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Abstract
Tilt invariance is a stringent but necessary condition that a second-order
wave scattering model must satisfy in order to qualify for a broad range of
applications. This invariance expresses the fact that the scattering model is
unchanged whether the tilting of the scattering surface is implemented before
or after its reduction to the limit of the small-perturbation method (SPM). Our
scattering model is based on a second-order kernel which is quadratic in its
lowest order with respect to successive derivatives of the rough surface. Hence,
it is termed the local curvature approximation (LCA). We have previously
demonstrated that the LCA is approximately tilt invariant in the quasi-specular
and quasi-backscattering geometries. In this contribution, LCA is made
formally tilt invariant up to first order in the tilting vector. It will be shown that
this formal tilt invariance is achieved mainly through inclusion of polarization
mixing due to out-of-plane tilt. Even though the LCA formally reduces to the
SPM and Kirchhoff limits in addition to tilt invariance, its curvature kernel
stays reasonably concise and practical to implement in both analytical and
numerical evaluations. This curvature kernel may also be used in the other two
formulations of our model, namely the non-local curvature approximation and
the weighted curvature approximation.

1. Introduction

An important formal condition of scattering models is the fulfilment of a stringent constraint
known as tilt invariance. Tilt invariance expresses the fact that the scattering model must
yield the same result whether the tilting of the surface is executed before or after reduction to a
particular limit, such as that of the small-perturbation method (SPM). Dashen and Wurmser [1]
demonstrated that the fulfilment by their model of this tilt invariance allowed them to derive a
highly accurate approximation with accuracy up to the curvature order of the scattering surface.
They chose to solve the tilting condition formally and therefore their model is tilt invariant
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up to an arbitrary order in the tilt vector. However, the Dashen and Wurmser model only
exists for Dirichlet, Neumann, and perfect conducting boundary conditions. Unfortunately,
their procedure is impractical for the general electromagnetic scattering by an interface between
two dielectric half-spaces. In this general case, the complete integration of the tilting condition
becomes intractable. The purpose of this letter is to establish that an accurate second-order
model, for the general dielectric case, can be found if the formal application of the tilting
condition is relaxed from arbitrary tilt to first order in the tilt vector. The only other model, in
addition to that of Dashen and Wurmser, that we know of which was tested for tilt invariance
is the small-slope approximation (SSA) of Voronovich [2]. The SSA was shown numerically
in [3] to be tilt invariant up to the linear order in the tilt vector. In a recent contribution [4],
we have derived a curvature kernel shared by three different forms of our scattering model
(listed in order of increasing accuracy and complexity): the weighted curvature approximation
(WCA), the local curvature approximation (LCA), and the non-local curvature approximations
(NLCAs). The simplest form (the WCA) is represented by a single integral over an integrand
that depends on the gradient of the scattering surface along with the standard phase factors.
This form is similar to that of Dashen and Wurmser [1] but more general in the sense that it
may be applied to the dielectric case but with less accuracy in the tilting condition. Indeed, we
have shown in [4] that the tilt invariance is satisfied by our three forms with good accuracy only
in the quasi-specular and quasi-backscattering regimes. We demonstrate in this contribution
that a formal tilt invariance can be achieved with a slight modification of the curvature kernel
in order to account for, among other things, polarization mixing due to out-of-plane tilt. The
derivation is shown in the context of our LCA.

2. The functional form of the scattering model

The scattering amplitude in the LCA can be written as

S(k,k0) = K(k,k0)

qz

∫
e−iqzη(x)e−iqH ·x dx

− i
∫ ∫

T (k,k0; ξ)η̂(ξ)e−iqzη(x)e−i(qH −ξ)·x dξ dx (1)

where the adopted notation is a judicious combination of ours in [5–7] with that of
Voronovich’s [2] and Dashen and Wurmser’s [1] papers. Most of the variables used are defined
as follows:

Ki = k0 − q0ẑ (2a)

Ks = k + qk ẑ (2b)

K2
i = K2

s = K 2 (2c)

qk =
√

K 2 − k · k (2d)

q0 =
√

K 2 − k0 · k0 (2e)

qz = qk + q0 (2f)

qH = k − k0 (2g)

wz = qk − q0 (2h)

wH = k + k0 (2i)

η(x) � η̂(ξ) (2j)

where Ki and Ks are the three-dimensional wavenumbers of the incident and scattered waves,
respectively. The two-dimensional vectors k and k0 are the horizontal projections of the
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three-dimensional vectors. The positively defined vertical components are qk and q0. ẑ is the
unitary vertical reference vector. The scattering surface elevation is described by η(x) and its
corresponding Fourier transform η̂(ξ). The curvature kernel T is as yet undefined but must
satisfy the elementary conditions established in [4, 7], after the change of variable in (2):

T (k,k0; 0) = 0 (3a)

∇T (k,k0; 0) = 0 (3b)

T (k,k0; qH ) � T (wH ; qH ) = B(wH ; qH ) − K(wH ; qH ) (3c)

and with the definitions

K(k,k0) � K(wH ; qH ) (4a)

B(k,k0) � B(wH ; qH ) (4b)

where B and K are the polarization matrices of the first-order SPM-1 and the Kirchhoff
approximation (KA), respectively. The first condition in (3) preserves the invariance of the
model under vertical translation of the scattering surface. The second property implies that
the high-frequency limit is the KA; equation (5.18) in Voronovich [2] defines how the high-
frequency limit is obtained from the first derivative of the second-order kernel. Both the first
and second properties translate the quadratic form of the curvature kernel T in its lowest order.
The third condition ensures the convergenceof the LCA in (1) to SPM-1 under small-roughness
conditions.

At this point the curvature kernel (T ) in (1) is undetermined and will be derived in the
next section by exploiting the formal compliance with the tilt invariance.

3. Formal tilt invariance

The LCA in (1) reduces formally to the first-order small SPM-1 according to (3). It is therefore
imperative now to check whether this form still reduces to the SPM-1 limit when the surface is
tilted before or after the reduction. The tilting equation that the LCA must satisfy is obtained
by inserting the following substitutions in (1):

η(x) ⇒ η(x) + �a · x (5a)

η̂(ξ) ⇒ η̂(ξ) + i�a · ∇δ(ξ), (5b)

and the linearization in the surface variable then gives

Btilted
.= K(k,k0) − qz ∇T (k,k0; 0) · �a + T (k,k0; qH − qz �a) (6)

where the second term in the right-hand side is identically zero because the curvature kernel
is quadratic in its lowest order. Hence, by isolating the curvature kernel we get

T (k,k0; qH − qz �a) = Btilted − K(wH ; qH ). (7)

In order to determine the curvature kernel one must explicitly examine the expression for the
tilted SPM-1 coefficient Btilted which is, to the first order in the tilt vector �a,

Btilted = T (k,−�a)B(w̃H ; q̃H )T (k0, �a). (8)

The tilting matrix T is given by equation (21) in [3] and reproduced here by (9) to first order
(and in the appendix to second order) as

T (k0, �a) =
(

1 − K
k0

(ẑ × k̂0) · �a
K
k0

(ẑ × k̂0) · �a 1

)
+ O(a2). (9)
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The tilde over the vectors in (8) expresses that a vector is tilted according to the following
substitutions:

k ⇒ k̃ = k − qk �a (10a)

k0 ⇒ k̃0 = k0 + q0�a (10b)

wH ⇒ w̃H = wH − wz �a (10c)

qH ⇒ q̃H = qH − qz �a. (10d)

Let us now make use of an important property of the KA K that reads (up to first order in the
tilt vector)

K(wH ; qH ) = T (k,−�a)K(w̃H ; q̃H )T (k0, �a) + O(a2). (11)

This property merely translates the tilt invariance of the Kirchhoff model itself up to the
considered order which is also due, formally, to the nice gradient property of the Kirchhoff
polarization matrix

wz
∂K

∂wH
+ qz

∂K
∂qH

= 0. (12)

Introducing equations (11) with (8) into (7) yields

T (k,k0; q̃H ) = T (k,−�a)[B(w̃H ; q̃H ) − K(w̃H ; q̃H )]T (k0, �a) + O(a2). (13)

Finally, the curvature kernel derived from formal tilt invariance up to the first order in the tilt
vector can be obtained after the following substitutions:

q̃H ⇒ ξ (14a)

w̃H ⇒ wH − wz
qH − ξ

qz
(14b)

�a ⇒ qH − ξ

qz
. (14c)

Hence, we find

T (k,k0; ξ) = T

(
k,

ξ − qH

qz

)
T (w̃H ; ξ)T

(
k0,

qH − ξ

qz

)
, (15)

where the bivariate kernel in the middle of the right-hand side is the one already defined in (3)
and in our previous derivations in [4]. The curvature kernel is merely the tilted difference
between SPM and KA polarization matrices. The trivariate curvature kernel reduces to the
bivariate kernel in two cases. The first is in the context of scalar theory such as that of the
scattering of sound waves as already derived in [8]. The second case occurs when this theory is
applied to two-dimensional problems where out-of-plane tilt is not possible. It should be noted
that wz in (14) and (15) is zero in the specular and backscattering directions. This suggests that
the bivariate kernel is a reasonable reduction of the more complete kernel in those geometries.

It is simple to verify that the curvature kernel in (15) satisfies the conditions in (3) as well
as the fundamental reciprocal form. The quadratic property in its lowest order is reached due
to two nice properties of the bivariate kernel:

∂T
∂qH

(wH ; 0) = 0 (16a)

∂T
∂wH

(wH ; 0) = 0. (16b)

Equations (16) and (12) constitute interesting properties of the SPM-1 and Kirchhoff
polarization matrices that, as far as we are aware, have not been previously exploited in the
literature.
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The curvature kernel T (k,k0; ξ) in (15) allows our LCA to be formally tilt invariant up
to the linear order in the tilt vector �a in addition to satisfying both the SPM-1 and Kirchhoff
limits in the general dielectric case. This powerful kernel can also be used in the other two
forms of our model as described in [4], namely the NLCA and the WCA.

4. Conclusions

The LCA is shown to formally reproduce both the SPM and the KA in addition to satisfying
the very stringent condition of tilt invariance. Tilt invariance means that the model reduces
to the same limit whether the tilting of the scattering surface is executed before or after the
limiting process. The fact that the complete kernel is quadratic to lowest order in successive
derivatives of the scattering surface has motivated the curvature terminology. This formal tilt
invariance is achieved mainly through inclusion of polarization mixing due to the out-of-plane
tilt. Even though the LCA reaches formally the three most important conditions, its curvature
kernel stays reasonably concise and practical to implement in both analytical and numerical
evaluations. This powerful curvature kernel can be used in our two other formulations, the
NLCA to account for multiple scattering, and the WCA for simplicity in numerical evaluation.

Appendix. Second-order tilt matrix

The second-order tilt matrix is

T (k0, �a) =
(

1 − K
k0

(ẑ × k̂0) · �a
K
k0

(ẑ × k̂0) · �a 1

)

− K

2k2
0

(
K ((ẑ × k̂0) · �a)2 −2q0(�a · k̂0)(ẑ × k̂0) · �a

2q0(�a · k̂0)(ẑ × k̂0) · �a K ((ẑ × k̂0) · �a)2

)
(A.1)

where one can recognize the Taylor series of the sine and cosine trigonometric functions. We
noticed that if the second-order tilt matrix is used in the trivariate kernel, the LCA becomes
tilt invariant up to the quadratic order in the tilt vector but only in some preferred directions,
such as the backscattering direction. This feature is now being investigated with the objective
of extending it to a broader domain of applicability.
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