in the sur-
face field description will bias the predicted VV/HH polariza-
tion ratio toward higher values.

VI. CONCLUSION

The motivation for this work was to develop a consistent for-
malism for describing EM scattering from an elevated nonper-
fect conducting curved surface. Expressions for the surface cur-
rent and the corresponding scattered fields were derived using
the Stratton-Chu formalism and a generalized curvature expan-
sion of the fields at the surface. This new formalism allows us to
analytically describe the scattering of EM waves from a curved
surface, without separating into different scales. We derived ex-
plicit expressions for the surface EM fields, including both the
projection and the self-induced fields, up to first order in surface
curvature. Analytic closed form expressions for the scattered
fields were then derived from the surface field solution by using
the well known Frans Formula. For nonshadowing imaging ge-
ometries, the resulting model is exact to first order in surface
curvature. Also, the model obeys the fundamental laws of reci-
procity and tilt invariance, and it reproduces the SPM1 results of
Valenzuela in the low frequency limit as well as the Kirchhoff
approximation in the high frequency limit.

The formalism has been applied to the special case of
backscattering, providing a general expression for the nor-
malized radar cross section. A numerical implementation of
the normalized radar cross section was done for two different
surface models,—a linear Eulerian and a linear Lagrangian
(Gerstner) surface model. Comparison of NRCS and polariza-
tion ratio show good agreement between the present model,
semi-empirical CMOD-IF2 and measurements from Envisat
ASAR AP data, respectively. Best agreement is obtained with
the Lagrangian surface model, which mimics weak nonlinear-
ities in the wave field. These results show that the model is
capable of describing the expected dependency on polarization,
wind speed and incidence angle with minimal restrictions in
terms of range of validity. Furthermore, the model predicts
the importance of wave statistics on the backscattering cross
section. The observed deviation between the present model
(GCM), CMOD-IF2 and ASAR AP data can be explained by
the wave statistics, which has not been the topic for this paper,
and possibly also by an imperfect calibration of the ASAR
AP data. We believe that the remaining problem in terms of
quantification of EM scattering from ocean surface is a proper
statistical description of the ocean surface, especially the de-
scription and quantification of wave breaking effects [34]. This
will be the topic and challenge for future studies.

APPENDIX

A. Derivation of the Source Functions

We will in this section give the first order source functions for
dielectrics. By defining the following function:

(53)

and the following operator:

(54)

the first order source function can be written as

(55)

The generalization to higher order in generalized curvature is
straightforward. The operator is defined in the same way
as , where the corresponding is defined by performing
the following substitution , in the last line of
(53). The integral in this equation can be computed by using the
integral identity of (13). By defining the following function:

(56)

where

(57)

we may write the functions needed to compute the first order
curvature source functions as

(58)

(59)

In the exact similar way, can the functions be expressed
by a set of functions defined by substituting

in the last line of (56).

B. Lagrangian Wave Description

A Lagrangian formulation describes the wave motion by fol-
lowing the individual fluid particles. This implies that the coor-
dinate system moves and deforms with the fluid, unlike in the
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Eulerian case where the coordinate system is fixed in space and
time. Most analytical wave models are developed in the Eulerian
frame of reference, but there are certain advantages to solving
the equations of motion in the Lagrangian formulation and then
transforming to Eulerian coordinates. Specifically, a linear La-
grangian solution will include some effects that are nonlinear
in the Eulerian formulation. For instance, the Lagrangian solu-
tion will, when transformed to the Eulerian frame of reference,
give a “Stokes-like” wave with steepened crests and flattened
troughs. Also, some wave interactions (like how a short wave
riding on a longer wave is modified by the longer wave, and as a
result is longer and flatter in the throughs of the long wave than
at the crests) are automatically included in the linear Lagrangian
solution [35].

Let the surface elevation in Eulerian coordinates be ,
and assume that at position can be written on the following
form:

where is the solution of

(60)

and the vector represents the orbital motion of a fluid
particle measured at the reference point . Solving the linearized
equations of motion (Navier-Stokes) in Lagrangian coordinates
will give the following result for at the free surface

(61)

where

(62)

By changing to the Lagrangian reference system following
the horizontal displacement of the fluid-particles: ,
the backscattered magnetic field can now be written as

(63)

where is related to the surface current function in (30) by

(64)

and is the Jacobian of the transformation, given by

(65)

Like , the function can be written as a sum

(66)

By using (64), it is possible to show that up to order 2

(67)

Also, the Jacobian may be approximated by

(68)

From (63), it follows that the radar backscatter cross section
in this case is:

(69)

where . If we define a new function by

(70)

then for a Lagrangian surface may be calculated by replacing
with and with in (51).

Note: in the calculations, the Lagrangian solution is replaced
by an Eulerian solution for wavelengths shorter than 1.7 cm.
This is done to avoid (unphysical) Stokes-like capillary waves.
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