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Abstract. In this paper, we extend the Kirchhoff approach, which is widely used for near-
nadir backscattering calculations, to include the proper polarization sensitivity for general bistatic
scattering from gently sloping, perfectly conducting surfaces. Previously, Holliday has shown
how the inclusion of terms from the second iteration of the surface-current integral equation is
required to obtain agreement with the small perturbation method for backscattering conditions.
Here we employ a similar approach by retaining all terms in this iterative expansion through first
order in the surface slope to derive expressions for the standard Kirchhoff field as well as for a
supplementary field that contains the polarization sensitivity. A polarization vector notation is
introduced to simplify the inclusion of tilting effects from larger-scale features on the scattering
surface. In connection with this latter development, we provide a clarification of the earlier work
by Valenzuela on this topic together with an extension to the bistatic problem. These extensions to
the standard Kirchhoff approach form the basis for our composite bistatic scattering model which
should provide a convenient and powerful tool for calculations involving passive as well as active
microwave scattering from random surfaces.

1. Introduction

All available closed-form models for electromagnetic scattering from random surfaces are
asymptotic solutions of the exact Maxwell equations. Most often, two practical limits are
considered; (a) the Kirchhoff approximation (Beckmann and Spizzichino [1]), (b) the small
perturbation method (SPM) (Rice [2]). The first is obtained under the conditions of small
slopes and long waves while the second is derived for small slopes and short waves. The
Kirchhoff approach lacks polarization sensitivity but accurately models the quasi-specular
problem. While SPM carries the polarization factors it does not properly account for longer-
scale features on the scattering surface and therefore fails to reproduce the near-specular
scattering. A promising approach would be one that correctly includes the polarization under
both situations; specular and moderate-incident scattering. Holliday [3] presented an approach
that combines the two limits. He demonstrated, by including the second iteration of the
surface-current integral equation, that the Kirchhoff approach can be extended to include
the polarization sensitivity of the SPM, for the backscattering case. Other authors have also
investigated this problem; among them are Rodriguez and Kim [4], Tatarskii [5], Voronovich [6]
and Fung [7]. While all these proposed approaches have provided polarization sensitivity and
a larger domain of applicability, they are somewhat difficult to utilize in practice. In this paper,
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282 T Elfouhaily et al

we present a new methodology that makes scattering analysis more accessible, particularly in
handling polarization and bistatic problems.

No matter how complete the extant scattering models may appear, most do not treat the
longer-scale features of ‘real’ surfaces which have significant influence on the total bistatic
cross section. To account for these backscattering effects, Valenzuela [8] generalized the earlier
results of Wright [9] to predict the total radar cross section from a small patch that is tilted
in a specified manner. Wright termed this approach the composite or the two-scale model.
Variations of this approach have been widely used by many scientists especially in the field
of ocean remote sensing. In the present paper, we extend the composite model to the more
general bistatic problem, including a correction to Valenzuela’s coordinate-system definition.

In the following section, a thorough review of Holliday [3] is given for completeness.
In sections 3 and 4, we reformulate these results and extend them to the more general
bistatic problem. At the end of these sections, we derive the backscattering limit and
compare this with the results reported by Rice [2] and Holliday [3]. In section 5, we provide
expressions for the total bistatic field which come from the first and second iterations of the
surface-current equation. The corresponding radar cross section is also given in a form that
simplifies comparison with results from previous studies. In section 6 we rederive and correct
Valenzuela’s composite-model formulation and then extend it to include the bistatic-scattering
solution. Our final remarks on how our approach is an improvement on current bistatic models
are given in the conclusion.

2. Review of the general problem

For a perfect conductor, the Stratton–Chu equations (Stratton [10]) for electric and magnetic
fields are decoupled. This means that, for this idealized case, one equation is sufficient to
determine both the electric and magnetic fields. We choose to examine the magnetic field
equation to remain consistent with the previous development by Holliday [3]. The total
magnetic field under the perfect conductivity assumption is

B(r0) = Bi(r0)−
∫
S

J(r1)×∇G(r0, r1) dA1 (1)

whereS is the surface described byz = η(x) andx is the horizontal component of the three-
dimensional vectorr. The incident fieldBi is a plane waveB0 exp(−iki · r). The integrand
in (1) is the cross product of the total surface currentJ(r) and the gradient of the free-space
Green’s function

G(r0, r1) = − 1

4π

exp(ik|r0 − r1|)
|r0 − r1| (2)

wherek = |k| is the electromagnetic wavenumber. What makes (1) hard to solve is that the
total currentJ(r) is a function of the total magnetic fieldB(r). Hence, the right-hand side
depends on the left-hand side of (1). The explicit form forJ(r) is

J(r) = n̂(r)×B(r) (3)

wheren̂ is the unit vector normal to the scattering surface,

n̂ = êz −∇η√
1 + (∇η)2

= nz(êz −∇η). (4)

At the scattering surface, (1) yields the surface-current integral equation

J(r1) = Ji(r1)− 2n̂(r1)×
∫
S

J(r2)×∇G(r1, r2) dA2 (5)
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A new bistatic model for electromagnetic scattering 283

wherer2 = x2 + êzη(x2) reflects the fact that the integral is evaluated along the scattering
surface (S). The gradient of the Green’s function can easily be computed and written as

∇G(r1, r2) = Q(|r1− r2|)(r1− r2) (6)

with

Q(r) = 1

4π

eikr

r3
(ikr − 1). (7)

Because the integral in (5) must be evaluated with the Cauchy principal value, the input current
becomes

Ji(r1) = 2n̂(r1)×Bi(r1). (8)

The difference betweenJi andJ is thatJi is generated by the incident field (Bi ) alone whileJ
depends on the total field (e.g. the sum of the incident and the scattered fields). The scattered
field in the Fraunhofer (far-field) zone can be approximated by

Bs(r0) = B(r0)−Bi(r0) ' α(r0)

∫
S

J(r1)× ks exp
(−iks · r1

)
dA1 + O

(
1

kr0

)
(9)

whereα(r0) is deduced from the limit asr0 goes to infinity

α(r0) = − i

4π

eikr0

r0
(10)

and the wavenumber in the scattering direction is

ks = k r0

r0
= kês. (11)

Since all integrals are bound to the scattering surface (S), a convenient change of variables
can be made in order to move from the integration over the surface to integration over a flat
reference plane (R). In derivations to follow, the area element dA will simply be replaced
by the horizontal element dx, in the knowledge that the Jacobian of the transformation (nz)
has been accounted for in the expression for the current. The normalization factor in the unit
normal vector (̂n) will be dropped without changing variable names. In the following, the
order symbol O(1/(kr0)) will also be dropped. For instance, the expression for the scattered
field in (9) will be rewritten as

Bs(r0) ' α(r0)

∫
R

J(x1)× ks exp
(−iks

zη(x1)
)

exp
(−iks

H · x1
)

dx1 (12)

where the subscriptsz andH refer to the vertical and horizontal components, respectively.
Once again, in equation (12) and those to follow, the normal vector (n inside the current) is
no longer normalized. It simply becomes (êz −∇η) due to the projection from the scattering
surface (S) to the horizontal Cartesian reference frame (R).

3. First iteration and the Kirchhoff field

In the first iteration, the total current in (5) is forced to match the input current (Ji ). If J1

is taken to be the first-iteration current thenJ1 is identical toJi . From (8), the first-iteration
current is

J1(x1) ≡ Ji(x1) = 2n(x1)×Bi(x1). (13)
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284 T Elfouhaily et al

This expression is exact for a planar surface, where one can show that the second term in (5)
is zero. Equation (13) when used in (12) yields the first-iteration scattered field which is also
known as the Kirchhoff field

B(1)
s (r0) = α(r0)

∫
R

[2n(x1)×Bi(x1)] × ks exp[−iks
zη(x1)] exp[−iks

H · x1] dx1

= 2α(r0)

∫
R

[êz ×B0 −∇η(x1)×B0]

×ks exp[−i(ks
z − ki

z)η(x1)] exp[−i(ks
H − ki

H) · x1] dx1. (14)

Integration over the gradient of the elevation can be performed on the basis of the following
identity∫
∇η(x) exp[−ikzη(x)] exp[−ikH · x] dx ≡ −kH

kz

∫
exp[−ikzη(x)] exp[−ikH · x] dx.(15)

Substitution of (15) in (14) gives a simpler form of the Kirchhoff field

B(1)
s (r0) = 2α(r0)

∫
R

[êz ×B0 +
ks

H − ki
H

ks
z − ki

z

×B0]

×ks exp[−i(ks
z − ki

z)η(x1)] exp[−i(ks
H − ki

H) · x1] dx1

= 2α(r0)B0kP(1)s

∫
R

exp[−iqzη(x1)] exp[−iqH · x1] dx1. (16)

In this final form for the scattered Kirchhoff field,q is the difference between the scattered
wavenumber (ks) and the incident wavenumber (ki ), while P(1)s is the polarization vector of
the first iteration:

P(1)s =
[(
êz +

qH

qz

)
× P̂ pi

]
× ês =

[
q

qz
× P̂ pi

]
× ês. (17)

The index i refers to the incident polarization. For an incident vertical polarization of the
electric field, the incident polarization vector̂Ppi = B0/B0 becomes

P̂ V
i ≡ êy . (18)

This further indicates that the polarization vector is perpendicular to the plane of incidence,
chosen for simplicity to be thex–z plane. The incident horizontal polarization of the electric
field is in the plane of incidence and given by

P̂H
i =

ki × êy
|ki × êy | ≡

êi × êy
|êi × êy | = −

ês× êy
|ês× êy | . (19)

The backscattering limit of the Kirchhoff polarization vector (17) is simply obtained by
replacing (ki ) by (−ks)

P(1)bs =
[

2kês

2ks
z

× P̂ pi
]
× ês = k

ks
z

P̂
p

i ≡
1

cosθ`
P̂
p

i (20)

whereθ` is the incident angle of the incoming field. Equation (20) indicates that in the
backscattering limit the polarization of the Kirchhoff field is conserved. This means that the
scattered polarization is identical to the incident polarization. As pointed out by Holliday [3],
only higher iterations of the surface-current integral equation will produce a backscattered field
whose polarization can deviate from the incident polarization. In the next section, we derive
a general expression for bistatic scattering that does show the desired polarization sensitivity.
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A new bistatic model for electromagnetic scattering 285

4. Second iteration and the supplementary field

The second-iteration current is obtained by substituting the first-iteration current (13) back
into the surface-current equation (5). The second term of (5) then becomes

J2(x1) = −2n(x1)×
∫
R

Ji(x2)× {x + [η(x1)−η(x2)]êz}
{
Q(x)+

1

2
P(x)

[x
x
· ∇η+

12

]2
}

dx2

' −2n(x1)×
∫
R

Ji(x2)× {x + x · ∇η+
12êz}

{
Q(x)+

1

2
P(x)

[x
x
· ∇η+

12

]2
}

dx2.

(21)

The functionsQ(x) andP(x) are the result of an expansion ofQ(r) in powers of surface
slopes since thez-component ofr is now bound to the scattering surface. The functionQ(x)

is defined in (7) and the one-dimensional functionP(x) is

P(x) = − 1

4π

eikx

x3
{kx(kx + 3i)− 3}. (22)

The slope terms in (21) come from the first-order expansion of the elevation difference,

η(x1)− η(x2) ' [x1− x2] ·
∇η(x1) +∇η(x2)

2
≡ x · ∇η+

12. (23)

This particular slope expansion is a key element in our approach. The smallness parameter
of the expansion is the elevation gradient. Note also that the sign change in [η(x1) − η(x2)]
under the interchange ofx1 andx2 is preserved by the approximation given by (23). We show
below that this anti-symmetry plays an important role in the evaluation of the second-iteration
current. Note that the triple cross product in (21) contains not only terms linear in slope but
higher-order terms as well. The second-iteration current, linear in slope, is

J1
2(x1) = 2

∫
R

{[êz ×Bi(x2)]∇η−12 · x− 2x∇η−12 · [êz ×Bi(x2)]}Q(x) dx2 (24)

where∇η−12 ≡ [∇η(x1)−∇η(x2)]. Equation (24) is similar to equation (12) in Holliday [3]
with a slight difference due to our change of variables and to the slope expansion discussed
above. One can see from (24) that, at this linear order,J1

2 has no component alonĝez.
Therefore, the vertical component of the current involves higher-order slopes that readily
appear even in this second iteration. The terms of the second-iteration current (21) that are
nonlinear in slope are

J2
2(x1) = −2

∫
R

{
[∇η(x2)×Bi(x2)]∇η−12 · x + 2êz∇η+

12 · x∇η
−
12 · [êz ×Bi(x2)]

}
×Q(x) dx2. (25)

Unlike (24), equation (25) does contain az-component that is of at least second order in slope.
In the present study, we consider only that part of the second-iteration current that is linear in
slope as given by (24).

The nonlinear term given by (25) is not yet complete since, as pointed out by Holliday [3],
a third iteration must be carried out to obtain quadratic terms that are missing from the second
iteration. These quadratic or higher-order slope terms account for multiple-scattering processes
where the incident field undergoes one or more reflections from distinct points on the surface
before being scattered away (e.g. Voronovich [11]). In the present development, we neglect
multiple-scattering processes.

Substituting (24) in (12), we obtain the scattered field of the second iteration from terms
linear in slope. This contribution supplements the standard Kirchhoff field, and we refer to it
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286 T Elfouhaily et al

as the supplementary field.

B(2)
s (r0) = 2α(r0)

∫∫
R

{
[êz ×Bi(x2)]∇η−12 · x− 2x∇η−12 · [êz ×Bi(x2)]

}
×ks exp[−iks

zη(x1)] exp[−iks
H · x1]Q(x) dx2 dx1

= 2α(r0)

∫∫
R

{
[êz ×B0]∇η−12 · x− 2x∇η−12 · [êz ×B0]

}
×ks exp[−iki

z∇η+
12 · x] exp[−iki

H · x] exp[−iqzη(x1)] exp[−iqH · x1]

×Q(x) dx2 dx1. (26)

The presence of the phase factor exp[−iki
z∇η+

12 · x] in (26) makes direct evaluation difficult.
One can see from its definition in (23) that∇η+

12 is the average of the vector slopes at positions
x1 andx2. Thus this phase factor accounts for the fact that the local incident angle on the
surface facet containingx1 andx2 is not cos−1(êi · êz) because the facet in general is tilted.
In order to proceed with the analytical evaluation of (26), we neglect the higher-order slope
terms produced by this phase factor. In the second part of this paper, an alternative method for
treating these tilting effects is discussed.

With the exp[−iki
z∇η+

12 · x] factor set to unity and using the identity∫
xQ(|x|) exp[−ikH · x] dx = 1

2

kH

kz
(27)

we can write the supplementary field as

B(2)
s (r0) = −2α(r0)

∫
R

{
[êz ×B0]∇η(x1) ·QH − 2QH∇η(x1) · [êz ×B0]

}
×ks exp[−iqzη(x1)] exp[−iqH · x1] dx1. (28)

In deriving (28), we make use of the anti-symmetry property discussed in Holliday [3]:
interchangingx1 andx2 in (26) leaves the double integration unchanged ifks andki are
interchanged as well. In addition, a new horizontal vectorQH resulting from the application
of the identity (27) is introduced. It is defined as half the sum of the ratio between horizontal
and vertical components of the incident and scattered wavenumbers:

QH = 1

2

(
ks

H

ks
z

+
ki

H

ki
z

)
. (29)

By using (15), we further simplify (28) by making the multi-cross-product vector independent
of the variable of integration (x1). Finally, the supplementary field is put into the same form
as the Kirchhoff field (14) as

B(2)
s (r0) = 2α(r0)B0kP(2)s

∫
R

exp[−iqzη(x1)] exp[−iqH · x1] dx1 (30)

where the second-iteration polarization vector of the scattered supplementary field is written
as

P(2)s =
{

2

(
qH

qz
· PH

)
QH −

(
qH

qz
·QH

)
PH

}
× ês (31)

and to simplify notation, a new horizontal vector,

PH = êz × B0

B0
= êz × P̂ pi (32)
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A new bistatic model for electromagnetic scattering 287

is introduced. As before, the subscript H indicates that vectors are horizontal; perpendicular
to the vertical̂ez. The polarization vectorP(2)s can then be further rearranged using the triple-
cross-product identity (a× (b× c) ≡ b(a · c)− c(a · b)) to give

P(2)s =
{
(PH ×QH)× qH

qz
+

(
qH

qz
· PH

)
QH

}
× ês. (33)

The generalized polarization sensitivity that comes through this supplementary field is a major
improvement over the standard Kirchhoff model especially for bistatic scattering.

As before, the backscattering limit can be obtained simply by changing (ki ) to (−ks). For
this limit, the supplementary polarization vector (33) becomes

P(2)bs = {2(Qb
H · PH)Q

b
H − |Qb

H|2PH
}× ês = |Qb

H|2
{
2(es

H · PH)e
s
H − PH

}× ês (34)

whereqH/qz andQH are identical in the backscattering limit, and are both set toQb
H according

to

Qb
H =

ks
H

ks
z

= es
H

cosθ`
= tanθ` êx . (35)

Equation (34) indicates that the supplementary field is polarization sensitive. It can be further
reduced if the incoming and outgoing fields are chosen to be either vertically or horizontally
polarized. The cross-polarization (VH- and HV-pol) terms are zero which means that even
the supplementary field is not providing depolarization in the backscattering limit. It does,
however, provide a polarization difference between VV and HH polarizations. For VV-pol,
equation (34) reduces to

G(2)
VV = P̂ V

i · P (2)bV
s = |Qb

H|2es
z = tan2 θ` cosθ` ≡ sin2 θ`

cosθ`
(36)

while for HH-pol it gives a slightly different answer which is

G(2)
HH = P̂H

i · P (2)bH
s = −|Qb

H|2es
z = − tan2 θ` cosθ` ≡ −sin2 θ`

cosθ`
. (37)

In backscattering, the difference between the HH- and VV-polarizations is therefore an addition
or a subtraction from the Kirchhoff field. This is consistent with well-known limits such as
SPM.

5. The scattered field and the resulting cross section

5.1. Scattered field

In this section, we summarize the previous sections and put the results together to form the
total scattered field. The first and second iterations of the surface-current equation yield a total
scattered fieldB(1+2)

s ≡ Bp
s (r0) whose total polarization isP(1+2)

s ≡ Pps . This total field and
its polarization vector can be written as follows:

Bp
s (r0) = 2α(r0)B0kPps

∫
R

exp[−iqzη(x1)] exp[−iqH · x1] dx1 (38)

Pps ≡ P(1)s + P(2)s =
{
q

qz
× P̂ pi + (PH ×QH)× qH

qz
+

(
qH

qz
· PH

)
QH

}
× ês (39)

wherePH represents, for convenience, the horizontal vectorêz × P̂ pi which depends on the
incoming polarization. Those two equations represent a new general model for bistatic
scattering from random perfectly conducting surfaces. To the authors’ knowledge, these
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288 T Elfouhaily et al

equations have not been reported previously in the literature. This bistatic model specified
by (38) and (39) handles the vector nature of the electromagnetic fields in a new compact
form that allows polarization vectors to be identified and retained throughout the development,
thus ensuring flexibility in terms of choice of coordinate system. Indeed, while previous
bistatic models do carry polarization sensitivity (see, for example, Ulabyet al [12]), they
are usually presented in less tractable form. After some intensive simplifications, the ‘small-
slope’ approximation due to Voronovich [6] may give the same polarization behaviour for
perfectly conducting materials. Our formulation is, however, simpler and represents a more
straightforward derivation from first principles, in which mathematical tricks are not required.

5.2. Scattering cross section

The normalized radar cross section (σ 0) is a dimensionless quantity defined as the mean
scattering cross section per unit surface area. In the Fraunhofer zone, the cross section is given
by

σ 0
pq = lim

r0→∞
4πr2

0

A

〈Bs(r0)Bs(r0)
∗〉

B2
0

(40)

where (A) stands for the area of the horizontal scattering surface (R). The operator〈·〉 represents
the ensemble averaging. Substituting the expression for the total field from (38) into (40), one
obtains

σ 0
pq =

k2

π

|P̂ qs · Pps |2
A

∫∫
R

〈exp{−iqz[η(x1)− η(x2)]}〉 exp[−iqH · (x1− x2)] dx1 dx2. (41)

If the scattering surface is homogeneous then the integrand between the brackets depends only
on the lag vectorx1− x2, and (41) may be rewritten as

σ 0
pq = 2k2|Gpq

s |2
1

2π

∫
〈exp{−iqz[η(x1)− η(x2)]}〉(x) exp[−iqH · x] dx, (42)

where the subscriptsp andq refer to the incident and scattered polarizations. This represents
our model in its final form for the bistatic scattering radar cross section. Gpq

s is defined as the
dot product of the sample and the total scatter polarizations of the electromagnetic field, which
are represented by the vectorsP̂ qs andPps , respectively. It is readily shown using (20), (36)
and (37) that our model (42) agrees with previous backscattering models such as the results of
the SPM as first reported by Rice [2] and, of course, the results of Holliday [3]. Comparisons
can also be made between the small-roughness limit obtained from our model and previous
bistatic SPMs (e.g. Ulabyet al [12]). In such comparisons, which will be examined in detail in
a forthcoming paper, small differences should be expected due to slightly different assumptions
in the various derivations.

6. A model for assimilation of ‘large-scale’ tilting

From a ‘two-scale’ point of view, the bistatic model described above by (42) gives the scattered
field referenced to a coordinate system whose vertical axis is aligned with the local surface
normal. Tilting of this coordinate system could be caused, for example, by longer-scale
features on the scattering surface. This tilting could, of course, change the characteristics of
the scattered field. If the long-scale features tilt the local patch according to their in-plane
slope (Sx) and out-of-plane slope (Sy), then the local incident angle (θ`) is different from the
nominal incident angle (θ ) that is referenced to the observation frame. To simplify notation,
two angles (ψ andδ) can be defined in terms of the in-plane and out-of-plane tilts,

Sx = tanψ Sy = tanδ (43)
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A new bistatic model for electromagnetic scattering 289

respectively. In the following text, we shall refer to these angles simply as tilt angles.

6.1. Correction of Valenzuela’s backscattering results

Valenzuela [8] gave a relationship combining surface tilt and nominal incident angle (θ ) in
terms of a local incident angle (θ`) as:

cosθ` = cos(θ +ψ ′) cosδ′ (44)

or, also, equivalently

tan2 θ` = tan2(θ +ψ ′) + tan2 δ′
1

cos2(θ +ψ ′)
(45)

where we have used a slightly different notation. We have introduced primed tilt angles
because it appears that Valenzuela’s angles are not the same as the tilt angles defined in (43).
The subscript l is consistently used throughout our work to indicate the local incidence as
opposed to the nominal incidence (θ ).

As foreseen in the previous paragraph,ψ ′ andδ′ in (44) or (45) cannot be the tilt angles
as defined in (43) for the simple reason that (44) does not give the right tangent-plane property
whenθ is set to zero. Namely, atθ = 0, equation (45) becomes

tan2 θ` = tan2ψ ′ + tan2 δ′
1

cos2ψ ′
(46)

which does not agree with the trivial identity

tan2 θ` = tan2ψ + tan2 δ ≡ S2
x + S2

y . (47)

This demonstrates that Valenzuela’s tilting formula (44) is not consistent with the definition
of tilt angles in (43).

There is a simple modification that brings Valenzuela’s angles and the real in- and out-of-
plane tilts into agreement. In [8], it seems thatψ ′ andδ′ may be rotation angles rather than tilt
angles. Although not explicitly stated in his paper, it appears to us that the local unit normal,
n̂′, to Valenzuela’s tilted surface may be re-expressed in the fixed coordinate frame as

{n̂′}fixed = Ry(ψ
′)Rx(δ

′) {n̂′}local = Ryx(ψ
′, δ′) êl

z (48)

whereRβ(α) represents a (three-dimensional) rotation about a principal axis (β = x, y, z)
through an angleα. It must be understood that the rotations here do not rotate the vectors; they
merely re-express the (unchanged) vectors in a new coordinate system. Explicitly, equation
(48) becomes

{n̂′}fixed = − cosδ′ sinψ ′ êx + sinδ′ êy + cosδ′ cosψ ′ êz (49)

whereê∗ are the usual orthogonal unit vectors in the fixed coordinate system. One can easily
see that the dot product of (49) with the incident vector (êi ) is the cosine of the local incident
angle,θ`, as derived by Valenzuela [8], and given by (44). The expression for the normal
vector in (49) must agree with

{n̂}fixed = − tanψ êx − tanδ êy + êz√
1 + tan2ψ + tan2 δ

(50)

which is now expressed in terms of the real tilt angles of (43). By matching the components
of (49) and (50), one can find a relationship between the angles used in [8] and the proper in-
and out-of-plane tilt angles defined in (43). Guided by (44) and (45), this relationship turns
out to be:

tanδ′ = − tanδ cosψ (51)
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290 T Elfouhaily et al

and

ψ ′ = ψ. (52)

While the in-plane tiltψ is identical to Valenzuela’s in-plane rotationψ ′, the out-of-plane
angle,δ′, is different. The angleδ′ is, in reality, a function of both the in- and out-of-plane tilts
according to (51). Whereas these distinctions are subtle, and may appear almost somewhat
semantic, they are necessary for a quantitative comparison of different formulations.

6.2. Rederivation of Valenzuela’s results

In the previous section, we showed how Valenzuela [8] may have derived his equation for the
local incident angle as a function of the nominal incident angle and the tilt angle. We now
develop an alternative method for deriving the complete tilting equations in the backscatter
case in order to pave the way for the generalization to the bistatic problem.

A particular polarization of the incident field in the observation frame of reference is
modified when referred to a local frame of reference that is tilted by the presence of long-scale
features. This modification depends on the in- and out-of-plane tilts. As one might expect,
even if the incident polarization is either horizontal or vertical in the observation frame, when
referred to the observation frame it becomes a mixture of both. Valenzuela [8] applied the tilting
effect to backscatter by using the SPM model. Although SPM from an untilted surface does
not predict any depolarization, Valenzuela successfully showed that because of the underlying
tilting, the total backscatter may have cross-polarized components. His technique has been
extensively used to extend particular solutions of the general electromagnetic problem to
include tilting effects.

Since SPM coefficients are expressed in terms of pure vertical and horizontal polarizations,
these and other vectors in the fixed frame of reference must be transformed to a coordinate
system whose principal axes are aligned with the local V- and H-polarizations on the tilted
surface. We refer to the principal axes of this new frame of reference asêV, êH, andêi . To find
the expressions for those vectors, one should remember that the incident field along with the
unit normal vector (49) determine the local plane of incidence. The vectorêH is then uniquely
defined by the cross product of the incident direction (êi) with the local normal expressed in
the fixed frame of incidence as in (49);

êH = {n̂
′}fixed× êi

|{n̂′}fixed× êi | =
− cosθ sinδ′ êx − α cosδ′ êy + sinδ′ sinθ êz

α`
. (53)

Now to complete the reference frame,êV becomes

êV = êH × êi = α cosδ′ cosθ êx − sinδ′ êy − α cosδ′ sinθ êz
α`

(54)

where the notationα` = sinθ` andα = sin(θ + ψ ′) is similar to that of Valenzuela [8].
Consequently, a transformation matrix can be defined based on these unit vectors as

H = {êV, êH, ê
i} ≡


α

α`
cosδ′ cosθ − 1

α`
cosθ sinδ′ sinθ

− 1

α`
sinδ′ − α

α`
cosδ′ 0

− α
α`

cosδ′ sinθ
1

α`
sinδ′ sinθ cosθ

 . (55)

By applying this transformation, any arbitrary polarization in the fixed frame is decomposed
along the vertical and horizontal components of the local frame. Hence, Valenzuela’s tilting
equations can be represented by the successive transformations as follows

apq = tP̂ q tH D H P̂ p (56)
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A new bistatic model for electromagnetic scattering 291

whereD is a diagonal matrix composed of the SPM’s backscattering coefficients,{gVV , gHH, 0},
respectively. The left superscript t indicates the transpose of a vector or a matrix. We also give
for completeness the total matrix resulting from these transformations

T = tH D H ≡



cos2 θ

α2
`

g+ α cosθ sin 2δ′

2α2
`

1g −cosθ sinθ

α2
`

g+

α cosθ sin 2δ′

2α2
`

1g
g−

α2
`

−α sin 2δ′ sinθ

2α2
`

1g

−cosθ sinθ

α2
`

g+ −α sin 2δ′ sinθ

2α2
`

1g
sin2 θ

α2
`

g+


(57)

where the three abbreviationsg+, g−, and1g are

g+ = gVVα
2 cos2 δ′ + gHH sin2 δ′

g− = gHHα
2 cos2 δ′ + gVV sin2 δ′

1g = gHH − gVV .

(58)

Using the definition of the polarization vectors in (18) and (19), the backscattering coefficients
in (56) combined with (57) become

aHH = g−

α2
`

=
(
α cosδ′

α`

)2

gHH +

(
sinδ′

α`

)2

gVV

aVV = g+

α2
`

=
(
α cosδ′

α`

)2

gVV +

(
sinδ′

α`

)2

gHH

aHV = aVH = −α sinδ′ cosδ′

α2
`

1g = −α sinδ′ cosδ′

α2
`

(gHH − gVV )

. (59)

These coefficients are identical to those given by Valenzuela [8] with the clarification of the
difference between rotation and tilt angles as discussed in the previous section.

6.3. Generalization of Valenzuela’s results

A straightforward generalization of Valenzuela’s tilt equations to the bistatic problem can be
accomplished by distinguishing between the incident and scattered frames of reference in the
matrix form given in (56). A compact formulation of this bistatic tilting can be written as

apq = tP̂ qs
tHs Gs

i Hi P̂
p

i . (60)

All quantities in (60) are referenced to a fixed frame which may be different from both the
incident and the scattered frames. The kernel matrix (Gs

i ) is no longer diagonal. It contains
the bistatic coefficient for the major polarizations (VV, HH, VH, HV) of a chosen model,
for instance a bistatic SPM. The matricesHi andHs are defined as in (55) but with different
vectors in the incident or scattered frame of reference, respectively. Although (60) appears
very compact in its matrix form, it generates complicated equations when explicitly expressed
in terms of trigonometric functions of the tilting angles. For this reason, we do not provide
here the bistatic tilt equations in their expanded form. We shall, however, present a new
methodology to simplify these expressions of the bistatic tilting problem.

The complexity in (60) results from the fact that the kernel matrix (Gs
i ) in many models is

given only in terms of specific polarizations (i.e. VV, HH, HV, VH). An arbitrary polarization
vector must therefore be expressed as components of the specific polarizations in these types
of models. As stated previously, the vector operator introduced in (39) can readily handle
arbitrary incident and scattered polarizations as long as the chosen frame of reference is treated
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292 T Elfouhaily et al

consistently throughout the development. Another feature of the bistatic model developed
earlier in this paper is that it is independent of the choice of reference frame. If indeed we
take full advantage of the vector operator, expression (60) can be greatly simplified. The
simplification is based on the observation that theH-matrix in (55) can be decomposed into
four rotations about the principal axes as follows

H ≡ Ry(−θ`)Rz(−β`)Rx(−δ′)Ry(−ψ ′). (61)

In (61),θ` is the local incident angle andβ` is defined as the angle betweenêH in (53) andêl
y

of the local frame obtained by the previous two rotations throughψ ′ andδ′;

cosβ` = n̂′ × {êi}local

α`
· êl
y =

α

α`
. (62)

It is now clear that the rotations throughθ` andβ` are needed when the kernel matrix is only
available for the specific polarizations. In our vector formulation,θ` andβ` rotations are
unnecessary. The bistatic polarization coefficient in (42) becomes the dot product of a tilted
polarization vector ({P̂ pi }) with the scattered sample polarization ({P̂ qs }) expressed in the fixed
frame;

{Gpq
s }tilted = tP̂ qs Ry(ψ

′)Rx(δ
′)Ps Rx(−δ′)Ry(−ψ ′) P̂ pi (63)

where Ps is the vector in (39) that transforms the incoming polarization to the scattered
polarization in the chosen frame, for instance, the local frame defined by the rotations through
ψ ′ andδ′. This general bistatic tilt formulation involves two angles rather than one in the
backscattering case where the local incident and scattered angles are the same. The local
scattered angle under this general bistatic configuration is

cosθs
` = ês · {n̂′}fixed

≡ t êz Ry(θs)Rz(φs)Ry(ψ
′)Rx(δ

′) êz
= sinδ′ sinθs sinφs + cosδ′

(
cosθs cosψ ′ − cosφs sinθs sinψ ′

)
.

(64)

In the special case where the azimuthal angle (φs) of the scattered field is zero andθs = θ ,
equation (64) simplifies to the double cosine equation of Valenzuela (44). If the incident plane
is not in thex–z plane, as we have assumed throughout our development, then the local incident
angle equation will be obtained from (64) by replacing the scattering index (s) by the incident
index (i).

The equation for the polarization coefficient (63) combined with the bistatic cross section
in (42) form our bistatic composite model. We believe that the compact vector notation used
in the development of this model renders this inherently complicated problem more accessible
to computations in both passive and active microwave remote sensing.

7. Conclusion

One of the more robust methods for the computation of electromagnetic scattering from random
rough surfaces is the Kirchhoff approach. In particular, this approach does not require an
artificial frequency-dependent wavenumber separation scale in the surface representation as
do popular composite-type scattering models. Unfortunately, the original Kirchhoff approach
does not yield the proper polarization sensitivity for the scattered field. Recently, Holliday [3]
has shown for the case of backscatter in the SPM limit that this deficiency in the Kirchhoff field
can be corrected through the inclusion of the next iterative correction to the surface current. In
this paper, we have generalized Holliday’s results to develop a bistatic Kirchhoff model that is
polarization sensitive. Our development is based on an expansion of the surface current through
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A new bistatic model for electromagnetic scattering 293

first order in the surface slope, and the polarization sensitivity appears as a multiplicative factor
of the standard Kirchhoff integral for the scattered field. No restriction on the surface height is
required. In addition, we employ a coordinate-frame-independent (three-dimensional) vector
notation that yields relatively compact expressions for the scattered field and cross sections
even for the case of bistatic scattering.

Our extended Kirchhoff expression is sensitive to the polarization of the incident field
for both backscatter and bistatic scattering and produces depolarization in the general bistatic
case. However, it does not produce depolarization in the backscattering limit. In this limit, we
show that depolarization results from a vertical component of the surface current, proportional
to surface-slope terms of quadratic or higher order, that are not presently included in our
formulation. To approximately account for these terms and the resulting depolarization of the
scattered field (even in the backscattering limit), we have generalized our results to include
scattering from tilted facets in a manner similar to that applied to the SPM in the backscattering
limit by Valenzuela [8]. Our vector formulation has allowed us to determine an expression
for the field scattered in any direction from an arbitrarily tilted facet in terms of Euler rotation
matrices. In the present development we also point out a subtle error in Valenzuela’s paper
related to the definition of the tilt angles. The effect of that error may be minor as long as the
tilt angles are small, however its correction allows a detailed comparison of our results with
his.

There is also a philosophical distinction between our formulation of the tilting mechanism
and that presented in [8]. Since Valenzuela is dealing with a composite scattering model,
the surface scales responsible for the tilting in his formulation include all scales longer than
several electromagnetic wavelengths. In our Kirchhoff-based approach there is no need for
this composite-model scale separation for scales of the order of the radar wavelength. For
practical application of our model, we believe that the scale separation should not be specified
by a length scale that is dependent on the incident electromagnetic field, but rather should be
determined by the characteristics of the scattering surface.

We believe that the model presented in this paper provides another step forward in the
understanding of microwave scattering from random surfaces. The model treats backscattering
and the more general bistatic problem on an equal footing so that one can easily check
the more familiar backscattering limits. The compact vector notation in our formulation
should significantly simplify the application of the model to numerical experiments involving
complicated polarization dependences such as those involved, for example, in passive
microwave remote sensing. These applications of our formulation will be the topic of future
investigations.
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