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Under the two-scale hydrodynamic model for ocean surface waves, short waves are 
modulated hydrodynamically by long waves. An exact numerical simulation of the 
two-scale hydrodynamic process shows that the most commonly used modulation 
transfer function (MTF), which is a linear approximation, does not capture all of the 
features caused by the inherent nonlinear nature of the physical processes involved. 
We rederive the linear MTF and generalize it to include local acceleration and finite 
depth effects. The phase of the linear MTF is shown to be independent of the direction 
of long modulating waves. This is an artefact of the linearization of the nonlinear 
equations. A higher-order theory is also derived based on the truncated Hamiltonian 
for long modulating waves and dissipation by wave-wave interaction for modulated 
waves. This new theory includes higher-order derivatives of the source functional and, 
therefore, short-wave dissipation. Consequently, the phase of the modulation depends 
on the relative direction of long and short waves. It is shown that while the linear 
hydrodynamic MTF leads to higher-order statistics equivalent to the bispectrum, 
the new second-order MTF induces the trispectrum of surface elevation. A succinct 
derivation for the third-order MTF is given for completeness. 

Keywords: nonlinear surface waves; hydrodynamic modulation; 
higher-order surface wave statistics; truncated Hamiltonian function 

1. Introduction 

Longuet-Higgins & Stewart (1960, 1961) were the first to initiate, under a wave-wave 
interaction concept, a theory for the modulation of the amplitude of a short wave 
by underlying variable currents. Similarly, but under a two-scale concept, Keller & 
Wright (1975) introduced a theory for the modulation of the spectrum of short waves 
by longer gravity waves. Their theory introduced a linear modulation on the short- 
wave spectrum when short waves feel the straining caused by the presence of a single 
linear longer modulating wave. The smallness parameter used by Keller & Wright 
(1975) was the ratio of the horizontal orbital velocity to the phase speed of the 
single current. A direct modulation of the spectrum of short waves is very appealing 

t Present address: CNRS, IRPHE, Laboratoire Interactions Ocean-Atmosphere, Parc Scientifique et 
Technologique de Luminy Case 903, 163, avenue de Luminy, 132 88 Marseille Cedex 9, France. 
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for the remote sensing community using microwave scattering off the ocean surface. 
For this reason, the concept of modulated spectra due to Keller & Wright (1975), 
rather than modulated amplitudes by Longuet-Higgins & Stewart (1960, 1961), will 
be considered in detail in the present study. 

Four years after Keller & Wright (1975), Valenzuela & Wright (1979) generalized 
this theory to higher orders by including nonlinear source functions related to short 
waves only. However, this generalization dealt with only a single linear modulating 
current. The application of this kind of modulation turned out to be somewhat 
limited and therefore has rarely been used in the more recent literature. 

The most commonly used hydrodynamic modulation transfer function (MTF), 
introduced by Alpers & Hasselmann (1978), is derived from a linearization of the 
balance equation of wave action. In this case, modulating waves are written as a 
sum over the entire spectrum of linear gravity waves each with random amplitude 
and phase. This feature, together with its simplicity of implementation, made the 
linear MTF of Alpers & Hasselmann (1978) preferred to other MTFs. Now, more 
than 20 years later, this linear MTF is widely used by scientific communities ranging 
from oceanographers to remote-sensing physicists (see, for example, Hara & Plant 

1994). A generalization that includes both nonlinearities in modulating and mod- 
ulated waves seems long overdue. The awaited contribution should be to Alpers & 
Hasselmann (1978) what Valenzuela & Wright (1979) was to the original work of 
Keller & Wright (1975) in regard to the short modulated waves. Furthermore, we 
will equip our generalized model with the capability to handle inherent nonlinear 
modulating waves in addition to the induced nonlinearities in the short waves. In 
this paper, we propose such generalization. 

We begin by introducing the modulation concept and by motivating the need 
for improvement by contrasting the linear MTF of Alpers & Hasselmann (1978) 
with an exact analytical and numerical simulation of the hydrodynamic equations. 
The inconsistencies that emerge suggest the need for a higher-order theory. Our 
development follows the notation and expands on concepts introduced by Elfouhaily 
et al. (2000). A detailed rederivation for the linear MTF is carried out in ? 7. This 
rederivation includes heaving effects caused by the local acceleration in addition to 
the straining already given in the original expression by Alpers & Hasselmann (1978). 
Another added feature is the extra modulation felt by short waves when long waves 
occur in shallow waters. In ? 8, we derive the second-order hydrodynamic modulation 
that includes, in addition to the features in our first-order development, three-wave 
interactions among the modulating waves themselves. Section 9 is dedicated to a 
simplified implementation of the first- and second-order expansions. The third-order 
expansion is summarized in the appendix. An illustration of how a nonlinear current 
can be introduced is given in ? 10. Representative ensemble-average properties are 
derived in ? 11 to show an offset caused by the second-order effect, and in ? 12 to 
illustrate surface nonlinearities that arise when using first and second-order MTFs. 
Both bispectrum and trispectrum induced by this hydrodynamic modulation are 
explicitly shown as a fiunction of the MTFs and the equilibrium spectrum. 

2. The modulation concept 

In the context of short waves riding on long waves, which are considered as a narrow- 
band process, the evolution of wave action N(ks. x, t) of the modulated waves can 
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be described by Boltzmann's transport equation (see Phillips 1977), 

L[N] d N at + + S a N = Q(N s5, t) (2.1) 
dt at Ox ks 

The right-hand side Q(N, ks, x, t) is the source functional, which is a compact de- 
scription of sources and sinks of wave action. For instance, wind input, wave dissi- 
pation and wave-wave interaction are examples of a few among many elements of 
the source functional Q(N, ks, x, t). The wave action is defined as 

N(ks,, x t) = pwcsf(k,, x, t), 

where (f(ks) is the two-dimensional wave spectrum of modulated waves with cs - 

ws/ lks as their local phase speed. The constant water density Pw is neglected without 
loss of generality in the following equations. The space, x, and wavenumber, ks, 
vectors are independent of each other, but both are functions of the time variable 
(t). These vectors are in fact the position and momentum coordinates and satisfy 
the canonical equations given by 

x= k (2.2 a) 

ks=-, (2.2b) Ox' 

where the total angular frequency of a packet, 

Q = &(ks,, xt) + ks UL(x, t), (2.3) 

plays the role of a Hamiltonian by analogy to classical mechanics. UL(x, t) is the 
horizontal component of the orbital velocity induced by the presence of long, linear 
or nonlinear, modulating waves. Equations (2.2) are also known as the ray equations 
simply because, as time changes, modulated waves will follow the path in phase 
space defined by these equations. Numerical examples of ray equation behaviour in 
the presence of single or double modulation oscillatory currents can be found in 
Ramamonjiarisoa (1995). 

The effective frequency c(ks, x, t) in equation (2.2) is a function of space and time 
variables due to local acceleration effects caused by the time variation of the orbital 
velocity. The local acceleration vector, g, is, according to Longuet-Higgins (1985, 
1987a), 

g(x, t) = g -a, (2.4) 
with g being the (constant) acceleration due to gravity. and a being the real, or 
Lagrangian, acceleration due to the orbital motion of the underlying field. The local 
acceleration in equation (2.4) is perpendicular to the long-wave profile. The magni- 
tude of this acceleration vector is then 

az a2 
g(x,t) = 1 - 2 + 2 (2.5) 

which can be approximated consistently with the objective of the paper to 
2 2 

g(x,t) -a g - a z - - +g Z+.. . (2.6) 
29 

Proc. R. Soc. Lond. A (2001) 

2587 



T. Elfouhaily and others 

The reader should note that there is also a contribution to the effective gravity due 
to surface tension (Henyey et al. 1988). This term is neglected in the present study, 
where we are concerned with the effect of long gravity waves on the short-wave 
spectral density. 

The real or Lagrangian acceleration is defined as the total derivative of the orbital 
velocity vector evaluated at the surface itself: 

d a Q\ a = -u -= ( + u * )u. (2.7) dt at Ox) 
v / 

Using the boundary equations in eqn 2.1 of Elfouhaily et al. (2000) along with some 
additional properties, such as eqn 3.2 of the same paper, we get 

OW OW 
az -+ UL + ' (2.8) At dx 

where UL and W are the horizontal and the vertical components of the orbital 
velocity, respectively, evaluated at the surface. Higher-order multiplicative terms, 
which will not be required in this paper, are not shown in equation (2.8). 

The effective dispersion relationship of short waves is then 

s2 (ks, x, t) = g(z, t)lks + T k 3 = 2 - kaz + , (2.9) 

where T is the surface tension scaled by the water density and w2 is the usual 
unperturbed dispersion (w2 = glks[ + T k s3), referred to as the intrinsic dispersion 
relationship. The subscript 's' refers to the short-wave portion of the spectrum. 

3. Analytical integration 

If the source functional Q in equation (2.1) is chosen to be that of Hughes (1978) 
with a modification proposed by Caponi et al. (1988), namely 

Q(N, ks, xt) =3N 1-O ) ' (3.1) 
No/. 

the differential equation in (2.1) simply becomes, by following the methodology of 
Thompson et al. (1988), 

dP 
dt +/-P = /,PO, (3.2) dt 

where the zero index means equilibrium conditions and the change of variable P = 
1/NP is used. The relaxation rate is s = p/3(ks). The growth rate 3 quantifies the 
duration needed for short waves to grow under wind shear (see Plant 1982). The 
ratio p between the relaxation rate pts and the growth rate 3 is predefined by the 
choice of the growth rate and the equilibrium spectrum according to Kudryavtsev 
et al. (1999). Elfouhaily et al. (2001) gives the explicit expression for the ratio p as 
a function of the wind friction velocity when the growth rate due to Plant (1982) 
and the two-directional spectrum of water waves due to Elfouhaily et al. (1997) are 
combined. 

Equation (3.2) is a first-order linear differential equation whose solution is a com- 
bination of the homogeneous solution, 

Ph(ks(t)) = Po(ks(to))D(to, t), (3.3) 
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and a particular solution of the general equation, 

Pp(ks) = Po((k')s(k)D(t', t) dt', (3.4) 

where the damping function is defined as 

to 
D(to, tl) - exp - /s(ks(t)) dt , (3.5) 

and k' = ks(t') in equation (3.4) refers to the integration variable t'. 
Performing an integration by parts in equation (3.4) and combining it with the 

homogeneous solution (3.3) leads to a simpler representation 

P(ks, x, t) = Po(ks) + k? p( s) D(t', t) dt', (3.6) 
S' ' Ok'S 

where the initial time to is the time at which the modulated action reaches the 

equilibrium state by either escaping the modulating current or effectively not feeling 
the presence of the modulating wave due to the cumulative effect of the damping 
factor D in equation (3.5). Therefore, the initial time to can be defined as the value 
where the damping factor reaches some small number (for example, 10-6) for a given 
time of observation t. In this case the homogeneous solution (3.3) vanishes and the 
final solution in equation (3.6) is entirely dominated by the particular solution in 

equation (3.4). 
The normalized modulation observed by P is then analytically 

6P(k. x, t) kst C Po(kf) 5P(ks, x, t) _i 
l a 

DtP?(k 's t) dt', (3.7) 
Po(ks) - , Po(ks) ak' t 

where ks is one of the ray equations as expressed in equation (2.2), which is a function 
of the horizontal orbital velocity as well as the vertical acceleration of the current 
induced by the presence of long modulating waves. Note that when the modulating 
current is constant, 6P(ks) is zero and wave action is conserved. 

4. Comparison between exact and linearized modulations 

The numerical implementation of ? 3 is an adaptation to a sinusoidal current of 
the previous numerical development by Thompson et al. (1988) to accommodate 
modulation caused by long waves instead of soliton internal waves. A comparison is 
made in this section between this exact numerical simulation and the approxima- 
tion made by Alpers & Hasselmann (1978). This later approximation is merely a 
linearization of all the differential equations in ? 2; namely the action balance equa- 
tion (2.1) and the ray equations (2.2). The approximation by Alpers & Hasselmann 

(1978) is frequently used in the literature under the name linear modulation transfer 
function. 

The comparison is carried out for two cases of interest. The first case is a single 
current aligned with the short modulated waves. The solid curve in figure 1 shows a 
single sinusoidal current, with an amplitude of 1.4 m s-1 and a wavelength of 31 m, 
modulating a short wave of 10 cm wavelength. This periodic current has a steepness 
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Figure 1. Hydrodynamic modulation from the exact numerical simulation (3.7) and from the 
approximate linear MTF by Alpers & Hasselmann (1978) for sinusoidal current. The amplitude 
of the modulating current is 1.42 m s-1 or 1 m in surface elevation (solid curve) at a wavelength 
of 31 m. This example corresponds to a fully developed wind sea for a 7 m s-1 wind speed at a 
height of 10 m from the surface. The wavelength of the short wave is 10 cm. The modulated short 
wave, the 7 m s-1 wind, and the current are chosen to be in the x-axis. The exact modulation 
(filled triangles) caused by this single harmonic current seems to exhibit a nonlinear shape by 
showing sharper crests and flatter troughs than the approximate linear MTF (dashed curve). 
Both modulations are shown over the actual modulating current in terms of surface elevations 
(solid curve). 

of ak = 0.2, which is a typical value for the dominant wind wave at the most prob- 
able wind speed of 7 m s-1 (Holthuijsen & Herbers 1986). This value is consistent 
with the limiting values on the steepness found by Plant (1982). The same steepness 
value was used by Longuet-Higgins (1987b, 1991) based on the laboratory wind-wave 
measurements reported in Lake & Yuen (1978). However, Longuet-Higgins (1987a) 
used even steeper long waves when studying the steepness of short modulated waves. 
The exact numerical simulation, shown by the triangles (grid points of the compu- 
tation connected by a solid curve) in Figure 1, indicates a different amplitude and 
phase of the modulation than that of the linear MTF (dashed curve) of Alpers & 
Hasselmann (1978). The most striking difference is, in fact, the nonlinear shape, 
especially the sharp crests and flat troughs, of the exact simulated modulation in 
contrast to the perfect linear shape of the corresponding MTF. The nonlinearities 
result from the strong current gradient and the nonlinear source function (3.1) in 
equation (2.1), even though the modulating current itself is linear. The second case 
includes a second current at 45? with a phase shift of 90? added to the first current 
of the first case. The linear MTF due to Alpers & Hasselmann (1978) predicts that 
the total modulation is simply the sum of the independent linear modulations. Fig- 
ure 2 shows that the sum of the independent linear modulations (dashed curve) is 
rather different from the exact numerical simulation (triangles) not only in both the 
amplitude and the phase but also in its intensified nonlinear shape. It is understood 
that the nonlinear shape of the exact modulation is due to the presence of higher 
harmonics in contrast to predictions by the linear MTF (Baldock et al. 1996). A 
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Figure 2. Same as in figure 1 with an additional current at 45? and with a 90? phase shift. Solid 
curve shows the x-component only of the sum of the two currents. The exact simulation is run 
over the total current, while the linear MTF predicts the sum of the individual modulations. 
Again the exact modulation (filled triangles) seems to be nonlinear, even though the currents 
themselves are linear. Hence a simple sum of independent modulations (dashed curve) in a linear 
sense does not predict the exact simulation for a linear combination of currents well. 

second modulating wave was also found by Ramamonjiarisoa (1995) to have a larger 
effect on the modulation of the short wave than when only a single long wave is 
considered. 

The exact numerical simulation captures the nonlinear aspect of the source term 
(3.1) as well as that of the differential equations in ? 3, while the linearized version 
of the same equations obviously does not. It is clear from figures 1 and 2 that the 
linear MTF is missing some significant aspects of nonlinear modulations. The MTF 
approach elaborated by Alpers & Hasselmann (1978) is, however, very attractive due 
to its easy implementation when the modulated current is an infinite sum of linear 
long gravity waves. This makes the MTF approach superior to the exact numeri- 
cal simulation in practice at the expense of omitting some interesting features of 
the nonlinear hydrodynamic modulations. The exact numerical simulation described 
above is also restricted to a source term of the form given in equation (3.1). A 
more general technique for arbitrary source functionals as well as for an underlying 
wave field made from long gravity waves with a possibility of nonlinear wave-wave 
interactions is yet to be developed. Herein, we propose to generalize the hydrody- 
namic concept to include the nonlinear aspects by extending the technique to higher 
orders. 

In the next section we rederive the linear MTF by using a slightly different notation 
from Alpers & Hasselmann (1978) to make the technique amenable to higher-order 
approximations. The linear MTF is also generalized to include effects of local acceler- 
ation as well as from finite depth. In the same context, the nonlinear hydrodynamic 
modulations are derived in the following sections to include nonlinearities caused by 
wave-wave interactions in both long and short waves. 
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5. Expansion of the action balance equation 

In order to present the higher-order theory, we need to set the stage for the expan- 
sions of both the action balance equation in equation (2.1) and the ray equations in 
equation (2.2). All the quantities in equation (2.1) can be expanded to third order 
in the slopes of long modulating waves as follows: 

L = o? + LC + 2L + 3 + * * , (5.1 a) 
N = oN + N + +2N + N + . , (5.1 b) 

Q = Qo + Q1(N - oN) + Q2(N- oN)2 + Q3(N- oN)3 +..., (5.1c) 

where the Taylor expansion of the source functional Q is achieved through 
A O'Q 

Qo Q(oN) 0 and Qm, - (5.2) 
ONo N=oN 

Substituting equation (5.1) into equation (2.1) yields 

(oL + LC + .)[oN + 1N + ]= Qo + Qi(iN + 2N+ .) 

+ IQ2(lN+2N + .)2 + .. (5.3) 

Now, this formal expansion generates a series of differential equations for each order. 
For the first three orders, equation (5.3) yields the system 

o?[oN] = Qo = 0, (5.4 a) 

S iC[jN]= Q11N, (5.4b) 
i+j=1 

5 iC[jN] = Q12N Q21N2, (5.4c) 
i+j=2 

5 i[jN] = Q13N +21N2N+ Q31N3, (5.4d) 
i+j=3 

which correspond to zeroth, first, second and third order, respectively. 
The total time derivative operator L = d/dt is expanded in orders of slopes of 

modulating waves as 

o - ' (5.5 a) 

nL = n. x+ k - (5.5 b) 
oS x n s 

ks 

where nxi and nks refer to the nth order of the corresponding ray equations (2.2). 
The expanded ray equations are 

nX= -- = + nUL(X,t), (5.6a) 
Oks Oks 

nks=- _ - - (ks nUL), (5.6b) Ox Ox Ox 
where the orders of the expansion are applied by distribution on the effective angular 
frequency and the horizontal orbital velocity. 
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6. Modal representation 

Instead of using the notation of Alpers & Hasselmann (1978), which is not amenable 
for higher-order expansions, we use the modal representation originally developed 
by Hasselmann (1961) and adopted by Elfouhaily et al. (2000). The surface eleva- 
tions and velocity potentials of the modulating waves are sums of time-dependent 
harmonics at the considered order given by 

n((x, t) = E nZk(t) exp{ik x}, (6.1 a) 
k 

n4(x, t) = E nPk(t) exp{ik x}. (6.1 b) 
k 

This discrete sum can be written in terms of integrals if the spectrum of waves is 
continuous. In practice, the discrete sum is more appropriate. The first linear order 
according to the notation of Hasselmann (1961) is 

1q0k(t)= iPk exp{ikt} + il+ exp{-iwkt}, (6.2 a) 

1Zk(t) = Zk exp{iwkt} + 1Z+ exp{-iwkt}, (6.2 b) 

with 1iP and 1Z+ related by the equation 

wcZ- = i10k, (6.3) 

where w = sWk and 

wc g = g, - =ktanhkh and s = 1 (6.4) 

reflect the dispersion relation for gravity waves in a fluid of finite depth (h). 

(a) Orbital velocity 

The horizontal component of the orbital velocity is, to second order, 

UL(x,t) = 1UL(, t) + 2UL(, t) +. , (6.5 a) 

1UL(zx t) =5 kk,Uk ,Zs1 exp{i(ki .x - w)t} (6.5 b) 
k1 ,s1 ki ,si 

Sl,S2 

2UL(X, t) = 5 (kl + k2)UjUk 1Zi Zk2 exp{i[(k1 + -k2) x - (w + w2)t]}, 
ki,k2 

(6.5c) 

where expressions for the straining kernels are 

Uj ~-1K;2 W2(k) - (wl + W2)2 
( ) 

with Dklf'S2 given by Elfouhaily et al. (2000) as the generalization of the collision 
operator of Hasselmann (1961) to the Hamiltonian approach by Zakharov (1968). 
This collision operator 

oDkl' = i(wLI+W2)(K1K2-kl k2)-2i[l( (k-2 -2+ l1K2)+LL2(k -/-1 l+K1l2)] (6.7) 
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for deep water and gravity waves expresses the wave-wave interactions that take 
place among the modulating waves themselves. We demonstrate that this degree 
of nonlinearity is one of the major components of the higher-order hydrodynamic 
theory as developed in this study. 

According to Elfouhaily et al. (2000), the vertical component of the orbital velocity 
is, to second order, 

W = 1W + 2W +", (6.8a) 

IW =0 6?, (6.8 b) 

2W = 62 + (1i02 - 2 
1C)1i, (6.8 c) 

where 0 is an operator that multiplies the harmonics of its arguments according to 
the rule 

fkn if n is even, 

o?[n - kn-t if n is odd. (69) 

Note that both horizontal and vertical components of the orbital velocity are evalu- 
ated at the actual modulated surface. This feature is an important difference from the 
perturbation expansion about a mean flat surface performed by Hasselmann (1961). 
Further details concerning these methods may be found in Elfouhaily et al. (2000). 

(b) Local acceleration 

Following Longuet-Higgins (1987a), the local acceleration is the first time deriva- 
tive of the vertical orbital velocity as shown in equation (2.4). Equations (2.9) and 
(6.8) give the expansion up to second order of the dispersion relationship as 

&9(ks X, t) = s l 1- -- z + = + . 01 + 2a + ' ? (6.10) 
Ws 

Each order is now equal, in terms of the modal representation, to 

o0 = c s, (6.11 a) 

1 -= 21 Gki Zk" exp{i(ki x - it)}, (6.11 b) 
k $i,Si 

2 - 2c E (kl,k 4c w GkGk2) 1Zk1 

x exp{i[(kl + k2) 2 x- (w + )2)t]}, (6.11 c) 

where the heaving kernels related to the effects of local vertical acceleration are 

GSl = 2 = w2(ki), (6.12 a) 

Ikik2 = (W1 + C2) i 
;Uc'k, + 

C2 (k2 - ^l2) + 2-? (k2 
- K21) 

+ kl C k212(/1 + K2). (6.12b) 
2K;1 2 
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Linear as well as nonlinear hydrodynamic modulation will be written in terms of the 
orbital velocity and local acceleration kernels. This will simplify the identification of 
each term in the final expression. 

7. First-order hydrodynamic modulation 

The first-order hydrodynamic transfer function (or linear MTF) is defined as the 
kernel that multiplies the linear harmonics of the surface elevation of an ambient 
current to produce a relative modulation of the wave action. The perturbed wave 
action is then expressed as a function of the equilibrium action (oN or No) and a 
sum over the hydrodynamic MTF. To first order, this gives 

IN = oN E R\ iZ8 k exp{i(ki x - t)}, (7.1) 
k1 ,S1 k1i,81 

where the sum over sl (plus and minus signs) guarantees that modulated action is 
a real quantity. 

From equations (5.4b) and (7.1), we find 

1 OoN 81 -iw1Rk'oN + 1 ks k = QiR oN (7.2) 

as a relation between modes. Some reordering in equation (7.2) gives 

(W1 - iQ1)Rkl -i'-N 9 
(7.3) 

oN Oks 

Before solving equation (7.3) for the linear MTF we need to evaluate the ray equa- 
tions to first order. By combining equations (5.6), (6.5 b) and (6.11 b), one gets 

1 - YSG1 1x 2 =wk Gk1 ks + Ukkl, (7.4 a) 

iks =-i G + (k1 . k5)Uks k1 (7.4b) 

as linear modes of the ray equations. -s is the ratio between the group speed VS and 
the phase speed Cs of short modulated waves. 

The final expression for the linear MTF is obtained by substituting (7.4b) into 
equation (7.3) to give 

1i _W- I +GiQ1 1 kl OoN 
Rkl = ~ + Q2 _2c Gk + (k,l ks)U N O (7.5) ki 

2?Q1 + Q 2c, k5Uk ON Oks' 

where three terms are readily identifiable: the first derivative Q1 of the source func- 
tional; the heaving kernel induced by local acceleration; and the straining kernel 
caused by the horizontal component of the orbital velocity. Equation (7.5) is a new 
and powerful result. It is a generalization of the linear MTFs by Alpers & Hasselmann 
(1978), Valenzuela & Wright (1979) and Keller & Wright (1975) that, for possibly the 
first time, includes local acceleration and finite depth effects. Of course, when local 
acceleration and finite depth effects are neglected, one retrieves from equation (7.5) 
an expression identical to the original MTF by Alpers & Hasselmann (1978). 
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It is clear from equation (7.5) that the phase of the modulation is dictated entirely 
by the ratio of Q1 to wl. This means that in the linear MTF, neither the local accel- 
eration (heaving kernel) nor the orbital velocity (straining kernel) influence the phase 
of the modulation. Another important point is that the phase of the modulation of 
this linear MTF is independent of the relative propagation direction between mod- 
ulated and modulating waves. We demonstrate in the following section that higher- 
order hydrodynamic theory does provide phase sensitivity to the relative directions 
between long and short waves. 

8. Second-order hydrodynamic modulation 

The second-order perturbation of the wave action caused by the modulating waves 
is defined as a deviation from the equilibrium wave action (No or oN) according to 

S1,S2 

S1,8 2 2 N = oN E Rk 1Zkl Zk2 exp{i[(kl + k2). - (wl + 2)t (8.1) 
kl,k2 

where we denote Rs1',S2 as the second-order hydrodynamic MTF. 
From equations (5.4c) and (8.1), we get, with some reordering, 

[(Wi + W2) -iQl ]jk,k2 

kR - __k 
S 9RkoN .2ks 9oN lQ S 2 

= . (lc. k2)R~ - k _- ~ . k + iQ2Rk RkoN (8.2) o2 N Oks o N Oks 2 k 

as a relation between modes at the second order in long-wave slopes. 
The second-order ray equations can be obtained by combining equations (5.6), 

(6.5c) and (6.11 c) to get 

1_ Y 
(CSlSi1,S 

2 3YSGS1GS2 "\1.,i1T01 2x 2w Gk,k~- 4c8 1 
- 

s GkGk )ks + Ukl,k2 , (8.3a) 
2wok5 k1,2 4csws 1- y k1 k2 11 

2cs kik2 4csws ki kk 1(Sab 2-s -i_ 
-(Gc kk 4cW Gk?Gk) + (k5 * k)Uk[ k. (8.3b) 

The substitution of equation (8.3) into equation (8.2) yields the final expression for 
the second-order hydrodynamic modulation: 

RS1S2 
(W1 + o:2) + iQ1 1 - Y (ks *k2)Gkl + (kl k2)Ukl Rk2 
(wgl,~2 +S (Sg)]. W,2)2 

? 
Q2 

2w 
k, 

R 
27C ( ks W' k2)Gls -i l) + (k5 k2 + k * k2) 

-ZCs 
- $2sUJs / 

x k1kk2 . &0N +k (8.4) 

_2c 
Gk + (kl ' ks)Uko 

1N $ k1 2 kk J 

2cG k,k2-4 GkxGk2 + (ks ' ki + ks k2)Uk}'k 

kl + k2 OoN 1 . 
oN Oks 

2 
2kik2O 

In addition to heaving and straining kernels, the second hydrodynamic MTF involves 
the second derivative Q2 of the source functional Q in equation (2.1). In general, 
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the source functional is non-local and includes wave-wave interactions. Formally, its 
second-order derivative Q2 should come from the derivative of the three-wave inter- 
action functional as presented by Valenzuela & Laing (1972). One should of course 
replace the collision operator used in Valenzuela & Laing (1972) by the one derived 
in Elfouhaily et al. (2000) for the Hamiltonian formulation of the hydrodynamic 
equations expressed at the actual surface instead of at a flat reference. Less formally, 
though, the second-order derivative can be approximated by a local expression of 
the three short-wave interactions as proposed by Plant (1979), Valenzuela & Laing 
(1972), Zhang (1995) and Kudryavtsev et al. (1999). For instance, Q2 can be com- 
puted from a simple source term, such as that of Hughes (1978). Equation (8.4) 
is also a generalization of Valenzuela & Wright (1979) to include the nonlinearities 
in the modulating waves in addition to the ones present among short modulated 
waves. 

It is obvious from equation (8.4) that the phase is no longer a function of the ratio 
between Q1 and (wl + W2). All the terms between curly brackets in equation (8.4) 
are complex numbers and therefore contribute to the phase of the modulation. The 
relative direction of long waves versus short waves is now involved in the determi- 
nation of the phase of the modulation. The second-order hydrodynamic MTF in 
equation (8.4) is written in a compact form permitting heaving and straining ker- 
nels of first and second orders to be turned on or off separately. In this way, one 
can assess the real contribution of each term; whether it is coming from wave-wave 
interactions among long waves or short waves or even control of the hydrodynamic 
modulation by local acceleration or orbital velocity separately. For completeness, the 
appendix shows how the third-order hydrodynamic modulation can be derived via 
these previous expansions. 

9. Implementation 

The implementation of the first- and second-order hydrodynamic modulation, given 
by equations (7.5) and (8.4), respectively, is straightforward for a particular source 
functional based on the work of Hughes (1978) and modified by Caponi et al. (1988). 
For this particular source functional in equation (3.1), its derivatives in equation (5.2) 
become 

Q1 = -s, (9.1 a) 

Q2 = -(p + 1)/soN-1, (9.1 b) 

Q3 = -(p + 1)(p- 11))soN-2 (9.1 c) 

up to the third order. Only the first two orders are used in this section. The third 
order is used in the appendix for implementing a simplified version of the third-order 
hydrodynamic MTF. 

With these derivatives of the source functional, the first- and second-order hydro- 
dynamic MTFs become 

R W1 - +i wl kl &oN (9.2) 
Rk -- -02 + l 9kk WI ;+ ~s KI oN 'oks 
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and 

RSlS2 _ (W1 + 2) -i-s k ,k2 (g: + o2)2 + /s2 

Wl sC2 Wkl k ?ORk2 R =S OoN 
ix 1w k k2)R2- S2 (1 ks)kl 2 

+ 
KI M k2 

KIv 
/ 

_ Oks oN Oks _ 

- i(p 1))sRSRkl 2 (9.3) 

respectively. The heaving kernels due to local acceleration are not included in equa- 
tions (9.2) and (9.3) for simplicity. A similar development can be made easily even 
with heaving kernels. These expressions for the hydrodynamic MTF can be simplified 
even further by assuming a given form for the directional wave spectrum and the 
wind growth rate. For instance, if we choose to combine the unified spectrum from 
Elfouhaily et al. (1997) with the growth rate 3 proposed by Plant (1982) and some 
directional dependence, which will not be needed in the following developments, the 
linear MTF simply becomes 

R = 
W - 

iS2 kiwl cos (Os - 01) [-4 cos (0s - 01) - s tan 2 0s sin (0s -0)], k~I 0.)2 + /S2 2 

(9.4) 

where 
2 

s -= 1 arctanh[A(ks)] + 1, (9.5) 

with the spreading of short waves captured by A(ks), as introduced by Elfouhaily et 
al. (1997). The direction Os in equation (9.4) is that of short waves relative to the 
direction of the wind. A special interesting case occurs when Os is identically zero. 
In this special case the linear MTF simplifies to 

Rs 1 -'1 -- isO k C\ RS = 4 W2 i 2 kl cos2 1, (9.6) 
1 ? s0 

where p,so is the relaxation rate us of short waves aligned to the wind. The direction 
of the modulating wave 01 modifies only the magnitude of the modulation. The phase 
in this special case is solely dependent on the wavelength of short waves and long 
waves for the given wind speed. 

When short waves and wind direction are aligned, the second-order MTF reads 

RSi,S2 _ 2w1w2kl k2 
kEl,k2 - 1 + W2 + ipso 

c ? s2 02 ? -2 i/2s0 X COS 2 k2 cos (01 -02) + 2(1 -ys) Cos2 X1 r- cos2 O1 
W2 + ls0o _k1 l + iuso 

-tan 02 sin 201 + 4cos2 2l - 2i(p + 1)so0 
cos + (1 = 2). (9.7) 

(0 + iso _ - 

This is an example of implementation when nonlinear kernels are neglected. In the 
next section we show a better example that includes the nonlinearities in the mod- 
ulating current. 
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10. Illustrative example of the Stokes wave 

We illustrate the implication of second-order hydrodynamic modulation through this 

simple example of a short wave propagating along a nonlinear long wave (.s = 01 = 

0). The elevation, velocities and acceleration involved in the modulation are 

(x,t) = acos(kLx - WLt) + a2 kLcos 2(kLx - WLt), (10.1 a) 

UL(x, t) = CLakL cos(kL - WLt) + CL(akL)2 cos2(kL - WLt), (10.1 b) 

WL(X, t) = LakL sin(kL - WLt) + IcL(akL) sin2(kL - WLt), (10.1 c) 

GL(X, t) -CLakLL cos(kL - WLt) - CLWL(akL) cos 2(kLx - WLt), (10.1 d) 

where, as a reminder, the perturbation is performed over the surface itself with the 

steepness (ak) as the smallness parameter. To second order, this example coincides 
with the well-known Stokes waves of permanent form (Debnath 1994). 

The relative modulation of the spectral action is now 

6N(k, , t) = AlakLcos[(kLX-WLt)+q1l]+A2(akL)2 cos[2(kLX-WLt)+02], (10.2) 
No(ks) 

where (Al, 01) and (A2, q2) are amplitude and phase of the first- and second-order 
normalized hydrodynamic modulations, respectively. For completeness, we summa- 
rize the expressions for these two hydrodynamic modulations in terms of the non- 
dimensional quantities here: 

M =A1 exp{i?i } = 4 WL (10.3 a) 
WL + i/s' 

2. +i(p+i_^+ (1 
2 

i?s + 4 20 
L I + i (-i 1 ( 

Sf + i/5 )-o: } 
2WL + i1s -WL +iIs 2>2 ++ eS ?L -+ -s L + } is 

(10.3 b) 

The hydrodynamic transfer function is respectively divided by the modulating wave- 
number to the power of the order considered. 

Figure 3 shows the normalized amplitudes of first-order (solid curve) and second- 
order (dot-dashed curve) MTFs (10.3) as a function of wavenumber of the modulated 
short wave. The phases in equation (10.3) are depicted in figure 4. Figure 5 compares 
the hydrodynamic modulation from the exact numerical simulation (3.7) to the sum 
of first- and second-order MTFs (10.2) relative to the nonlinear modulating current 
of the Stokes wave in terms of its surface elevation. Aside from the vertical shift 
in the modulation, the higher-order MTF is now closer to the exact modulation. 
In addition, the nonlinear behaviour (sharper crests and flatter troughs) seems to 
be captured, which demonstrates the need for higher-order hydrodynamic MTFs. 
Adding the second-order hydrodynamic MTF causes, in our example, the peak of 
the modulation to move closer to the crest of the long waves. 

In the following sections, we investigate some ensemble-average quantities of the 
nonlinear properties induced by the second-order hydrodynamic modulations and 
especially the vertical offset between exact and MTF simulations. 

Proc. R. Soc. Lond. A (2001) 

2599 



2600 T. Elfouhaily and others 

10 

8- 
c, _ J 
t 6 

j 4 

2 

0 20 40 60 80 100 120 
wavenumber of short waves ks (rad m-1) 

Figure 3. Comparison between the normalized amplitudes of the first-order (solid curve) and 
second-order (dash-dotted curve) MTFs for various short waves. The wavelength of the modu- 
lating wave is 31 m. The wind friction velocity used in the growth rate is u* = 0.23 m s-1. The 
second-order modulation has a non-negligible amplitude and increases from long to short waves. 

11. Offset due to second-order hydrodynamics 

The ensemble average of the modulated wave action is zero under the linear hydro- 
dynamic approximation. However, higher-order modulation may not vanish under 
ensemble averaging thus resulting in some bias between the equilibrium spectrum 
and the ensemble-averaged spectrum deduced from the modulated wave action. The 
total normalized modulation is defined, up to second order, as 

6T(ks, x, t) 6N(kS, , t) 
fo(ks) No(ks) 

= Z RkiZ exp{i(ki . x - t)} 
kl ,S1 

S1 ,S2 

+ E R, Z' lllZ2 RZ exp{i[(ki + k2) - (w1 + 2)t]} (11.1) kk1 2 1k k2 

kl,k2 

As a check, let us find its ensemble average, 

/ 5 (k,, t) ,S21, 2 S21 l 2 
fo(k) ) 0 + E (Rk,k2lZklZk2) exP{i[(kl + k2) - (wI + 2)t]} 
'O(ks) 

(11.2) 

where the first term vanishes because the complex variables 1ZkI are assumed to be 
zero-mean independent Gaussian random variables. 

Owing to the following property of the cross-correlation of Gaussian processes, 

(R,kl k2 Z1 lZk2) 
= 2 Rs 

1,2k2O (slkl)56(slki + S2k2), (11.3) kl,2 ,uk 1cj2 2 slkIc ,S2k2% 
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Figure 4. Same as previous figure but now for the phases of the normalized hydrodynamic 
modulations. The phase of the second-order modulation is significant and features a bend around 
10 or 9 cm. 

equation (11.2) simply becomes 

6 = R o E -k (k) + R_ o(-kL) (11.4) ]~kc,--kL fL,oL 
kL 

with R+-kL derived from equation (9.7) to give 

R+,_ WkL2k 
2 

R - = -4 2k L [1 + 2(Ss + p - 1) cos2 L] (115) 
WkL k 2S 

The offset in equation (11.4) has two interesting limits. When the relaxation rate is 
much smaller than the frequency of the long waves, the offset is 

Es<WkL (ks) - -4(m + 2pm), (11.6) 

independent of the wavelength of the modulated wave. This limit is actually a pre- 
diction of the highest possible offset, since the offset in equation (11.4) is generally 
dependent on the wavelength of short waves. The x and y components of the second- 
order moment of the spectrum are 

k0 

m= k2c (kd)dk, (11.7 a) 
Jo 

okc 

m= - k2 (k) dk, (11.7b) 

which denote the orthogonal components of the slope variance of long modulating 
waves. The wavenumber cut-off kc is the wavenumber of the shortest modulating 
wave used in the computation. 

Another interesting limit is when the relaxation rate is much greater than the 
frequency of modulating waves, 

es>>?wk (ks) -4 [(7s + p)m3 + ( ( s p - 1)m], (11.8) 
skPs 
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Figure 5. Hydrodynamic modulation from the exact numerical simulation (filled triangles) and 
from the sum of first- and second-order MTFs (long-dashed curve) as shown relative to the 
nonlinear modulating current (solid curve) in terms of surface elevation. The modulating current 
is a nonlinear wave which, at this second-order, coincides with the well-known Stokes wave. The 
amplitude of the first harmonic is 1 m and the short modulated wave has a wavelength of 10 cm. 
The higher-order MTF (dashed curve) is now closer to the exact modulation (filled triangles) 
and exhibits sharper crests and flatter troughs. 

where the third-order moments are defined as 

rkc 

m3= / k3S(k)dk, (11.9 a) 

fkc 

m3 = / k3A(k)S(k)dk, (11.9b) 

where A(k) is the delta ratio function introduced by Elfouhaily et al. (1997) to 
describe the spreading of surface waves about the wind direction. S(k) is the omnidi- 
rectional spectrum derived from the two-dimensional one in Elfouhaily et al. (1997). 
Equation (11.8) shows the offset e(ks) as a function of the wavenumber of short 
waves. 

It is interesting to note that the offset tends to zero for capillary waves: 

lim e(ks) 0. (11.10) 
ks--oo 

In conclusion, the offset does not, in general, significantly change the ensemble- 
averaged spectrum from its equilibrium value. However, its most important effect 
shows up for short gravity waves. This is consistent with the formulation of the 
equilibrium spectrum by Elfouhaily et al. (1997). 

12. Induced bispectra and trispectra 

Another interesting application of the higher-order hydrodynamic MTF is the gener- 
ation of higher-order spectra caused by the modulation of short waves by longer ones. 
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Whether the waves are linear or not before modulation, the hydrodynamic modu- 
lation will make the total process highly nonlinear. We can illustrate this point by 
starting with linear waves for both modulated and modulating waves, for the sake of 

simplicity. We are interested in estimating the bispectrum and the trispectrum of the 
resulting process knowing that the waves involved in the modulation were originally 
linear. 

By definition, the bispectrum is the two-dimensional Fourier transform of the 
skewness function defined by 

p3(X, X2) A(((x)((x + Xl)(x( + X2)). (12.1) 

In the context of hydrodynamic modulation, the total surface can be separated into 
two surfaces. The first is formed by a zero-mean fast-varying process representing 
the short waves. The second is a slow process describing the long-wave action on the 
short waves. The skewness function in equation (12.1) becomes 

p3(x1,X2) = ((L(X)CL(X + X1)(L(X + X2)) 

+ 3(s(x)C((x+ X1)L( + X 2)) 

+ 3((s(X)C((x + X1)L(X + X2)) 

+ ((s(X)(s(X + x1)Cs(x + x2)), (12.2) 

in which long waves are separated from short waves. Since the waves are originally 
linear, the skewness function reduces to 

p3(X1,X2) = 3(Cs(x)Cs(x + X1)(L(X + x2)) = 3(p2(xl)L(X1 + x2)), (12.3) 

where p2(xl) is the autocorrelation function of modulated short waves. The ensemble 
averaging can be performed on short waves first as a direct result of our assumptions 
about the hydrodynamic modulation of short waves by longer ones. The modulated 
spectrum to second order in hydrodynamic modulation as in equation (11.1) is, 
by definition, the Fourier transform of the autocorrelation function of modulated 
short waves p2(xl) in equation (12.3). Using equation (11.1) in equation (12.3), we 
get 

BLs(kl, ks) = 30(ks) (kl Zk2 exp{i[(ki + k2) -x - (w1 + W2)t]}). (12.4) 

The property (11.3) of Gaussian processes combined with equation (12.4) gives 

BLs(kL, ks) =- [RkL To(kL) + RkLPTo(-kL)]TPo(ks), (12.5) 

which is an expression for the induced bispectrum caused solely by hydrodynamic 
modulation of short waves by longer ones. This is the first time, to our knowledge, 
that such an expression for the bispectrum has been derived from hydrodynamic 
modulations in this manner. Equation (12.5) clearly indicates that the induced bis- 
pectrum is a function of the linear hydrodynamic modulation. It already shows that 
second-order hydrodynamics are not involved in the expression of the induced bis- 
pectrum. Our expectation is that the second-order hydrodynamic modulation will 
generate higher-order spectra, such as the trispectrum. 

By definition the trispectrum is the three-dimensional Fourier transform of the 
kurtosis function. The latter function is defined simply as the fourth-order cross- 
correlation between the surface elevations at four different locations on the surface. 
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The kurtosis function, under the context of hydrodynamic modulation, is 

p4(1, X2, X3) = 6((s(x)(s(X + Xl)(L(X + X2)(L(X + X3)) 

= 6(P2(X1)(L(Xl + X2)(L(X1 + X3)), (12.6) 

which is inspired from equation (12.3). Similarly, by introducing explicitly the expres- 
sion for the modulated spectrum to second order in hydrodynamics, the trispectrum 
is then 

TLs(kl,kC2, ks) = 6o(ks)(Rs' 21,S2 12 
3 

1Z4 exp{i(k . x - t)}), (12.7) 

where k = kl + k2 + k3 + k4 and u = wl + w2 + w3 + W4. The angle bracket in equa- 
tion (12.7) indicates an ensemble average over a product of four independent Gaus- 
sian variables. According to eqn (4-40) in Whalen (1971), the fourth-order moment 
can be related to the second-order moments, and therefore to equation (11.3), as 
follows 

81 82 $ 3 84 81 82 83 84 
(1Zkl 1Z21Zk31Zk4) = (1 Zkl 1 Zk2) (1 Zk31 Zk4) 

+- (=1Zkl 1 Zk3)(1Zk2 1 Z4) 

81 84 82 83 - (IZkl 1Z4)(IZk21Zk3) (12.8) 

Using equation (11.3) in equation (12.8) we finally get 

TLs(k, k2, ks) = o(ks){[ R - o(kl) R_ f(-k)][(k2) + 0(-k2)] 

+ 20o(kl)[R++jfo(k2) + R'-'Pk2o(- k2)] +t 2~o(kl)[R ~~ +'+i + kl,- 

+ 2To(-kl)[RI_',k2bo(k2) + R_, o(2o+-k2)]} (12.9) 

as an expression for the trispectrum function of products of the equilibrium spectrum 
and the second-order hydrodynamic modulation. It is worth noting that the linear 

hydrodynamic modulation does not contribute, under the assumed conditions, to the 

trispectrum of modulated waves. 
Even though the waves are originally linear, the hydrodynamic modulation of 

first order induces a bispectrum, while the second-order hydrodynamic modulation 
induces a trispectrum. Inducement of bispectra and trispectra is an indication of the 

highly nonlinear aspect of the hydrodynamic modulation. 

13. Conclusion 

We began this study by solving analytically the balance of wave action (2.1) using 
the source term of equation (3.1) originally suggested by Hughes (1978) and later 
modified by Caponi et al. (1988). A comparison was shown in ? 4 between a numerical 
simulation of the exact analytical solution and the linear approximation of the hydro- 
dynamic equations suggested by Alpers & Hasselmann (1978). The latter approxi- 
mation is a well known and commonly used procedure to assess the hydrodynamic 
interactions between modulated and modulating waves. It is termed the linear mod- 
ulation transfer function. Since our numerical simulation is an exact solution of the 
differential equations, the discrepancy between the simulated results and the linear 
MTF is a demonstration that the linear MTF fails to capture significant features 
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caused by the inherent nonlinear nature of the physical processes involved. We have 
shown in figure 1 that, even for a single short wave modulated by a single long wave, 
the combination of the nonlinearities in the ray equations with those in the source 
term can cause significant discrepancy with the classical linear approximation. For 
a multi-current situation, the discrepancies grow even bigger simply by enhancing 
the nonlinear aspect of the ray equations themselves when reintroduced in the bal- 
ance equation of wave action. Figure 2 illustrates the discrepancy for the simple 
case where two long waves modulate a single short wave. This lack of significant 
information in the linear MTF motivates the need for a higher-order hydrodynamic 
theory. 

We started this derivation by rederiving the linear MTF (7.5) in a slightly different 
notation (see Elfouhaily et al. 2000; Hasselmann 1961) to ease the generalization of 
the technique to higher orders in long-wave slope. The linear order derived here in 

equation (7.5) is identical to that of Alpers & Hasselmann (1978), with a noticeable 
improvement due to inclusion of extra modulation effects caused by local acceleration 
and finite depth. It is then clearly demonstrated that the amplitude of the linear MTF 

(7.5) is driven by two processes: the orbital velocity and the local acceleration caused 
by the presence of the modulating waves. Our notation permits the identification in 
the analytical formulation of these two contributions from the straining (6.6) and 
heaving (6.12) kernels, respectively. 

Equation (8.4) is a second-order MTF derived to complement the linear order with 
nonlinear information generated by the nonlinear nature of the modulation process 
and by the inherent nonlinearity of surface waves even before the consideration of 
the hydrodynamic modulation. In addition to the properties mentioned for the linear 
MTF, the higher-order theory includes wave-wave interactions among modulating 
waves and higher-order derivatives of the source functional. We believe that this is 
the first time that nonlinear modulating waves have been considered in studies of 
hydrodynamic-modulation processes. As a consequence of the second-order hydro- 
dynamic MTF, the phase of the modulation is dependent on the relative direction 
of long and short waves. 

We have performed some ensemble averaging over first and second-order hydro- 
dynamic MTFs to check some properties of the introduced hydrodynamic MTF. 
An offset was detected (11.4) between the equilibrium spectrum and the ensemble- 
average spectrum produced by the second-order hydrodynamic modulation. The off- 
set turned out to be always negative, which means that the averaged spectrum is 
lower than the equilibrium spectrum. This difference is largest (in absolute value) for 
intermediate and short gravity waves (11.6). Gravity-capillary and capillary waves 
have virtually a zero offset (11.10). This in turn translates into convergence between 

ensemble-average spectra and equilibrium spectra even for second-order hydrody- 
namic modulations. 

Another interesting application of the developed hydrodynamic MTFs is the com- 
putation of higher-order spectra of surface elevation. Indeed, we demonstrated that 
linear hydrodynamic MTF generates higher-order statistics equivalent to the bispec- 
trum (12.5) even when modulated and modulating waves are originally linear. The 
second-order MTF induces even higher multi-spectra related to the trispectrum in 
equation (12.9) of surface elevation. Without the presence of hydrodynamic modula- 
tion, both bispectra and trispectra are non-existent, hence the name of ? 12: induced 
bispectra and trispectra. 
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The combination of both first and second-order MTFs presented in this study 
produces a powerful tool for the description of hydrodynamic modulations of short- 
wave spectra by longer nonlinear waves. 

Appendix A. Third-order hydrodynamic MTF 

Similar to equation (8.1), the third-order hydrodynamic MTF can be defined and 
derived from (5.4d), 

o0[3N] + 1C[2N] + 2?[IN] + 3C[oN] = Q13N + Q21N2N + ~Q31N3, (A 1) 

and its modal description yields the following relationship 

=~1LCl,ltkl ,kg ,k' + 2 Q2Rko ?NRk2' k33 + 6 Q30N2Rsl RS2 RS3 (A 2) 

1,f$S2,S3 
D 

2,82,k3o i( + +, (k2+ k3) + lksO 

After some rearrangement this modal formulation becomes 

+ + 3 oNs 

Rk2,k3s (k2 + k3)- ilk k3 

+ RiQ2RsR2 3oN+ ?6iQ3RslRkR3oN2, (A3) 

which is an expression for the third-order hydrodynamic MTF under the simplifying 
conditions of no local acceleration effects and no wave-wave interactions between 

modulating waves. The first- and second-order hydrodynamics are derived in the 
text under a more general context. 

A particular case of interest is when the source functional is assumed to follow 
that of Hughes (1978), as generalized by Caponi et al. (1988). For all these restrictive 

conditions, the third-order hydrodynamic MTF simplifies to 

Rsl,s2,S3 _ (w1 + W ++ W3) - ils 

kl,fk2,k3 (~k+ )2 +os (Wi 1 + W2 + W3) ? j 

ki aR S2,S3 ON 2 2~b tr1> k2,k=3 2 f~_ I tRRN S2A83 x (s f- k) l akr 30N - fekls . (e2 + k3)Rk2'k3 

-S(p + 1)R ' R 3 - S(p + l) ( -l ) R' RR , (A 4) 

where the last term in the square brackets vanishes if p is 1 (see Hughes 1978). 
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