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Abstract An approximate dispersion relation is derived and presented for linear surface waves atop a
shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to
first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for
a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in
many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by
Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen
model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen
approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been
known. We explain the apparently serendipitous success of the latter and derive proper conditions of
applicability for both approximate dispersion relations. Our new model has a greater range of applicability.
A second order approximation is also derived. It greatly improves accuracy, which is shown to be important
in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby
and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to
our knowledge. Our second-order term is also arguably significantly simpler to implement, and more
physically transparent, than its sibling due to Kirby and Chen.

Plain Language Summary In order to answer key questions such as how the ocean surface affects
the climate, erodes the coastline and transports nutrients, we must understand how waves move. This is
not so easy when depth varying currents are present, as they often are in coastal waters. We have
developed a modeling tool for accurately predicting wave properties in such situations, ready for use, for
example, in the complex oceanographic computer models. Our method is robust and works well in
situations where the tool currently used will fail. In addition to predicting the speed of waves of different
lengths and directions, it is important to know something about how accurate the prediction is, and as a
worst case, whether it is reasonable at all. This has not been possible before, but we provide a way to
answer both questions in a straightforward manner.

1. Introduction

Knowledge of the properties of surface waves in the presence of currents is key to understanding, measur-
ing and monitoring a range of processes in the oceans. Exchange of energy, mass and momentum between
ocean and atmosphere is pivotal to predicting climate change, and local wave-current flow conditions can
strongly affect the spread of nutrients as well as pollutants. Moreover, a broad range of fixed, floating or
moored installations and vessels are affected by loads from waves and currents in combination; pertinent
examples include floating oil booms which may fail under waves and currents, aquaculture farms in
exposed locations, vessels, robots operating near the surface and even biolocomotion. Measuring currents
from wave observations, e.g., using radar (Lund et al., 2015) is a favoured technique for obtaining flow field
information toward such ends, but requires knowledge of how sheared currents affect wave dispersion. The
effect of shear on waves is now included in widely employed oceanographic models such as Delft-3D (Elias
et al., 2012) and ROMS, used for example in the coupled COAWST model (Kumar et al., 2011, 2012), and is
recently employed for currents measurements using x–band radar observation of waves (Campana et al.,
2017; Lund et al., 2015). A potentially important piece of progress toward incorporating arbitrary shear cur-
rents in oceanographic models was the recent derivation of an explicit wave action conservation equation
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on such currents by Quinn et al. (2017). They conclude that the neglect of shear in wave modeling in realis-
tic ocean conditions can lead to significant errors.

In the coastal zone in particular, currents are often strongly sheared, and may change direction beneath the
surface, for example when wind is blowing across a tidal current. In such conditions a fully 3-D approximate
dispersion relation is required to correctly analyze the dispersion properties of surface waves, i.e., how the
phase and group velocities of waves vary as a function of wavelength propagation direction and the shape
and magnitude of the subsurface current. We present herein an approximation valid for an arbitrary hori-
zontal velocity field UðzÞ whose magnitude and direction may change as a function of z, providing good
estimates of cðkÞ for all k for typically occurring velocity profiles. This main result is found in equation (18).

Under many, but far from all, flow conditions of practical importance, the model coincides with a 3-D gener-
alization of the much used approximation of Kirby and Chen (1989) to leading order in an expansion in
terms of ‘‘deviation from potentiality,’’ and involves the same calculational cost and complexity as the latter.
However, several examples of realistic flows are presented where the Kirby and Chen model fails while our
new one performs well or at least remains reasonable, demonstrating the improved robustness of our
model. We also show that the criterion for our model to produce accurate approximations is less stringent
than that of the Kirby and Chen approximation. Our derivations automatically produce a second-order accu-
rate approximation—equation (19)—which is shown to be robust, and is arguably simpler and more trans-
parent than the corresponding second-order approximation due to Kirby and Chen.

Although several approximations exist for the 2D and (with straightforward generalization) 3-D flow situa-
tion as reviewed below, some of which are excellent in most practical cases, there is a lack of understanding
of their conditions of applicability and estimated error. We here rectify this situation by providing a thor-
ough discussion of the accuracy and criteria of applicability of our approximation model as well as that of
Kirby and Chen and a short-wavelength approximation due to Shrira (1993).

While work on waves on arbitrary shear currents is relatively sparse, a large body of literature exists on waves prop-
agating on linearly varying currents in 2D. We make no attempt to review this very large literature, but mention
but a few important papers. Key nonlinear treatments are those of Simmen and Saffman (1985) and Teles da Silva
and Peregrine (1988). Of particular interest is the numerical scheme for fully nonlinear stationary and solitary
waves on arbitrary 2D shear currents due to Dalrymple (1977), and followed by further numerical work on this
question (Ko & Strauss, 2008a, 2008b; Moreira & Chacaltana, 2015; Nwogu, 2009). The present effort is restricted to
linear waves; a comparison of the effect on wave speed of shear versus that of nonlinearity is an important topic
for the future; refer to Swan and James (2000) for some results up to second order in wave steepness.

1.1. Existing Approximation Methods
Probably the most successful and widely used approximate dispersion relation is that due to Kirby and
Chen (1989), which in turn was a direct generalization of previous models by Stewart and Joy (1974) and
Skop (1987). Their approximation includes a second-order correction term, but we shall mostly be con-
cerned with their first order correction, identical to that of Skop (1987). By the Kirby and Chen approxima-
tion the first order expression is meant, unless otherwise stated. We will work with a direct generalization of
Kirby and Chen’s model to 3D (3DKC). The success of Kirby and Chen’s formula is likely in part to be due to
the fact that, apparently serendipitously, the approximation it produces is often excellent even when the
assumptions from which it was derived are strongly violated. In our analysis in the following we are able to
explain this fortunate circumstance, which we believe has not previously been fully understood.

Among analytical dispersion relation approximations for arbitrary shear currents, that of Shrira (1993) is the
only one to our knowledge explicitly derived for a fully 3-D configuration such as we consider herein, where
the current may vary in both direction and magnitude with depth. Generalization of the Kirby and Chen
approximation to 3D, however, is straightforward. Shrira’s relation is of limited use for oceanographic pur-
poses because it is accurate only for very short waves. It is reviewed further in Appendix section A3.

An altogether different approach is to approximate the smooth velocity profile by a series of piecewise lin-
ear segments; we refer to this approach as the Piecewise-linear Approximation (PLA). This approach, which
goes back a long time (e.g., Rayleigh, 1892; Taylor, 1955; Thompson, 1949), has the virtue that for a given
wavevector k it converges as N22 to the exact value of cðkÞ as the number of layers grows (Zhang, 2005),
making it a useful comparison for the models developed here, and is preferable in cases where close control
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of errors, or particularly high accuracy, is required. The PLA was recently implemented by Smeltzer and
Ellingsen (2017) in 3D, albeit with unidirectional shear current. The piecewise-linear approach is suitable
when high and closely controlled accuracy for all wavelengths and directions is required. While numerically
cheap, it remains more cumbersome to implement than analytical approximations due to the need to elimi-
nate additional, spurious solutions (Smeltzer & Ellingsen, 2017).

Some further approaches to approximating wave dispersion on curved velocity profiles should be men-
tioned, with no ambition of completeness. Zhang (2005) presents an analytical approximation which
amounts to a matching of the short-wavelength model of Shrira to the 3DKC model at longer wavelengths.
Solution schemes have also been developed for specific velocity profiles; exponential current profiles
modeling wind-driven currents were studied by Abdullah (1949) and the 1/7 law profile by Hunt (1955) and
Fenton (1973). Several examples are worked out with a method developed by Karageorgis (2012). The case
of shallow waters compared to wavelength was considered by Burns (1953). Numerical approaches, using
shooting methods, have been used e.g., by Fenton (1973) and Dong and Kirby (2012).

1.2. Approach
The widely used approximation by Kirby and Chen (1989), like its predecessors by Stewart and Joy (1974) and
Skop (1987), all proceed by performing a formal expansion in orders of a dimensionless parameter which is
assumed small a priori. Our present approach is somewhat different, and is inspired by that of Shrira (1993). We
adopt a ‘near–potentiality’ assumption, that the wave–induced fluid motion does not differ greatly from that due
to a flow with linearly varying velocity profile. The formal procedure is to isolate the effect of the curvature of the
velocity profile in a single term in an implicit non–closed dispersion relation, and combine it with an iterative solu-
tion to the Rayleigh equation by a method of dominant balances assuming the term resulting from curvature to
be dominated. Like Shrira (1993) a ‘true’ corresponding small parameter comes out as a result rather than an initial
assumption, and may be interpreted as a suitably depth–averaged measure of the shear-profile’s curvature.

1.3. Outline
In the next section our approximate dispersion relation, equation (18), is presented and analyzed. We ana-
lyze the question of the range of applicability of our perturbation scheme, providing order of magnitude
estimates for the error. The relation to the 3DKC is discussed, including the conditions under which the two
coincide to leading order. Corresponding approximations for group velocity are also presented. A brief dis-
cussion of critical layers is given in section 3. In section 4 we test our model for a range of realistic shear pro-
files, both unidirectional and varying in direction as a function of depth, including particular cases where
the 3DKC breaks down. Summary and conclusions are found in section 5, and some further information and
details may be found in Appendix A.

2. An Approximate Relation for 3-D Wave-Shear Current Dispersion

We consider the system shown in Figure 1. A horizontal current UðzÞ whose direction and magnitude may
vary with depth, running over a flat sea bed of depth h and with a free surface which is at z 5 0 when undis-
turbed. Consider a plane wave with wave vector k5½kx ; ky � propagating atop the current. The wave creates
a disturbance of velocity and pressure fields. We work within linear wave theory, hence all equations of
motion and boundary conditions are linearized with respect to perturbations due to the wave motion. All
perturbations are understood to be proportional to exp ½ik � x2ikcðkÞt�; here x5½x; y� is the position in the
horizontal plane, c is the phase velocity in direction k; k5jkj, and t is time. We neglect surface tension and
viscosity, so the flow is governed by the Euler equation, which reduces to the following boundary value
problem for the vertical velocity w(z) only (e.g., Shrira, 1993),

w00ðzÞ2k2wðzÞ5 k � U00ðzÞ
k � UðzÞ2kc

wðzÞ; (1a)

ðk � U02kcÞ2w0ð0Þ2½k � U00ðk � U02kcÞ1gk2�wð0Þ50; (1b)

wð2hÞ50: (1c)

Equation (1a) is called the Rayleigh equation (or inviscid Orr–Sommerfeld equation), and equations (1b) and
(1c) are the appropriate boundary conditions at the free surface and bottom, respectively. We defined U05
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Uð0Þ and U005U0ð0Þ, and g is gravitational acceleration. For future reference we define velocities relative to
the surface

~c5c2k � U0=k; DUðzÞ5UðzÞ2U0: (2)

Here ~c is the intrinsic phase velocity.

Our task in this section will be to derive, discuss and test the approximate dispersion relation cðkÞ � c�ðkÞ
which is a main result and is given in equation (18).

Inspired by Shrira (1993) we make a ’near–potentiality’ assumption which entails that the effect of the cur-
rent on the dispersion relation differs only moderately from the explicitly solvable case of a linearly varying
UðzÞ. On the other hand, the shear itself need not be small. (Note that the term ‘near–potentiality’ is a slight
misnomer since a wave propagating at an oblique angle with such a current in fact has vorticity and is not
as such ‘potential’; see Ellingsen (2016). Potential theory can be employed to waves on linearly depth–
dependent currents only in strictly 2-dimensional flow (e.g., Ellingsen and Brevik, 2014).)

2.1. Recasting the Equations of Motion
We proceed in two steps. First, the boundary value problem (1) is written in an alternative way; combining the
boundary conditions and Rayleigh equation we find an implicit dispersion relation (8) with both ~c and w unknown,
where the effect of the depth–averaged shear is separated from that due to higher derivatives of UðzÞ. Approxi-
mations of w are inserted into this equation, found by iterative solutions of (1a) presuming the right–hand side to
be a dominated term. In section 2.2 we will term the approximate dispersion relation accounting only for depth–
averaged shear the ‘first order’ approximation, and the improved approximation from including the term in (8)
due to curvature as well as the second–level approximation for w, we term the ‘second order’ approximation of ~c .

A fruitful starting point is to frame the boundary value problem (1) in the form,

11Ið~cÞ½ �k2~c21~ck � U00tanh kh2k2c2
050 (3)

with

Ið~cÞ5
ð0

2h

k � U00ðzÞwðzÞsinh kðz1hÞ
kwð0Þ½k � DUðzÞ2k~c�cosh kh

dz (4)

and c05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg=kÞtanh kh

p
. This is obtained by multiplying (1a) by sinh kðz1hÞ, integrating with respect to z,

and inserting boundary conditions (1b) and (1c). This very useful relation informs most of our analysis in
this paper. In itself the relation (3) is not closed since both w and ~c are unknown.

Figure 1. The geometry: a plane wave of wave vector k travels atop a horizontal shear current whose magnitude and
direction may vary with depth.
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Equation (3) appears to isolate the effect of the curvature U00 in the term I, but this is deceptive: there is still
an explicit reference to the surface shear U00 which may also be re-written as a depth–integrated curvature.
The appearance of U00 is moreover undesirable: long waves in particular must be expected to be influenced
by the suitably depth–averaged shear, wheras the value at the surface is comparatively irrelevant.

To transform (3) into the desired form we write the integral Ið~cÞ as

Ið~cÞ � I01
c2

0

~c2 EIð~cÞ5c0~c K2
k � U00
k2c0

tanh kh

� �
1

c2
0

~c2 EIð~cÞ; (5)

with

EIð~cÞ5
~c
c2

0

ð0

2h

ðk � U00Þðk � DUÞwðzÞsinh kðz1hÞ
k2ðk � DU2k~cÞwð0Þcosh kh

dz; (6)

K5

ð0

2h

k � U0
k2c0cosh kh

d
df

wðfÞ
wð0Þ sinh kðf1hÞ
� �

f5z

dz: (7)

Here I0 is obtained from I by setting DU50, and the last form is obtained by partial integration of I0. Insert-
ing into (3) gives

~c21c0~cK1c2
0EIð~cÞ2c2

050 (8)

which no longer contains an explicit reference to the surface. Instead the effect of the shear is contained in
K, and the effect of the curvature shared between K and EI.

Equation (8) is exact within linear wave theory, and we now begin making approximations. To wit we wish
to isolate the part of K which depends on the shear but not the curvature, plus a curvature–related correc-
tion. We adopt an iterative approach rather than a formal expansion in an explicit parameter as done by
Kirby and Chen (1989) and predecessors. Noting that the right–hand side of (1a) is proportional to the curva-
ture U00ðzÞ, we presume its influence on w and ~c be small, and that successively better approximations are
obtained by iterative solutions by method of dominant balance (cf. e.g., Bender & Orszag, 1978). This is our
understanding of the ’near–potentiality’ assumption. We let wðzÞ5wð0ÞðzÞ1Ewð1ÞðzÞ1 � � � and verify that

wð0ÞðzÞ5wð0Þð0Þ sinh kðz1hÞ
sinh kh

; (9a)

Ewð1ÞðzÞ5 wð0Þð0Þ
k

ðz

2h

k � U00ðfÞ
k � DUðfÞ2k~c

sinh kðf1hÞsinh kðz2fÞ
sinh kh

df: (9b)

Inserting the leading approximation of w(z) we obtain EI5EXI1 � � � with

EXIð~cÞ5
2~c

k2c2
0

ð0

2h

k � U00ðzÞk � DUðzÞsinh 2kðz1hÞ
½k � DUðzÞ2k~c�sinh 2kh

dz: (10)

Now inserting the expansion for w(z) into (7) gives, after some algebra, K52d1ðc0=~cÞðEXK1d1EXK2Þ with d
defined in (12), and

EXK1ð~cÞ5
2~c
kc0

ð0

2h

k � U00ðzÞ
k � DUðzÞ2k~c

sinh kðz1hÞsinh kz
sinh kh

dz; (11a)

EXK2ð~cÞ5
2~c

k2c2
0

ð0

2h

k � U00ðzÞ
½k � DUðzÞ2k~c�

sinh kðz1hÞ
sinh 2kh

3

ð0

z
k � U0ðfÞsinh kð2f1h2zÞdf

� �
dz: (11b)

We have introduced a key parameter in our theory,

dðkÞ5
ð0

2h

k � U0ðzÞsinh 2kðz1hÞ
kc0sinh 2kh

dz; (12)
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which is a dimensionless depth-averaged shear, to which we shall refer frequently.

We thus obtain the approximation for (8) on the desired form

~c2
12c0~cd2c2

01c2
0Dð~cÞ1 � � �50 (13)

with Dð~cÞ5EXIð~cÞ1EXK1ð~cÞd1EXK2ð~cÞ, which may be simplified with some tedious manipulation (see
Appendix section A2) to the form

Dð~cÞ52
2~c
kc2

0

ð0

2h

k � U00ðzÞ
k � DUðzÞ2k~c

sinh kðz1hÞsinh kz
sinh kh

~U2~uðzÞ
� �

dz; (14a)

~uðzÞ52
sinh kh
sinh kz

ð0

z

2k � UðfÞcosh kð2f1h2zÞ
sinh 2kh

df: (14b)

The weighted depth–averaged velocity, as introduced by Skop (1987) and used extensively by Kirby and
Chen (1989), is

~UðkÞ5 k � U0

k
2c0dðkÞ5

ð0

2h

2k � UðzÞcosh 2kðz1hÞ
sinh 2kh

dz (15)

(the middle form is found by partial integration). Inspection reveals that ~uðzÞ is a possible generalization of
the depth averaged velocity ~U when averaging is only carried out down to a depth z rather than the full
depth. In particular, ~uð2hÞ5~U and lim z!0 ~uðzÞ5k � U0=k.

The effect of shear is now contained in the dimensionless mean shear d, and the effect of curvature of UðzÞ
has successfully isolated in the dimensionless quantity Dð~cÞ. In practice, Dð~cÞ is calculated using an approxi-
mate value of ~c , as will be detailed below. If k � DU5k~c somewhere in the integration range, the outer inte-
gral in (14) has a pole and the principal value should be taken (Shrira, 1993). Deep water limits of d and D
are quoted in Appendix section A1.

Equation (13) now makes explicit what the true small parameter is, namely Dð~cÞ. Note that, like Shrira
(1993), we find that the effect of the curvature, corresponding to the right–hand side of (1a), only need be
small in a depth–integrated sense.

2.2. New Approximation for ~c
Solving (13) with respect to ~c gives

~c � c0

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11d22D

p
2d
i
: (16)

In accordance with the ’near–potentiality’ assumption we presume D� 1 while making no assumptions
about the strength of the (non–dimensional) averaged shear. This gives a new approximation

c � c�1~c�;2nd (17)

with the leading order approximation

c�ðkÞ5
k � U0

k
1c0

ffiffiffiffiffiffiffiffiffiffiffi
11d2

p
2d

	 

; (18)

which is our main result, and a second order correction

~c�;2nd52
c0Dð~c�Þ
2
ffiffiffiffiffiffiffiffiffiffiffi
11d2
p : (19)

To calculate D in practice, the first order estimate is inserted for ~c , as indicated. We test the new approxima-
tion c� in a range of cases in section 4.

A few remarks about the approximation (18) are warranted. The first of these is that when UðzÞ is a linear
function of z, i.e., UðzÞ5U01U00z, equation (18) gives the exact answer which is well known to be ~c5cs (e.g.,
Ellingsen, 2014), with
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csðkÞ52
k � U00

2k2
tanh kh1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

01
k � U00

2k2
tanh kh

� �2
s

: (20)

(This relation may have been given first by Craik (1968)). The majority of the analytical literature on waves
on shear flow concerns this type of flow, for which reason it is an important benchmark.

We second remark that the above derivations were performed for an arbitrary k. No assumptions were
made which might restrict the theory to a particular range of wavelengths.

Third one may note that the widely used (3D) Kirby and Chen approximation (22), which we will review in a
moment, is conventionally implemented by calculating ~U rather than d. If this is preferred, c� is expressed
in terms of ~U using (15):

c�ðkÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

01ð~U2k � U0=kÞ2
q

1~U; (21)

Numerical implementation of (18) and the 3DKC thus involves essentially identical complexity and calcula-
tional effort.

Finally, we note that ~c� is positive for all values of d as physically it must be.

2.3. Comparison With the Approximation of Skop/Kirby and Chen
We observe that in the special case d� 1 equation (18) coincides, modulo a term of order d2, with the 3DKC:

cKCðkÞ5
k � U0

k
1c0ð12dÞ5c01~U (22)

The weighted depth averaged velocity ~U was defined in (15). This first order expression (in orders of
kc=k � U) was derived by Skop (1987), and extended to next order by Kirby and Chen (1989). In contrast
with approximation (18), the 3DKC can predict nonsensical, negative values for ~c when d > 1, correspond-
ing to strongly sheared flows.

It is clear from this, and further discussed below, that the 3DKC works well when d is small compared to
unity. In certain important cases dðkÞ may not be small, in which case (18) is superior to (22) except in spe-
cial cases where cancellations occur, as will be explained in section 2.4. Indeed, should dðkÞ > 1, the 3DKC
predicts ~c < 0 which is physically unacceptable.

From (16) a second order term may also be derived, equal to c0ðd22DÞ=2. An ‘‘extended KCA’’ is then found
by adding this term to to (22), an alternative to the second order expression proposed by Kirby and Chen
(1989). Unlike (22) the ‘‘extended KCA’’ is always positive, and is second order accurate when d is small, but
(19) is typically superior when d approaches unity. We have not studied this approximation in detail.

Compared to the second-order approximation of Kirby and Chen (1989), (19) has the clear advantage that it
makes no assumptions about the length or velocity of waves, nor the strength of the shear, and requires the
same criterion as the leading approximation to hold, given in (24) below, making it well controlled. Our exam-
ples indicate that the second-order expression by Kirby and Chen (1989) is generally robust and accurate, but
we have not succeeded in identifying the criteria for this to hold true. (19) is also arguably a simpler and more
transparent expression than the second-order correction derived by Kirby and Chen, and our own experience
is that it is significantly easier to implement, while admitting that this is to an extent a point of preference.

2.4. Applicability Criteria and Error Estimates
Our goal in this section is two–fold. First we derive the pertinent applicability criteria for the new approxi-
mation (18) as well as the 3DKC (22); these are found in equation (24) through (26). We use these results to
explain the surprising success of the 3DKC, not previously understood to our knowledge — Indeed it seems
to us that the sundry applicability ranges at play have been a source of some puzzlement, evident, for
example, in the discussions of Swan and James (2000). The applicability of the short–wave approximation
due to Shrira (1993) is discussed in Appendix section A3.

We shall see in the following that inclusion of the second order term in (17) strongly increases accuracy for
all wavelengths in the examples tested. With the exception of two extremely strongly sheared flows consid-
ered in section 4.4 (where, we shall see, applicability criteria are not satisfied), the estimate (16) is accurate
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to a percent or less. The criterion that ~c� from (18) is a good approximation we then take to be that ð~c2~c�Þ
=~c� � 1 where we use (16) for the ‘‘exact’’ value. For approximation (18) this means

jDj � 2
���d ffiffiffiffiffiffiffiffiffiffiffi

11d2
p

212d2
���: (23)

The right hand side is strictly greater than 1 for all d. A sufficient and far simpler criterion for this to hold is that

jDð~cÞj � 1: (24)

Since jDj is a measure of the effect of the right–hand side of the Rayleigh equation (1a) on ~c , i.e., the effect
of the curvature of the velocity profile, criterion (24) is a formal ’near–potentiality’ criterion.

In contrast, a sufficient criterion of applicability of the 3DKC (22) based on the same argument is that

���� d22D
2ð12dÞ

����� 1 (25)

assuming d < 1.

A sufficient criterion for this to hold is the double criterion

d2 � jDð~cÞj � 1: (26)

Particularly, in cases where jDj � 1 is satisfied but d is not small, the new approximation (18) is most often
superior. However, (25) shows that situations exist where the 3DKC happens to be accurate even when d is
not so small, because another sufficient criterion implying (25) is that

jd22Dj � 1; (27)

provided 2ð12dÞ � Oð1Þ. In such cases a fortunate cancellation occurs in the next order correction to (22),
rendering the first order approximation accurate even when d2 and D are not so small respectively, as we
shall see in numerical examples in section 4.
2.4.1. The Broad Applicability of 3DKC Explained
Remarkably, the 3DKC (22) can be derived by either assuming kc 	 jk � Uj (Kirby & Chen, 1989; Stewart &
Joy, 1974) (The assumption kc 	 jk � Uj is not in general satisfactory since U and c (unlike DU and ~c)
depend on the choice of reference system. In many cases this is easily rectified in a way amounting to the
same analysis.) or by taking the in some sense opposite limit k !1. This surprising coincidence was noted
by Skop (1987), but seems not to have been realized by either Kirby and Chen or Stewart and Joy. We are
now in a position to provide an explanation.

Inspecting the definition (12), and provided ‘near potentiality’ (24) is satisfied, the criterion d2 � 1 from (26)
implies that the 3DKC is sure to be excellent in three different limiting cases where d vanishes:

1. Weak current, kc0=k � U!1;
2. When the shear is weak, k � U0ðzÞ=k2c0 ! 0;
3. When wavelength is short, k !1.

That d! 0 in the first case may be seen from (22), whereby d5k � U0=kc02~U=c0. The third follows from the
large k asymptotic d � k � U00=ð2k2c0Þ � k � U00= 2g

1
2k

3
2

	 

which tends to zero in this limit.

Kirby and Chen (1989) derive (the 2D case of) equation (22) based on, essentially, the first of these cases,
but conjecture that the true condition might be weak shear. Skop (1987) remarks that essentially the same
approximation may be derived assuming short waves instead. These are exactly the three regimes listed.
2.4.2. Error Estimates
Noting that the second order approximation constitutes a significant improvement in accuracy for ~c in all
examples considered, we propose that its magnitude relative to the first-order approximation of ~c provides
a rough estimate of the error of using (18) and (22), respectively,

err� �
c0jDðc�Þj

2~c�
ffiffiffiffiffiffiffiffiffiffiffi
11d2
p ; errKC �

jd22Dð~cKCÞj
2ð12dÞ : (28)
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In general, err� is of order D, while errKC is of order max ðd2;DÞ. However, as mentioned the 3DKC can con-
spire to be smaller than this due to partial cancellation between d and D=d (errKC is only valid for d smaller
than, and not too close to, 1.)

2.5. Group Velocity
The approximate group velocity according to the approximation (18) is found as

cg;�ðkÞ5
d

dk
kc�ðkÞ5

k � U0

k
2CL1ð11d2Þ21=2ðcg01CLdÞ; (29)

where CL5
d

dk ðkc0dÞ, and cg05 1
2 c0ð112khcsch2khÞ is the group velocity with no current. Explicitly

CL5ð122khcoth 2khÞc0d12
ð0

2h

k � U0ðzÞðz1hÞcosh 2kðz1hÞ
sinh 2kh

dz: (30)

For reference, the group velocity predicted with 3DKC (22) is cg;KC5k � U0=k1cg02CL. A comprehensive dis-
cussion of the group velocity using the 3DKC was recently given by Banihashemi et al. (2017).

3. Application to Critical Layers

Especially in the presence of strong surface shear, critical layers could occur near enough to the surface to
affect wave properties. Critical layers occur when a critical depth zc exist so that k � UðzcÞ5kc. In the pres-
ence of a critical layer the eigenvalues for the phase velocity c acquire an imaginary part whose sign deter-
mines the stability of the flow. A thorough background is provided by Drazin and Reid (1981). A fully
realistic treatment of this problem requires inclusion of viscous effects (Velthuizen and van Wijngaarden,
1969), which is beyond the scope of this study. The inviscid problem is nevertheless an informative model
and much of the literature concerns stability of the Rayleigh equation (1a) rather than the full Orr–Sommer-
feld problem (Morland et al., 1991; Young & Wolfe, 2014).

We show in Appendix section A4 how equation (3) allows us to generalize the approximate treatment by
Shrira (1993) in a simple way. We conclude, like Shrira (1993), that instability is predicted when
k � U00ðzcÞ < 0, but derived here under far less restrictive assumptions. The explicit approximation for ImðcÞ
is given in Appendix section A4. The prediction is made by linearizing with respect to D=d, and is valid only
up to linear order in this parameter.

4. Numerical Results

In this section we test our approximation (18) and (19) for different shear flows, with special emphasis on
error estimates and the smallness parameters considered in section 2.4. For all flows we have also calculated
~cðkÞ with high accuracy using the piecewise-linear approximation (PLA) detailed in Smeltzer and Ellingsen
(2017), allowing us to accurately compare with the ‘‘exact’’ answer for all flows considered. The PLA calcula-
tions all have relative accuracy better than 1024 for intrinsic phase velocities.

4.1. Typical Wind-Driven Flows
Flows with strong shear near the surface will affect the dispersion the most. A typical example is wind-
driven flow. Examples of wind driven flow profiles were collected and analyzed by Swan and James (2000)
(see further references therein); we use the velocity profiles from their Figure 2, assuming waves propagat-
ing downstream. Results are shown in Figure 2.

For all of these flows the new approximation (18) and the 3DKC (22) are essentially equally good, which
accords with our analysis in section 2.4 since d remains significantly less than 1 for all k. Exactly which of the
two happens to be closest to the exact solution for some k depends on the exact shape of U(z), and we do
not see a way to predict this short of a full calculation. It is notable that the 3DKC works well even for d as
large as 0.35, which is due to the partial cancellation between d2 and D, criterion (25).

Both our second-order approximation (19) and the higher order expression due to Kirby and Chen (1989)
improve accuracy, and are essentially equally good for these moderately sheared flows.
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We have performed the same calculation for a shear–assisted wave, equivalent to letting U! 2U in Figure
2. The same conclusions hold, both first order expressions are accurate to better than 3%, and both second-
order forms are much better than this.

4.2. Comparison With Exact Cases
We go on to test the different approximations for a particular class of shear currents analyzed by Peregrine
(1976), UðzÞ5UðzÞex with

UðzÞ5U0cosh jz1U00j
21sinh jz: (31)

(a)

(f)

(g) (h) (i)

(b) (c)

(d) (e)

Figure 2. Approximate dispersion relations applied to different wind-drift shear currents (Swan & James, 2000). (a, b, c) Results for the shear profiles are found in
their respective columns. (d, e, f) Calculated estimates of intrinsic velocity ~c relative to the ‘‘exact’’ value calculated with the piecewise–linear method (PLA). Results
are calculated for the 1st and second-order approximations found herein in equations (18) and (19), respectively, and those due to Kirby and Chen (1989). (g, h, i)
The parameters relevant to applicability of the approximations. Dð~cÞ were calculated from the PLA value of ~c .
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For the specific case c 5 0, the Rayleigh equation (1a) can be solved exactly giving wðzÞ5wð0Þsinh Kðz1hÞ=
sinh Kh with K5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21j2
p

. The wave number k is a function of the three parameters j;U0 and U00 and solves
an implicit dispersion relation. See (Peregrine, 1976, pp. 79–82) for full details. We choose Uð2hÞ50, which
fixes j implicitly.

Results are shown in Figure 3, where two different profiles of type (31) are analyzed with h being the angle
between k and U; velocity profiles are shown in panels (a) and (e), and each row presents calculations per-
taining to their respective profiles. The value of kh which corresponds to c 5 0 is shown in panels (d) and
(h), showing that the wavelengths become very short as h approaches p=2, whereas the waves near h52p
the waves have wavelength comparable to h, and are thus affected by the flow within a significant portion
of the water column. The small values of d for the profile in Figure 3a mean the two predictions are almost
identical and both predict c � 1023U0. For the profile in Figure 3e with strong surface shear, d is higher, yet
there is no significant difference in prediction accuracy between the two models, which can be explained
by the partial cancellation between D and d2 in errKC in equation (28).

4.3. Fully 3-Dimensonal Flows
In realistic settings, the direction of UðzÞ may vary with depth. An example could be a wind-driven flow
across a tidal current. As a model flow we use an exponential/trigonometric profile

UðzÞ5U0sinh aðz1hÞ½cos ðjz1/Þex1sin ðjz1/Þey � (32)

where a and j are parameters for the vertical and horizontal depth variation. Results are shown in Figure 4
for different propagation angles h and three different values of the parameter jh ranging from jh50 (no
directional variation) to jh54 (strongest directional variation) as shown. We use kh 5 1 everywhere, and h
is the angle between k and Uð0Þ.

There are several interesting phenomena to note. Panel (a) shows significant discrepancy between our
model (18) and the 3DKC, increasing with stronger vertical shear, in the vicinity of h 5 0. We do not have
‘‘exact’’ calculations to compare with for the direction-changing profile, yet the previous error and applica-
bility analysis gives an explanation of discrepancies when the key parameters d and D are also considered,

U
0

(a) (b) (c) (d)

(e) (f) (g) (h)

U
0

Figure 3. Approximate dispersion relations used for waves with exact phase velocity c 5 0 on profile (31), for different propagation directions h. In all plots,
U0=

ffiffiffiffiffiffi
gh

p
50:45. hU00=U05 (a-d) 0 and (e-h) 4; j is determined from the condition Uð2hÞ50. (a, e) Velocity profiles for each row. (b, f) Phase velocities from different

approximations; see Figure 2 for abbreviations. (c, g) Comparison of the different smallness parameters considered in section 2.4. Wave number kðj;U0;U00Þ is
calculated from equation (4.21) of Peregrine (1976), and plotted in Figures 3d and 3h.
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shown in Figure 4c. At the angles where the discrepancy is greatest (h � 0:2p), d is large while D is too small
for a cancellation to occur according to (25). Our analysis strongly indicates that our model (18) should be
superior here. In contrast, near h5p the difference between the two estimates is smaller than might be
expected from the high d value, as is explained by the partial cancellation between d2 and D in errKC in
equation (28).

Finally Figure 4b shows clearly that the na€ıve estimate for ~c by extending the surface shear linearly into the
deep using ~c s (equation (20)) will work poorly in this case, where inclusion of the change of direction with
depth is important for accurate dispersion estimation.

4.4. Strongly Sheared Flows
We finally consider three strongly sheared examples where d is so large that the 3DKC fails for a range of
wavelengths. Due to finite depth, phase velocities are limited in the long wave limit. Our first two profiles
are of finite depth, and their variation over the water column exceeds the fastest possible wave speed,
hence waves can never be considered ‘‘fast’’ nor the shear weak. The third is a deep water example with
strong surface shear. All currents are unidirectional and we choose k along the current, an effectively 2D
flow which is adequate as a demonstration. For all three example flows we have calculated ~c to an accuracy

(a) (b)

(c)

s

κh = 0
κh = 2
κh = 4

κh = 0
κh = 2
κh = 4

κh = 0
κh = 2
κh = 4

Figure 4. Demonstration of approximate dispersion relation for the direction-changing flow (32) with U0=
ffiffiffiffiffiffi
gh

p
50:5; ah5

1;/50 and kh 5 1. All panels show variation as a function of propagation direction h for three different values of jh. (a)
Comparison of (18) and the 3DKC, (22). (b) Comparison of (18) and the na€ıve estimate ~c s . (c) Parameters d and D as
functions of h.
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better than 1024 using the piecewise linear approximation (Smeltzer & Ellingsen, 2017), allowing us to com-
pare approximations to the ~cðkÞ which at the relevant level of accuracy can be considered ‘‘exact.’’ In our
examples we consider waves traveling downstream.

The first profile we consider is an example where our approximation (18) is successful whereas the 1st order
3DKC (22) fails completely:

U1ðzÞ53
ffiffiffiffiffiffi
gh

p
exp ðz=hÞ: (33)

This profile is considered in panels a,d and g of Figure 5. U1ðzÞ has strong shear, and its variation jDU1j
exceeds ~c for a large part of the wave number spectrum. The velocity variation over the column is not
unreasonable for a region of rapid flow, for example over a local shallow in a river — a variation U02Uð2hÞ
� 2

ffiffiffiffiffiffi
gh

p
as here is obtained, for instance, for flow of surface velocity 4 m/s in 40 cm depth — or it might

describe a fast film flow of depth 1cm with surface velocity 60 cm/s.

Although the 3DKC fails because d is too large, the ’near-potentiality’ criterion (24) is very well satisfied, and
c� is within a few % of the correct value. Figures 5a, 5d, and 5g demonstrate the improved robustness of
our approximation (18) compared to the Skop/Kirby and Chen model. The 3DKC becomes negative for long
wavelengths, which is to say phase velocity should change sign in a system following the surface, which is
physically unacceptable: the dispersion relation for a linear shear current always has one upstream and one
downstream solution however strong the shear. For any smooth, nonlinear velocity profile, there always
exists an even more strongly sheared linearly varying current, and since ~c s from (20) is always positive, so
must ~c .

Insight into the nature of second order correction terms is also offered by Figure 5d. The second-order cor-
rection to c�, equation (19), is accurate to 1% or better for all k, while the second-order term as calculated
from the expressions of Kirby and Chen (1989), ~cKC;2nd, also rectifies the deficiencies of its 1st order compan-
ion (the expression for ~cKC;2nd is somewhat bulky so is not quoted here) and works well; it has much higher
relative error than (19), but this in itself is unlikely to be of practical importance. We are at present unable to
explain the success of the second-order Kirby and Chen approximation in this case, and thus cannot deter-
mine under what conditions this holds true more generally. The criterion for the second-order approxima-
tion (19), on the other hand, is well controlled by condition (24).

We next consider a particularly difficult case where both shear and curvature are very large,

U2ðzÞ5
ffiffiffiffiffiffi
gh

p
exp ð10z=hÞ: (34)

jDU2j exceeds ~c for much of the water column. U2ðzÞ is considered in Figure 5b, 5e, and 5h. Such a strongly
sheared flow could occur locally, and might represent a realistic surface jet due to discharge of a fast flow
into still waters, for example a jet speed of about 3m/s on a 1m depth.

We notice that for U2ðzÞ the parameter D is about 0.22 for long waves, enough for the flow not to satisfy
the ‘near-potentiality’ criterion (24). No approximation scheme based on near-potentiality can expect to
fully succeed in this case. Since d exceeds unity, the 3DKC once again fails. Also c� from (18) is inaccurate
in this particular case, overestimating ~c by about 60% for long waves, yet the result is at least physically
meaningful since the correct sign of ~c is guaranteed. For reference, ~c tends to the maximum � 0:5

ffiffiffiffiffi
kh
p

as k ! 0. The second-order corrected approximation (19) moreover improves the estimates to the 20%
level or better, whereas the second-order approximation due to Kirby and Chen (1989) is too small by
about 40% for long waves and fares poorly for medium waves with kh � 5 where ~cKC;2nd is only about
20% of the real ~c . This particularly difficult example thus demonstrates the improved robustness of (18)
and (19).

We finally consider another difficult case for any ’near-potentiality’ approximation scheme, with strong sur-
face shear in deep water,

U3ðzÞ53
ffiffiffiffiffiffiffiffi
g=a

p
exp ðazÞ: (35)

Since the shear is found near the surface only, the downstream phase velocity is unbounded for long waves,
unlike for a linearly varying deep water current. Like in the previous cases, a region of wavelengths exists
where the 3DKC yields an unphysical negative prediction, k=a between approximately 0.2 and 1. The
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robustness of our new approximation is thus demonstrated once again. It should be noted that while the
3DKC fails for medium wavelengths, it fares better than c� and even c�;2nd for k=a�0:05, despite the fact
that d is as high as 0.6. Again this is because D=d � d here, making criterion (25) well satisfied nevertheless,
as seen in Figure 5i. This seems like a lucky coincidence, but given similar observations for the wind-driven
profiles in section (4.1), it seems indicated that to some extent it holds more generally for a class of shear
currents, a question which should be looked into in the future.

(a)

(g) (h)

(b)

(d) (e)

N N
k/α

k/α

(f)

(i)

(c)

Figure 5. Comparison of different approximation models for three strongly sheared velocity profiles. Pertain to (a, d, g) U1ðzÞ from equation (33), (b, e,h) U2ðzÞ
from equation (34), and (c, f, i) U3ðzÞ from (35). (a-c) Velocity profiles. (d-f): 1st and second-order estimates using the present model to first and second order,
respectively EL1st (equation (18)), and EL2nd (equation (19)), as well as the 1st and second-order approximations of Kirby and Chen (1989) (3DKC1st and 3DKC2nd ,
respectively), relative to the high accuracy calculation with the piecewise linear approximation (PLA). The legend in Figure 5d applies also to Figures 5e and 5f.
(g, h, i): applicability parameters for the models as discussed in section 2.4.
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5. Conclusions

We have presented a comprehensive theory of approximate dispersion relations for linear waves propagating
atop a sub-surface horizontal shear current whose magnitude and direction can vary arbitrarily as a function
of depth. We present a new analytical approximation which is shown to be more robust than the (3-D general-
ization of the) famous and widely used approximation by Skop (1987) and Kirby and Chen (1989), the 3DKC.
The conditions of applicability of our new model are shown to be less restrictive, making it accurate in several
realistic situation where the 3DKC is inaccurate or even breaks down. For the cases when the criteria for the
3DKC to work are satisfied, the two models are essentially equally good. Our approximations are tested for a
range of different example flows.

A second-order accurate expression in terms of the suitable small parameter is also derived, and shown to
greatly improve accuracy. The inclusion of the next order may not be called for in many situations, but con-
stitutes a significant improvement in the more difficult situations discussed. The next order correction is
robust and has the same condition of applicability as the first order (Kirby & Chen (1989) also derive a
second-order correction to their model, whose conditions of applicability are not known at present).

Our thorough perturbation analysis is able to explain, for the first time, the success of the 3DKC for many cases,
including situations where the assumptions behind its original derivation are strongly violated. Indeed, careful
criteria are derived for our approximation, as well as for that of Kirby and Chen, to be accurate.

To leading order our new approximation involves essentially identical computational effort and complexity
as that of Kirby and Chen. Our experience, however, is that our new second-order correction is significantly
less complicated to implement than its sibling derived by said authors (while admitting that this could be a
point of preference), and arguably more physically transparent.

Appendix A: A Further Discussion and Mathematical Details

A1. Infinite Depth Expressions
We here list key quantities in the limit kh!1. Now c05

ffiffiffiffiffiffiffiffi
g=k

p
, and

d5

ð0

21

k � U0ðzÞ
kc0

e2kzdz; ~U52
ð0

21
k � UðzÞe2kzdz: (A1)

The relation k~U5k � U02kc0d still holds. The expression for Dð~cÞ simplifies greatly, to

Dð~cÞ52
~c

kc2
0

ð0

21

k � U00ðzÞ
k � DUðzÞ2k~c

½~U2~uðzÞ�e2kzdz; (A2)

~uðzÞ52
ðz

21
k � UðfÞe2kðf2zÞdf: (A3)

The first two solutions to w(z) are

wð0ÞðzÞ5wð0Þð0Þekz; wð1ÞðzÞ5 wð0Þð0Þ
k

ðz

21

k � U0ðfÞ
k � DUðfÞ2k~c

ekfsinh kðz2fÞdf: (A4)

For the purposes of the approximations for group velocity,

CL5

ð0

21
k � U0ðzÞð112kzÞe2kz=k: (A5)

A2. Simplification of Dð~cÞ
Here follow the details of the simplification of Dð~cÞ5EXI1EXK1d1EXK1 in equations (10) and (11) to the
form (14). Using d5ðk � U02k~UÞ=kc0 from (22) and sinh kh52cosh kh=sinh 2kh, we write

dEXK15
2~c

k2c2
0

ð0

2h
!ðzÞ sinh kðz1hÞ

sinh 2kh
2sinh kzcosh kh½k � U02k~U�dz (A6)
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where the shorthand !ðzÞ5k � U00ðzÞ=ðk � DU2k~cÞ is introduced. Next we perform a partial integration of
the inner integral in EXK2 to obtain

EXK25
2~c

k2c2
0

ð0

2h
!ðzÞ sinh kðz1hÞ

sinh 2kh
½k � U0sinh kðh2zÞ2k � UðzÞsinh kðh1zÞ

22k
ð0

z
k � UðfÞcosh kð2f1h2zÞdf�dz:

(A7)

Using that sinh kðh2zÞ2sinh kðh1zÞ12sinh kzcosh kh50, we find

D52
2~c
kc2

0

ð0

2h
!ðzÞ 2sinh kðz1hÞ

sinh 2kh
½~Usinh kzcosh kh

1

ð0

z
k � UðfÞcosh kð2f1h2zÞdf�dz;

(A8)

which takes the form (14) with minimal further manipulation.

A3. The Short-Wave Approximation of Shrira
We consider the approximation due to Shrira (1993) derived for short waves. For large k the integral is dom-
inated by jzj�1=2k, and we now assume the wave short enough that a near–surface Taylor expansion UðzÞ
� U01U00z1 � � � is in order. Terms proportional to U00ðzÞ are then small, and the integral term I (see equa-
tion (4)) is a small correction in equation (3). Since DU � U00z we have k � DU�U00=2k which is negligible
compared to k~c �

ffiffiffiffiffi
gk

p
. We thus obtain I � 2ð2c0=~cÞdS with the short-wave smallness parameter

dS5

ð0

2h

k � U00ðzÞsinh 2kðz1hÞ
k2c0sinh 2kh

dz (A9)

which is a depth-averaged velocity profile curvature. Equation (3) becomes approximately

~c222~cc0dS1k22~ck � U00tanh kh2c2
050:

Assuming dS to be small and expanding to first order gives

~c � cs 11c0dS=
ffiffiffiffiffiffi� � �pð Þ (A10)

where
ffiffiffiffiffiffi� � �p

is the square root term in (20). This is the leading order of the approximation of Shrira (1993).

The criterion of applicability, dS � 1, only in general holds for large k. For longer waves a cancellation
occurs in (3), because, by partial integration,

dS5k � U00tanh kh=ð2k2c0Þ2d:

For short waves both terms on the right hand side are small. For longer waves, the first term no longer
is, but it is cancelled by another term in (3). If d is also small for long waves, this cancellation effectively
replaces the small parameter dS for short waves, by d for longer waves. Approximation (A10) has no
such cancellation, and therefore fails for longer waves, while approximations (18) and (22) typically do
not.

A4. Stability of a Critical Layer
Let there be a critical layer at z 5 zc, so that near this depth, k � UðzÞ � kc1ðz2zcÞk � U0c , where Uc5UðzcÞ5c
and U0c5U0ðzcÞ. The integral in (3) now has a pole on the axis of integration. It becomes well defined when
considered as the t !1 limit of a corresponding initial value problem (Peregrine, 1976). Suppose the
wave has been made by a wave paddle with frequency x5kc, and whose amplitude has increased slowly
from zero at t 5 21. The generated wave will have time dependence exp ð2ixt1�tÞ with �501. The effect
is to replace kc ! kc1i�, moving the pole slightly off the z axis. Approximating w � wð0Þ from (9a) and
using the Sokhotski-Plemelj theorem, a ’near–potentiality’ estimate of I from (4) is

I � P
ð0

2h

2k � U00sinh 2kðz1hÞdz
kðk � DU2k~cÞsinh 2kh

1
2pik � U00csinh 2kðzc1hÞ

kjk � Ucjsinh 2kh
� Ir1iIi: (A11)
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P denotes the principal value. With this, the first-order version of (13) becomes ~c2
12c0~cd2c2

01i~c2Ii50.
Now suppose the complex ~c is ~c5~c r1ici , and noting that ci is order Ii, we solve for the real and imaginary
parts of the resulting equation to order Ii. This results in ~c r � ~c , and

ci � 2~c2
�Ii= 2c0

ffiffiffiffiffiffiffiffiffiffiffi
11d2

p	 

: (A12)

Here, ~c r is approximated using, e.g., (18). For the case of short waves in deep water this agrees with the
result of Shrira (1993). Now, ci > 0 implies unstable flow. Since c0 > 0, instability is predicted when
k � U00c < 0.
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