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Abstract
We present a new asymptotic theory for scalar and vector wave scattering
from rough surfaces which federates an extended Kirchhoff approximation
(EKA), such as the integral equation method (IEM), with the first and second
order small slope approximations (SSA). The new development stems from the
fact that any improvement of the ‘high frequency’ Kirchhoff or tangent plane
approximation (KA) must come through surface curvature and higher order
derivatives. Hence, this condition requires that the second order kernel be
quadratic in its lowest order with respect to its Fourier variable or formally the
gradient operator. A second important constraint which must be met is that both
the Kirchhoff approximation (KA) and the first order small perturbation method
(SPM-1 or Bragg) be dynamically reached,depending on the surface conditions.
We derive herein this new kernel from a formal inclusion of the derivative
operator in the difference between the polarization coefficients of KA and
SPM-1. This new kernel is as simple as the expressions for both Kirchhoff
and SPM-1 coefficients. This formal difference has the same curvature order as
SSA-1 + SSA-2. It is acknowledged that even though the second order small
perturbation method (SPM-2) is not enforced, as opposed to the SSA, our model
should reproduce a reasonable approximation of the SPM-2 function at least
up to the curvature or quadratic order. We provide three different versions of
this new asymptotic theory under the local, non-local, and weighted curvature
approximations. Each of these three models is demonstrated to be tilt invariant
through first order in the tilting vector.

1. Introduction

In our recent publications [1–3], we demonstrated, for perfectly conducting surfaces, that the
first and second order small slope approximations (SSA-1 + SSA-2) given by Voronovich [4]
can be reached, in their functional form, even if the starting point of the derivation was the
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surface current integral equations. The SSA structure is based on the polarization coefficients of
the small perturbation method (SPM) and the sum of single and double integrals. The first order
SPM-1 coefficients are placed in front of the single integral while the SPM-2 coefficients, or
some combination thereof,are involved in the kernel of the double integral; see equations (5.15)
and (5.16) in [5]. Our demonstration in [3] suggested that the single integral can be multiplied
by the Kirchhoff polarization coefficients and the kernel of the double integral is now left with a
curvature or a quadratic kernel in its lowest order with respect to its Fourier variable or formally
the gradient operator. This is a particular version of the extend Kirchhoff approximation (EKA)
as opposed to the IEM of Fung [6]. In general, we have also demonstrated that the first and
second order small slope approximations (SSA-1 + SSA-2) are defined to within an arbitrary
linear kernel which for a particular choice makes the two representations compatible. This
idea of quadratic second order kernel was already generalized in a recent letter [7] to the case
of surfaces that are good conductors in the quasi-specular regime. We noted that the difference
between the polarization coefficients of the SPM-1 and Kirchhoff approaches is quadratic in
qH = k − k0 where k0 and k are the horizontal projections of the incident and scattered
wavenumbers, respectively. This derivation allowed the determination of the curvature kernel
only in the quasi-specular regime because of the Taylor expansion performed up to the quadratic
order in qH. This practical approximation in [7] also demonstrated that the differences in the
polarization coefficients and the SSA share the same curvature order.

In the current paper we present a new asymptotic theory based on our previous advances in
the electromagnetic scattering from rough surfaces. The new approach extends the domain of
applicability of the practical curvature model in [7] to the most general dielectric and bistatic
cases. The Neumann and the Dirichlet boundary conditions for acoustic scattering are treated
as well. In fact, our new asymptotic model is as simple as just expressing the Kirchhoff and
SPM-1 difference in terms of the difference of horizontal wavenumber vectors qH = k − k0

for the particular problem under study. This new generalized model converges dynamically
to both Kirchhoff and SPM-1 limits, depending on the surface roughness. The curvature is
shown to have a unifying effect not only on the SPM-1 and Kirchhoff limits but also on the
small slope approximation (SSA) [5] and an EKA such as the IEM [6, 8].

In section 2, we define the local curvature approximation (LCA) on the basis of the
Kirchhoff coefficients and a curvature kernel quadratic in its lowest order. It is shown in this
same section that this kernel must possess certain fundamental properties in order to satisfy
reciprocity and the proper asymptotic limits. In section 3, we derive a theory equivalent to the
second order small perturbation method (SPM-2) that in turn is correct up to the curvature order.
This equivalence to the SPM-2 coefficient permits a link to the local small slope approximation
(SSA-1 + SSA-2). In section 4, we show how the non-local curvature approximation (NLCA)
can be formulated on the basis of this equivalence to the SPM-2 function. This form is very
close to the non-local small slope approximation (NLSSA) as motivated and derived in [9].

On a slightly more practical and less theoretical note, we provide in section 5 a
local weighted version of our curvature approximation (WCA) to facilitate Monte Carlo
simulations. This form is similar to the local weight approximation (LWA) given by Dashen
and Wurmser [10] where the kernel of the single integral is surface slope dependent. Numerical
and analytical comparisons with Dashen and Wurmser’s as well as with the first order expansion
operator model (OE-1) of Milder [11] are also given in section 5.

In section 6, we show how a tilted surface in our curvature based models generates a tilted
asymptotic limit for the small perturbation method or SPM-1. This property is termed tilt
invariance, and is the formal equivalent of tilted Bragg or tilted SPM-1.

Several appendices detail the expressions for the polarization kernels for the Neumann,
Dirichlet, perfect conducting, and dielectric boundary conditions.
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2. The local curvature approximation

In our previous paper [3], we demonstrated that the small slope approximation’s
(SSA-1 + SSA-2) functional form can be reached even when one starts from the surface current
integral equations. Indeed, the first iteration current generates the Kirchhoff approximation
while the second iteration yields a double integral similar to the one in SSA-2. However,
a major difference in this EKA is that the second order kernel is quadratic in its lowest
order and therefore only curvature and higher order derivatives of the surface are responsible
for the extension. This is physically reasonable since the Kirchhoff approach is the ‘high
frequency’ tangent plane approximation where the surface is considered locally flat. Hence,
any improvement on the Kirchhoff approximation must come from the addition of curvature
and higher order derivatives of the scattering surface. Under local scattering conditions, one
can write, as suggested by Voronovich in [4] and modified by our recent developments in [3],
the scattering amplitude as

S(k,k0) = K(k,k0)

qz

∫
e−iqzη(x)e−iqH·x dx

− i
∫ ∫

T (k,k0; ξ)η̂(ξ)e−iqzη(x)e−i(qH−ξ)·x dξ dx (1)

where the normalization is motivated by the Dashen and Wurmser papers (see for instance [10]).
The notation adopted in the present paper is heavily influenced by Voronovich’s notation along
with a judicious combination of our previous notation and that of the Dashen and Wurmser
papers. Most of the variables used are defined as

Ki = k0 − q0ẑ (2a)

Ks = k + qk ẑ (2b)

K2
i = K2

s = K 2 (2c)

qk =
√

K 2 − k · k (2d)

q0 =
√

K 2 − k0 · k0 (2e)

qz = qk + q0 (2f)

qH = k − k0 (2g)

wH = k + k0 (2h)

η(x) � η̂(ξ) (2i)

where Ki and Ks are the three-dimensional wavenumbers of the incident and scattered waves,
respectively. The scattering surface elevation is described by η(x) and its corresponding
Fourier transform η̂(ξ). The coefficient K is the Kirchhoff polarization matrix. The curvature
kernel T is defined, after the change of variable in (2), as

K(k,k0) � K(wH; qH) (3a)

B(k,k0) � B(wH; qH) (3b)

T (k,k0; ξ) � T (wH; ξ) = B(wH; ξ) − K(wH; ξ) (3c)

where B is the polarization matrix of the first order small perturbation method (SPM-1). The
kernelT is effectively a bivariate function as opposed to the kernel of SSA-2 where an additional
variable is needed as will be demonstrated in the following section. A formal substitution is
made in our curvature kernel where the difference in the wavenumbers qH = k − k0 is
formally replaced by the ∇ operator and hence the Fourier variable ξ . This formal substitution
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was demonstrated in our recent letter [7] to preserve the curvature order and coincide with that
of the second order SSA.

A series of three appendices are reserved for the explicit expressions of the curvature kernel
and how it turns out to be quadratic for Neumann, Dirichlet, perfect conducting, dielectric
boundary conditions on the scattering surface.

It is trivial to verify for the following properties of this curvature kernel, which must be
satisfied for consistency with standard limits,

T (wH; qH) = B(wH; qH) − K(wH; qH) (4a)

T (wH; 0) = 0 (4b)

∇T (wH; 0) = 0. (4c)

The first property ensures the convergence of the LCA in (1) to SPM-1 under small roughness
conditions. The second property preserves the invariance of the model under vertical translation
of the scattering surface. The third property implies that the high frequency limit is the
Kirchhoff approximation; equation (5.18) in Voronovich [5] defines how the high frequency
limit is obtained from the first derivative of the second order kernel. Both the second and third
properties come from the quadratic nature of the curvature kernel T as demonstrated in the
appendices.

In order to preserve reciprocity under the transformations:

k0 ↔ −k (5a)

q0 ↔ qk (5b)

wH ↔ −wH (5c)

qH ↔ qH, (5d)

the scattering amplitude as well as the other polarization coefficients exhibit the properties

S(k,k0) = S t (−k0,−k) (6a)

K(k,k0) = Kt(−k0,−k) (6b)

B(k,k0) = Bt (−k0,−k) (6c)

K(wH; qH) = Kt (−wH; qH) = Kt(wH; −qH) (6d)

B(wH; qH) = Bt (−wH; qH) = Bt (wH; −qH) (6e)

T (wH; ξ) = T t(−wH; ξ) = T t (wH; −ξ). (6f)

Reciprocity is a fundamental principle in wave theory. Berman and Dacol [12] as well as
Dashen and Wurmser [13] demonstrated that a manifestly reciprocal scattering amplitude
exists from which the small slope approximation (SSA) of Voronovich [4] can be derived
after straightforward approximations. This demonstrates to some extent the power of having
a manifestly reciprocal theory.

We recall that the curvature kernel depends formally on the Fourier variable ξ and
wH = k + k0. No other dependence on k and k0 in T is possible because of the formal
replacement of qH = k − k0 by the Fourier variable ξ . We will show, in the next section, that
extra dependence on k and k0 is possible in the SPM-2 and SSA-2 kernels.

3. Link to the local small slope approximation

The link to the SSA can be made by expanding the LCA in (1) up to the second order in powers
of the surface η to obtain
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S(k,k0) = B(wH; 0)

qz
δ(qH) − iB(wH; qH)η̂(qH) − qz

∫
B̃2(k,k0; ξ)η̂(k − ξ)η̂(ξ − k0) dξ

(7)

where

B(wH; 0) ≡ K(wH; 0) (8)

and the equivalent SPM-2 function from our curvature kernel and the Kirchhoff matrix is

B̃2(k,k0; ξ) = T (wH; k − ξ) + T (wH; ξ − k0) + K(wH; k − k0)

2
. (9)

The tilde over the function B̃2 is present to remind the reader that this function is not the
formal expression of a second order SPM-2. It is rather the one obtained from our curvature
approximation and therefore it ensures similar accuracy up to the curvature order only. It can
be easily verified that this function has the following property:

B̃2(k,k0; k) = B̃2(k,k0; k0) = B(wH; qH)

2
(10)

which ensures the invariance of the scattering matrix S(k,k0) under vertical translation of the
scattering surface. The reciprocity property of B̃2 is

B̃2(k,k0; ξ) = B̃t
2(−k,−k0; −ξ). (11)

The local SSA has the same functional form as in (1) but with the SPM-1 coefficient B in front
of the first single integral and M̃ as the kernel of the double integral and related to the SPM-2
function B2. The formal expression for the SSA-equivalent scattering matrix is then

S(k,k0) = B(k,k0)

qz

∫
e−iqzη(x)e−iqH·x dx

− i
∫ ∫

M̃(k,k0; ξ)η̂(ξ)e−iqzη(x)e−i(qH−ξ)·x dξ dx (12)

where the relation between the kernel M̃ and the function B̃2 is obtained by Taylor expansion
of (12) up to the second order surface elevation and by element by element comparison with (7):

M̃(k,k0; ξ) = B̃2(k,k0; k − ξ) + B̃2(k,k0; k0 + ξ) − B(k,k0)

2
(13)

which yields the following relation to the curvature kernel:

M̃(k,k0; ξ) = T (wH; ξ) + T (wH; qH − ξ) − T (wH; qH)

2
. (14)

This kernel has the following properties:

M̃(k,k0; qH) = 0 (15a)

M̃(k,k0; 0) = 0 (15b)

∇M̃(k,k0; 0) = 1
2 ∇T (wH; qH) (15c)

∇M̃(k,k0; 0) · qH ≈ T (wH; qH). (15d)

The first property preserves the SPM-1 limit. The second is for the translation invariance and
the third and the fourth ensure the Kirchhoff approximation under the high frequency limit,
up to the lowest quadratic order in qH. It will be shown in section 6 that the last two identities
also play a major role in the tilt invariance property.

Finally this modified kernel of the SSA-2 model obeys the following reciprocity property:

M̃(k,k0; ξ) = M̃t(−k,−k0; ξ). (16)

The original SSA-2 kernel and the one in (14) are equivalent at least up to the curvature order
of the scattering surface; see [7] in the quasi-specular regime.
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4. The non-local curvature approximation

It is possible to express our model in the form of the non-local small slope approximation
(NLSSA) given in [9]. We term this form the non-local curvature approximation (NLCA).
The non-local aspect refers to multiple scattering at the surface. For more motivation of this
non-local model the reader is referred to [9]. We have

S(k,k0) = B(k,k0)

qz

∫
e−iqzη(x)e−iqH·x dx +

qk + q0

2qkq0

×
∫ ∫ ∫

φ̃(k,k0; ξ)e−i(k−ξ)·x1−iqkη(x1)ei(k0−ξ)·x2−iq0η(x2) dξ dx1 dx2 (17)

where the triple integral replaces the double integral in the local SSA. This triple integral
includes the multiple scattering up to double bounces on the scattering surface. In order to
find the non-local kernel, one searches for solutions linear in B̃2 in the form

φ̃(k,k0; ξ) = α + βB̃2(k,k0; ξ) + γ B̃2(k,k0; wH − ξ) (18)

which constitutes the simplest form of the final solution. The third term was not enforced
in the derivation of the original NLSSA [9]. After inserting (18) into (17) and expansion in
powers of η up to the second order one finds that the non-local kernel is related to B̃2 in (7) by

φ̃(k,k0; ξ) = B̃2(k,k0; ξ) + B̃2(k,k0; wH − ξ) − B(k,k0) (19)

where, if the expression for B̃2 in (9) is used, one finds this simple relation:

φ̃(k,k0; ξ) = T (wH; k − ξ) + T (wH; ξ − k0) − T (wH; k − k0). (20)

This non-local kernel exhibits the following property:

φ̃(k,k0; k) = φ̃(k,k0; k0) = 0 (21)

which of course preserves the SPM-1 limit of the NLCA. The high frequency limit can also be
checked by linearization of the kernel with respect to the Fourier variable. With the gradient
property

∇φ̃(k,k0; k) · qH = −∇φ̃(k,k0; k0) · qH = ∇T (wH; qH) · qH ≈ 2T (wH; qH) (22)

one can demonstrate that the high frequency limit is indeed the Kirchhoff approximation. The
reciprocity property of φ̃ is

φ̃(k,k0; ξ) = φ̃t (−k,−k0; −ξ). (23)

Even though the SPM-2 limit is not formally attained by this non-local form, it is consistent
with the NLSSA at least up to the curvature order in the scattering surface.

It should be noted that the polarization matrix of the single integral in the NLSSA and
NLCA is that of SPM-1. The surface dependence of the triple integral is only in the phases and
not in the kernel. Hence, the NLSSA and NLCA functional forms seem to be more ‘universal’
than that of SSA-1 + SSA-2 or LCA in view of the formal phase factor representation given
by Tatarskii [14].

5. The weighted curvature approximation

5.1. Formulation of the model

There is an interesting reduced form of our LCA in (1) where a single integral can be written
with an integrand dependent on the surface slope. This reduced form is

S(k,k0) = 1

qz

∫
{B(wH; qH) − T (wH; −qz∇η)}e−iqzη(x)e−iqH·x dx (24)
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which still retains the proper SPM-1 and Kirchhoff limits. When one compares the LCA of (1)
with the expression in (31), the argument of the kernel is not necessarily a formal replacement
of ξ by −qz∇η simply because the constant coefficient K in front of the first integral in (1) is
now replaced by B in addition to the reduction of the integral dimensions.

Since T is at least quadratic, the SPM-1 limit is trivially reached because T does not
contribute to the linearized limit in η in (24). The high frequency limit is obtained by noticing
that in this case the phase factor oscillates too rapidly and therefore the integrand can be
evaluated at the stationary point of the phase. This is traditionally termed the stationary phase
approximation. When the stationary phase approximation (or equivalently the high frequency
limit) is applied one imposes that the variable

ζ = qH + qz∇η (25)

be zero. This means that the surface slope is locked at −qH/qz . For this value of the
slope it can be checked by simple inspection that the form in (24) reduces to the Kirchhoff
approximation. This model will be termed the weighted curvature approximation (WCA) and
will be demonstrated to be accurate and practical for, in particular, numerical simulations.

5.2. The local weight approximation

This local WCA is already in the form that Dashen and Wurmser investigated in their paper
[10]. In order to reach this form Dashen and Wurmser started from a composite model based
on a local expression of the SSA-1 and then iterated over the integrand through a differential
equation (E1) in [10] which ensures accuracy up to the curvature order in the scattering surface
as well as invariance under arbitrary tilt. Their resulting model is termed the local weight
approximation (LWA), and their differential equation is solved after the following change of
variable:

−qz∇η = qH − ζ = qH − ζ̂ζ (26)

is made. The LWA was demonstrated to be complete up to the first order in surface curvature.
We have checked the high frequency limit of LWA and found that the Kirchhoff limit is formally
reached under the stationary phase approximation. This means that the LWA as formulated
for Dirichlet, Neumann, and perfect conducting boundary conditions has a wide range of
applicability. LWA is then the only single integral model with a slope dependent integrand
which reaches both the high frequency Kirchhoff and the small perturbation method SPM-1
limits. We will demonstrate that our WCA is a practical generalization of the LWA to the full
dielectric case.

5.3. Analytical comparison

There are two possibilities when analytically comparing our model with the LWA of Dashen
and Wurmser. The first possibility is that our WCA in (24) is of the same accuracy as the
LWA and therefore the differential equation may be used to degrade the kernel to find that
from which Dashen and Wurmser should have started in order to find our approximation. This
degraded model is then

S(k,k0) = 1

qz

∫ {
B(wH; qH) − T (wH; −qz∇η) + ζ

∂T
∂ζ

(wH; qH − ζ̂ζ )

}
e−i(qzη(x)+qH·x) dx

(27)

and should be compared with the composite model from which Dashen and Wurmser started
their iteration.
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The second possibility is that our WCA in (24) may have lost some accuracy in terms of
surface curvature during the process of reduction from the original LCA in (1). In this case
the differential equation in Dashen and Wurmser [10] can be used to improve the integrand.
The differential equation can be recast in the following primitive form:

δT (wH; qH − ζ̂ζ ) = −ζ

∫ T (wH; qH − ζ̂ζ )

ζ 2
dζ − ζC(ζ̂) (28)

where C(ζ̂) is an arbitrary function. Note that a constant term in T remains unchanged by the
integral. When the quadratic kernel is inserted into (28), a closed form solution is, in general,
difficult or even impossible to find. For this reason, we concentrate on a Taylor expansion of
the kernel in powers of ζ :

T (wH; qH − ζ̂ζ ) ≈ T (wH; qH) + ∇T (wH; qH) · ζ̂ζ + 1
2 ζ̂∇∇T (wH; qH)ζ̂ζ 2 + · · · . (29)

This expansion is equivalent to limiting the study to the quasi-specular regime.
For this particular case, the improved kernel resulting from the primitive in (28) can be

written as

δT (wH; qH − ζ̂ζ ) ≈ T (wH; qH) − ∇T (wH; qH) · ζ log ζ − 1
2 ζ∇∇T (wH; qH)ζ + · · · .

(30)

Hence, the scattering matrix is

S(k,k0) = 1

qz

∫
{K(wH; qH) + ∇T (wH; qH) · ζ log ζ + · · ·}e−i(qzη(x)+qH·x) dx (31)

where the improvement on the Kirchhoff model is now apparent in the form of local tilting for
the quasi-specular regime.

5.4. Numerical evaluation

In order to check numerically our WCA, we have implemented a Monte Carlo simulation
of surface scattering from perfectly conducting and dielectric ocean-like surfaces. For such
surfaces, all of the cited models are hardly differentiable if the spectrum imposed is a power
law proportional to k−4 and Gaussian statistics. We have therefore chosen to generate non-
linear ocean-like surfaces according to the Creamer et al [15] scheme. Figure 1 shows one
realization of such a linear surface along with its non-linear counterpart after a Creamer et al
iteration. Figure 2 shows the corresponding surface slope for both cases. A set of 100 such
surfaces has been used to compute the average scattered power. The incident electromagnetic
field is chosen to be the Thorsos Gaussian-tapered wave [16]. One should note that for these
surfaces the Rayleigh criterion (Kσ ) is greater than 1 where σ is the root mean square (rms)
of the surface elevation. For this high value of the Rayleigh criterion, the small perturbation
SPM-1 (i.e. simple Bragg scattering) is not valid. Figure 3 shows good agreement between the
WCA in (24) and Voronovich’s first order small slope approximation (SSA-1) [5], Dashen and
Wurmser’s LWA [10], and Milder’s first order operator expansion (OE-1) [11]. The LWA and
OE-1 where particularly chosen for their accuracy in surface curvature. The good agreement
suggests that our model, the WCA in (24), can be considered as an improved SSA-1 as it is
an extension of Dashen and Wurmser’s model to dielectric surfaces. The WCA model seems
to perform better near grazing angles than LWA. Figure 4 shows a numerical result obtained
using the WCA for a dielectric surface.

A more extensive numerical comparison will be made in the future in order to compare our
LCA (1) and NLCA (17) with local and non-local SSA-1 + SSA-2 as well as higher iteration
of the operator expansion method (OE-1 + OE-2).
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Figure 1. One elevation realization out of 100 of linear (solid) and non-linear (dashed) surfaces
for a power law spectrum in k−4.

The LWA of Dashen and Wurmser [10] is a tilt invariant model by construction. In
fact, the differential equation solved by Dashen and Wurmser ensures that the tilted SPM-1
limit is reached since a composite or tilted Bragg model was used to define it. The good
agreement between the LWA and our WCA suggests that our model is also tilt invariant up
to the curvature order. This observation will be proved in the next section with the help of
previous developments on the SSA by Voronovich [17].

6. Tilt invariance

A very stringent condition that an asymptotic model must satisfy is tilt invariance. We describe
as ‘tilt invariance’ the feature that the tilted small perturbation method can be reached by simply
tilting the surface explicitly present in the formulation of the asymptotic model. The LWA
and the SSA are tilt invariant models. By construction, the LWA reproduces SPM-1 or tilted
Bragg limits for arbitrary tilt. Also, the SSA has been proven recently by Voronovich [17]
to reproduce the tilted Bragg form up to the linear order in the tilt. Here, we utilize some of
Voronovich’s mathematics to demonstrate that our curvature asymptotic models are also tilt
invariant. Two equations from [17] (equations (25) and (26) in that work) are reproduced in
Voronovich’s notation below:

qz∇M(k,k0; 0) · �a = M(k,k0; qz �a) + O(a2) (32)

and

Btilted = qkq0 B(k,k0) − qkq0

2qz
M(k,k0; qz�a) + O(a2) (33)
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Figure 2. One slope realization out of 100 of linear (solid) and non-linear (dashed) surfaces.

where �a is a three-dimensional tilt vector and M is the SSA-2 kernel. Equation (33) was
shown numerically to hold up to the linear order in the tilting vector. Let us rewrite (33) in our
notation and normalization as

Btilted = B(k,k0) − 2M(k,k0; qz�a) + O(a2) (34)

or equivalently

Btilted = B(k,k0) − 2qz∇M(k,k0; 0) · �a + O(a2). (35)

Since the Kirchhoff limit is also attained by the SSA for the acoustic and perfect conducting
cases, the following property can be observed:

∇M(k,k0; 0) · qH = B(k,k0) − K(k,k0) = T (wH; qH). (36)

In the case of dielectric surfaces, the high frequency limit of SSA nearly reproduces the
Kirchhoff amplitude. The discrepancy occurs mainly in relatively small cross-polarization
terms as demonstrated in [7] in the quasi-specular directions. This property of the SSA kernel
yields the approximations

∇M(k,k0; 0) ≈ 1
2 ∇T (wH; qH) + O(q2

H) (37a)

M(k,k0; qz�a) ≈ 1
2 qzqH · ∇∇T (wH; 0) · �a + O(q2

H). (37b)

These approximations hold because of the quadratic nature of the curvature kernel. The tilt
invariance in (35) is then

Btilted ≈ B(k,k0) − qz∇T (wH; qH) · �a + O(a2) (38a)

Btilted ≈ B(k,k0) − qzqH · ∇∇T (wH; 0) · �a + O(a2). (38b)

With these last properties we can demonstrate that LCA, NLCA, and WCA are approximately
tilt invariant up to the first order in the tilting vector.
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Figure 3. Monte Carlo comparison between our WCA (dashed), the Voronovich first order small
slope approximation (SSA-1; the solid lines: for VV, the higher curve; for HH, the lower curve),
Dashen and Wurmser’s LWA (dashed–dotted), and Milder’s first order operator expansion OE-1
(dotted). The Kirchhoff model is shown by the solid curve in the middle. The incidence angle is
45◦ .

In order to demonstrate this tilt invariant feature, we make the following substitutions in
the expression for the LCA in (1):

η(x) ⇒ η(x) + �a · x (39a)

η̂(ξ) ⇒ η̂(ξ) + i�a · ∇δ(ξ). (39b)

The evaluation of the tilted LCA, after linearization in surface elevation, then gives

Btilted
.= K(k,k0) − qz∇T (wH; 0) · �a + T (wH; qH − qz �a) (40)

where the second term in the right-hand side is identically zero because the curvature kernel
is quadratic in its lowest order. The third term can be expanded up to the linear order in the
tilt vector as

Btilted
.= K(k,k0) + T (wH; qH) − qz∇T (wH; qH) · �a (41)

and after use of the first property of the curvature kernel in (4) one finds

Btilted
.= B(k,k0) − qz∇T (wH; qH) · �a. (42)

This final equality holds owing to the approximation in (38). Therefore, the LCA in (1) is tilt
invariant up to the curvature order. A similar check can be made for the non-local curvature
approximation (NLCA) in (17).

Let us examine the case of the WCA in (31). Making the replacements (39) in (31) one
finds, after linearization in the surface elevation, that

Btilted
.= B(k,k0) − T (wH; −qz�a) + (qH + qz �a) · ∇T (wH; −qz�a). (43)
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Figure 4. VV and HH polarization comparison between SSA-1 (solid) and WCA (dashed) for a
dielectric surface. The Kirchhoff model is shown by the solid curve in the middle. The relative
permittivity constant is ε = 70 − i36 for a 3 GHz electromagnetic frequency.

This equation can also be seen as the differential equation that Dashen and Wurmser solved in
their equation E1 [10]; however, in this case the kernel T becomes the unknown. Dashen and
Wurmser solved the differential equation without linearization in the tilt vector and therefore
their model is invariant under arbitrary tilt. Expansion of (43) up to the linear order in the tilt
vector gives

Btilted
.= B(k,k0) − qzqH · ∇∇T (wH; 0) · �a. (44)

When this equation is compared with (38) one finds that the SPM limit of the tilted WCA is
indeed the tilted SPM.

7. Conclusions

A new asymptotic theory for scalar and vector wave scattering of rough surfaces is presented.
This new development federates an extended Kirchhoff approximation (EKA) such as the IEM
by [6, 8] with the first and second order SSA given by [4]. Both the Kirchhoff approximation
(KA) and the first order small perturbation method (SPM-1 or Bragg) are reached dynamically
as a function of the surface conditions. We derived a second order kernel from a formal
inclusion of the derivative operator in the difference between the polarization coefficients of
KA and SPM-1. This kernel is termed the curvature kernel since it is quadratic at lowest
order. The curvature kernel is as simple as the expressions for both Kirchhoff and SPM-
1 coefficients. We have already demonstrated in our previous letter [7] that the formal
difference has the same curvature order as SSA-1 + SSA-2. Unlike the case for SSA, the
second order small perturbation method (SPM-2) is not enforced in our development. However,
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our curvature kernel should reproduce a reasonable approximation of the SPM-2 function at
least up to the curvature or quadratic order. Three different versions of this new asymptotic
theory are given. The first is the LCA in (1), similar to the first and second order small
slope approximation (SSA-1 + SSA-2) given by Voronovich [5]. The second is the non-local
curvature approximation (NLCA) given in (17), which is functionally similar to the non-
local small slope approximation (NLSSA) also given by Voronovich [9] and includes multiple
scattering up to double bounces on the scattering surface. The third version is the WCA given
in (31), to be compared with the LWA of Dashen and Wurmser [10]. This reduced version
is meant to be convenient for Monte Carlo simulations. A satisfactory numerical comparison
was made between our WCA and the LWA as well as with the first order operator expansion
(OE-1) of Milder [11]. The good agreement reached between our WCA and the LWA suggests
that our model can be seen as a simple extension of the LWA to dielectric surfaces where
accuracy in surface curvature is reasonable even after the reduction of our more exact forms in
the LCA (1) and NLCA (17). We have also shown in the last section that our curvature based
models are tilt invariant in the sense that the SPM limit of a tilted asymptotic model, LCA,
NLCA, or WCA is indeed the tilted SPM. This property holds for linear order in the tilt vector
and for the curvature order in the scattering surface.
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Appendix A. Neumann and Dirichlet boundary conditions

From [4, 10], one can write the Kirchhoff coefficients for both the Neumann and Dirichlet
boundary conditions as

KND(wH; qH) = (K 2 − k · k0 + qkq0,−[K 2 − k · k0 + qkq0]) (A.1)

and the first order small perturbation method (SPM-1) coefficients as

BND(wH; qH) = (2[K 2 − k · k0],−2qkq0) (A.2)

where the difference gives the curvature kernel evaluated at wH and qH,

TND(wH; qH) = BND(wH; qH) − KND(wH; qH). (A.3)

Explicitly, this kernel can be written as

TND(wH; qH) = (K 2 − k · k0 − qkq0, K 2 − k · k0 − qkq0) (A.4)

where one notices that both Neumann and Dirichlet boundary conditions have the same
curvature kernel

TN (wH; qH) = TD(wH; qH) = K 2 − k · k0 − qkq0. (A.5)

Now comes the fundamental question: is this difference quadratic in qH = k−k0 to its lowest
order as already demonstrated for a particular case in our letter [7] ? The particular case treated
in [7] is quasi-specular regime for surfaces showing good conduction.

In order to demonstrate this quadratic feature, we must make the following change of
variables:

qH = k − k0 k = (wH + qH)/2

wH = k + k0 k0 = (wH − qH)/2
(A.6)
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and then note that the products k · k0 and qkq0 are even functions on qH:

k · k0 = w2
H − q2

H

4
(A.7a)

qkq0 = 1
4

√
(4K 2 − w2

H − q2
H)2 − (2wH · qH)2. (A.7b)

Hence, the kernel is

TN (wH; qH) = K 2 − 1
4

(
w2

H − q2
H −

√
(4K 2 − w2

H − q2
H)2 − (2wH · qH)2

)
. (A.8)

Finally, the curvature kernel can be obtained by the formal replacement of qH by ξ:

TN (wH; ξ) = K 2 − 1
4

(
w2

H − ξ2 −
√

(4K 2 − w2
H − ξ2)2 − (2wH · ξ)2

)
. (A.9)

This kernel is even in ξ and by simple inspection one finds that the constant of zeroth order in
ξ is zero. Therefore the curvature kernel has its lowest order quadratic in ξ.

Appendix B. Perfectly conducting boundary conditions

From [4], one can simply write the Kirchhoff coefficients for the perfectly conducting boundary
conditions as

K∞(wH; qH) =
(

(K 2 + qkq0)k̂ · k̂0 − kk0 K (qk + q0)(k̂ × k̂0) · ẑ

K (qk + q0)(k̂0 × k̂) · ẑ −[(K 2 + qkq0)k̂ · k̂0 − kk0]

)
(B.1)

and those for SPM-1 as

B∞(wH; qH) = 2

(
K 2k̂ · k̂0 − kk0 K q0(k̂ × k̂0) · ẑ

K qk(k̂0 × k̂) · ẑ −qkq0k̂ · k̂0

)
. (B.2)

Hence, the difference is

T∞(wH; ξ) =
(

(K 2 − qkq0)k̂ · k̂0 − kk0 K (qk − q0)(k̂0 × k̂) · ẑ

K (qk − q0)(k̂0 × k̂) · ẑ (K 2 − qkq0)k̂ · k̂0 − kk0

)
. (B.3)

The quadratic form is identified by making the following substitutions:

qkq0 ⇒ 1
4

√
(4K 2 − w2

H − ξ2)2 − (2wH · ξ)2 (B.4a)

k · k0 ⇒ w2
H − ξ2

4
(B.4b)

kk0 ⇒ 1
4 |w2

H − ξ2| (B.4c)

k̂ · k̂0 ⇒ w2
H − ξ2

|w2
H − ξ2| (B.4d)

k̂ × k̂0 ⇒ 2
wH × ξ

|w2
H − ξ2| (B.4e)

qk − q0 ⇒
√

K 2 −
(

wH + ξ

2

)2

−
√

K 2 −
(

wH − ξ

2

)2

. (B.4f)

The last two terms are not quadratic in ξ by themselves. Actually each term is linear in ξ to its
first order. Their product in the polarization matrix in (B.3) is therefore quadratic in its lowest
order.
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Appendix C. Fully dielectric boundary conditions

The dielectric Kirchhoff polarization coefficients (see [18, 19]) can be written in the dyadic
form as

K = q2

2

RVV(q/2)K̂sK̂i + RHH(q/2)(K̂s × K̂i)(K̂s × K̂i)

(K̂s × K̂i)2
. (C.1)

All of the dielectric dependence is entering through the Fresnel coefficients RVV and RHH.
This dyadic equation can also be rewritten as

K = K 4 RVV(q/2)K̂sK̂i + RHH(q/2)(K̂s × K̂i)(K̂s × K̂i)

K 2 + k · k0 − qkq0
. (C.2)

In order to get the polarization matrix one should wrap the dyadic form with the incident and
scattered polarization vectors:

V̂i = q0k̂0 + k0ẑ

K
and Ĥi = k̂0 × ẑ (C.3a)

V̂s = qkk̂ − kẑ

K
and Ĥs = k̂ × ẑ. (C.3b)

Hence, these identities apply:

V̂i · K̂s = Ĥi · (K̂i × K̂s) = k0qk + kq0k̂ · k̂0

K 2
(C.4a)

Ĥi · K̂s = V̂i · (K̂s × K̂i) = k(k̂ × k̂0) · ẑ

K
(C.4b)

V̂s · K̂i = Ĥs · (K̂i × K̂s) = kq0 + k0qkk̂ · k̂0

K 2
(C.4c)

Ĥs · K̂i = V̂s · (K̂s × K̂i) = k0(k̂0 × k̂) · ẑ

K
. (C.4d)

It can be shown that this fully dielectric Kirchhoff formulation is quadratic in its lowest order
in qH = k − k0.

For simplicity, we use the Kirchhoff coefficients as simplified by [6, 8] and put in this
approximate form:

K(wH; qH) = K∞(wH; qH) ∗ R(q/2) (C.5)

where the operator ‘∗’ is the element by element product of the two matrices. The R matrix
is based on the Fresnel coefficients and can be written as

R(q) =
(

RVV(q) RVH(q)

RHV(q) RHH(q)

)
(C.6)

where

RVV(q) = εq − √
(ε − 1)K 2 + q2

εq +
√

(ε − 1)K 2 + q2
(C.7a)

RVH(q) = RHV(q) = RVV + RHH

2
(C.7b)

RHH(q) = −q − √
(ε − 1)K 2 + q2

q +
√

(ε − 1)K 2 + q2
(C.7c)
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where ε is the relative permittivity. This approximate Kirchhoff model is valid for surfaces
showing good conduction and away from grazing angles since (RVV − RHH) is assumed to be
small.

The variable q is the norm of the three dimensional vector which is defined as the difference
between the scattered and the incident wavenumbers as

q = |�q| = |Ks − Ki| =
√

q2
H + q2

z . (C.8)

Now one operates the following substitutions:

qH ⇒ ξ (C.9a)

q ⇒
√

ξ2 + (q2
k + q2

0 ) + 2qkq0 (C.9b)

(q2
k + q2

0 ) ⇒ 2

(
K 2 − w2

H

4
− ξ2

4

)
(C.9c)

2qkq0 ⇒ 1
2

√(
4K 2 − w2

H − ξ2
)2 − (2wH · ξ)2 (C.9d)

and notices that the resulting Kirchhoff coefficients are even in ξ.
The SPM-1 coefficients for dielectric boundary conditions are taken from the appendix

of [17]:

B(wH; qH) =
(

BVV(wH; qH) BVH(wH; qH)

BHV(wH; qH) BHH(wH; qH)

)
(C.10)

where

BVV(wH; qH) = 2qkq0(ε − 1)(q ′
kq ′

0k̂ · k̂0 − εkk0)

(εqk + q ′
k)(εq0 + q ′

0)
(C.11a)

BVH(wH; qH) = 2qkq0(ε − 1)K q ′
k(k̂ × k̂0) · ẑ

(εqk + q ′
k)(q0 + q ′

0)
(C.11b)

BHV(wH; qH) = 2qkq0(ε − 1)K q ′
0(k̂0 × k̂) · ẑ

(qk + q ′
k)(εq0 + q ′

0)
(C.11c)

BHH(wH; qH) = −2qkq0(ε − 1)K 2k̂ · k̂0

(qk + q ′
k)(q0 + q ′

0)
(C.11d)

and the primed variables are defined as

q ′
k =

√
εK 2 − k · k (C.12a)

q ′
0 =

√
εK 2 − k0 · k0. (C.12b)

The following additional substitutions:

q ′
k ⇒

√
εK 2 −

(
wH + ξ

2

)2

(C.13a)

q ′
0 ⇒

√
εK 2 −

(
wH − ξ

2

)2

(C.13b)

are needed to finally demonstrate that the curvature kernel in this case is indeed also quadratic
to its lowest order in ξ.
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[8] Álvarez-Pérez J L 2001 An extension of the IEM/IEMM surface scattering model Waves Random Media 11
307–29

[9] Voronovich A G 1996 Non-local small-slope approximation for wave scattering from rough surfaces Waves
Random Media 6 151–67

[10] Dashen R and Wurmser D 1991 Approximate representations of the scattering amplitude J. Math. Phys. 32
986–96

[11] Milder D M 1996 An improved formalism for electromagnetic scattering from a perfectly conducting rough
surface Radio Sci. 31 1369–76

[12] Berman D H and Dacol D K 1990 Manifestly reciprocal scattering amplitudes for rough interface scattering
J. Acoust. Soc. Am. 87 2024–32

[13] Dashen R and Wurmser D 1991 A new theory for scattering from a surface J. Math. Phys. 32 971–85
[14] Tatarskii V 2000 Phase factors representation for electromagnetic scattering from a rough-surface perfect

conductor Waves Random Media 10 339–58
[15] Creamer D, Henyey F, Schult R and Wright J 1989 Improved linear representation of ocean surface waves

J. Fluid Mech. 205 135–61
[16] Thorsos E I 1988 The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian

roughness spectrum J. Acoust. Soc. Am. 83 78–9
[17] Voronovich A G 2002 The effect of modulation of Bragg scattering in small-slope approximation Waves Random

Media 1 247–69
[18] Stogryn A 1967 Electromagnetic scattering from rough finitely conducting surfaces Radio Sci. 2 415–28
[19] Ulaby F, Moore R and Fung A 1982 Radar Remote Sensing and Surface Scattering and Emission Theory

(Microwave Remote Sensing: Active and Passive) vol 2 (Reading, MA: Addison-Wesley)


