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Abstract. The theory of "weakly" nonlinear (WNL) waves is commonly used in 
generating higher statistical moments of a random surface wave field. These moments can 
be used, for example, to estimate the sea state bias (SSB) in radar altimetry under a 
geometric optical assumption. The present investigation suggests that several previous SSB 
studies appear to have misapplied this WNL theory by violating its condition of validity. 
As a result, a pronounced inconsistency appears even for lower-order moments. This 
inconsistency appears as a difference between the statistical moments of the nonlinear 
surface generated by the application of the WNL theory and those of the linear input (or 
bare) spectrum. If measured spectra, which yield measured moments (such as rms 
elevation and slope), are chosen as an input to WNL theory, then the corresponding 
moments of resulting output spectra may be severely overestimated. To strictly avoid the 
inconsistency, WNL theory must only be applied to long gravity waves where the wave- 
wave interactions are weak, hence the WNL epithet. To further illustrate this problem, we 
present an inversion scheme that determines the proper input spectrum by forcing the 
low-order moments of the output spectrum to equal the measured moments. Analytical 
solutions are given for this inversion based on an explicit formulation of the low-order 
nonlinear moments and a simplified one-dimensional power law spectrum. The solutions 
show that the high-frequency portion (wave components shorter than about 10 m) of the 
input (or bare) spectrum must be significantly less energetic than that of the output 
spectrum. Our results emphasize the importance of the shorter-scale waves in the SSB 
mechanism. 

1. Introduction 

As the use of satellite-borne altimeters becomes more com- 

mon in many diverse fields of research and application, high- 
accuracy sea level measurements are becoming increasingly 
important. Of the several factors that can degrade the accuracy 
of these measurements, the sea state bias (SSB) is probably 
predominant [Gaspar et al., 1994]. The SSB manifests itself in 
biasing the range reference below the actual mean sea level by 
several centimeters. In general terms, this bias can be attrib- 
uted to the difference in electromagnetic backscattering from 
surface waves that have fiat troughs and sharp crests. In the 
geometrical optics theory, the radar cross section at near- 
vertical incidence is proportional to the joint distribution of 
surface height and slopes (x and y components). The height is 
set at the location where the electromagnetic field touches the 
surface, and the slopes are set to satisfy the condition of spec- 
ular scattering. Nonlinearities in water waves cause this joint 
distribution to depart from the well-known Gaussian (or nor- 
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mal) statistics [Longuet-Higgins, 1963]. This departure initiates 
the generation of higher moments, which in turn can be linked 
to the SSB via the skewness parameters [see Jackson, 1979]. 
While Jackson [1979] presented a one-dimensional example 
for a long-crested wave, Srokosz [1986] generalized both theory 
and technique to two-dimensional seas. Numerical evaluations 
of the SSB based on those theories were conducted by 
Glazman and Srokosz [1991] and Glazman et al. [1996]. 

The assumption of weak nonlinearity is commonly used in 
the study of ocean surface waves Longuet-Higgins [1963]. Our 
contention in the present work is that while the weakly non- 
linear (WNL) theory is correct in form for long gravity waves, 
several previous studies have applied to cases where its validity 
conditions may be violated. Longuet-Higgins [1963] based his 
theory on the assumption that waves are "free," "undamped," 
and "weakly" nonlinear. Wave-wave interactions are limited to 
leading nonlinear order, hence the term weakly nonlinear. 
Application of this theory to shorter waves is implicitly equiv- 
alent to imposing these same restrictive conditions to those 
short waves that are driven by different physical mechanisms. 
Namely, for shorter waves, wave-wave interactions to higher 
orders become nonnegligible and must be accounted for. A 
correct generalization of WNL theory to higher orders and 
shorter waves can be found in papers by Hasselmann [1961, 
1962a, b] and Valenzuela [1976]. 
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We suggest in this paper how it is possible to develop an 
inversion scheme that determines the required input wave 
spectrum such that the low-order moments of the output spec- 
trum are consistent with measurements. Whereas only long 
waves should be included in the conventional WNL theory, our 
approach includes the effects of shorter waves. Expressions for 
the nonlinear variances carried to higher orders are given ex- 
plicitly for the first time in this paper. The inversion scheme is 
then investigated for a one-dimensional spectrum to illustrate 
the inconsistency, in terms of spectral moments, of previous 
methods. Finally, we show that this inconsistency significantly 
impacts the SSB calculation. 

Section 2 introduces linear and nonlinear equations for both 
the elevation and the velocity potentials as they were derived 
by Longuet-Higgins [1963] from the coupled hydrodynamic 
equations. Section 3 presents the difference between linear 
and nonlinear variances of both the elevation and slope vari- 
ables. An inversion scheme is introduced and exercised using a 
simple, one-dimensional spectrum to illustrate why and how 
WNL theory has been overdriven in the past. Higher-order 
moments are given in section 4 along with an assessment of the 
degree to which the SSB is affected by the malfunctioning of 
WNL theory when shorter waves are included. 

2. Nonlinear Formalism 

The boundary conditions of the hydrodynamic problem of 
surface wave propagation can be solved by expanding the ele- 
vation and the velocity potential about a reference plane (i.e., 
z = 0) [see, e.g., Hasselmann, 1961]. The fluid is assumed to 
be irrotational, a condition that sets up a direct relationship 
between the velocity field and the gradient of a scalar potential. 
Both the elevation and potential can be expanded in a Taylor 
series in orders of the mode amplitudes. Hence elevation and 
potential are sums of elevations and potentials, respectively, at 
first order (linear), second order (first nonlinear), and higher 
orders. Thus the surface elevation •(r, t) may be written as 

g(r, t) = g(l>(r, t) + g(2>(r, t) +... (la) 

and the velocity potential 4>(r, z, t) as 

4>(r, z, t) -- &(•)(r, z, t) + 4>(:)(r, z, t) + ... (lb) 

where r is a horizontal vector, z is the vertical Cartesian coor- 
dinate, and t is time. 

For a horizontally unbounded fluid of infinite depth with a 
free surface [z = •(r, t)], the first "linear" terms in these 
expansions are given by 

N 

•(•): • a• cos ½n (2a) 

N 

&(1) : Z bn sin •,•e -k•z (2b) 
n=l 

where the phase •n, the potential amplitude bn, and the dis- 
persion relationship for gravity waves in deep water are given 
by 

½• = k•'r- •o•t + 0n (3a) 

b• = • a•; •o• = 91k• (3b) 

with # being the gravitational acceleration. Equations (2a) and 
(2b) are termed linear since they are derived from a set of 
linear differential equations of elevation and potential at first 
order. Within the linear condition, a sample surface realization 
can be generated by summing over the appropriate wavenum- 
ber domain and selecting a different random draw for each 
mode amplitude a n and mode phase 0n. The amplitude a n and 
phase 0 n are statistically independent random processes hav- 
ing Rayleigh and uniform distributions, respectively. In such a 
simulation, the wave troughs will not be as flat and the crests 
will not be as sharp as for real water waves. In particular, an 
electromagnetic scattering computation from this linear sur- 
face will not show any bias (SSB). Therefore, in order to study 
the SSB, higher orders of the nonlinear system are necessary. 

Longuet-Higgins [1963] provided the leading nonlinear term 
in (1) as a double sum over a product of the mode amplitudes 
with a phase coupling as follows: 

I N,N 
•(2) = 5 • a,a;(c,; cos 4, cos ½j + s,; sin 4, sin 

t,J=l 

(4a) 

4) ©=• b,b; •o, + % 
t,J=l 

sin (4, + ½s)e -Ik•+k, lz 

+ '• sin (½,- ½s)e -Ik•-kJIz (4b) 
0.) t -- O.)j 

where 

1 

c,; = • [B,f + B,7 - k, 'k + (k, + k;)kx/k,k•] (5a) 
1 

s ,; : • ( B ,• - B ,• - k ,k ; ) (5b) 
(r o, _+ %)2(k, 'k 7 

B;- (•o, + %)2 2 (6) 
where m•k is from the dispersion relationship equal to 

Adding these nonlinear terms to (1) produces a nonlinear 
surface that features flatter troughs and sharper crests, which 
are essential for analyzing the SSB. The question then becomes 
how accurately WNL theo• reproduces the nonlinear aspect 
of a true surface. In other words, one should veri• that inclu- 
sion of the first nonlinear order term is sufficiently realistic for 
free gravity wave representations. In the following section, 
statistical moments of this nonlinear process are derived to 
shed light on the applicability and relevance of WNL theo•. 

3. Second-Order Moments 

3.1. Linear Derivation 

Following Longuet-Higgins [1963], cumulants of the joint 
distribution of elevation • and slopes in two mutually orthog- 
onal directions (•x, •x) can be expressed as integral sums over 
the two-dimensional surface spectrum. All first-order cumu- 
lants are zero because both elevation and slopes are zero-mean 
variables. Moments of any order not listed below are consid- 
ered either zero or negligible. The second-order cumulants (or 
moments for a zero-mean process) are not zero, and they 
represent the "energy" contained in each process. 
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fO kc 1<200 = F(k) dk (7a) 

fo kc 1<020 = (kX)2F(k) dk (7b) 

•0 kc 1<002 : (ky)2F(k) dk (7c) 

f0 kc 1<o• = kXkYF(k) dk (7d) 

where 1<.,,• is defined as the cumulants of the elevation and 
slope combination as srnsr• ' st} and k c is the high-wavenumber 
cutoff. To keep the following equations simple, upper and 
lower limits will be dropped. It is understood that all the 
integral quantities in this paper are performed over wavenum- 
bers up to the cutoff k c- 

Equations (7a)-(7d) have already been derived by numerous 
authors. We demonstrate in the following subsection that these 
moments are incomplete in the context of nonlinear processes. 

3.2. Linear and Nonlinear Combined 

The variances (or second-order moments for a zero-mean 
process) of the nonlinear processes are different than the ones 
derived under linear assumptions. The following analytic equa- 
tions for both elevation and slopes are given here for the first 
time. An outline leading to the following equations can be 
found in the original paper by Longuet-Higgins [1963], 

1<200 = F(k) dk + 5 (c•22 + s•22) F(k•)F(k2) dk• dk2 
(8a) 

nø2ø= f kX2F( k) dk + 5 (C•22 

-'[- 82•22) F(k•) F(k2) dk• dk2 (8b) 

nøø2= f kY2F( k) dk +5 (CY122 

+ S•22) F(k•) F(k2) dk• dk2 (8c) 

1<0• = kXkYF(k) dk + 5 (C12C12 

+ S•2S•2) F(k•) F(k2) dk• dk2 

where 

(8d) 

C•2 -- k•c 12 - ktl S 12 (9a) 

S•2 = k•c 12 - k•s 12 (9b) 

with i representing either x or y. The assumptions under which 
(8a)-(8d) were derived are identical to those made by Longuet- 
Higgins [1963]. The important difference is that we keep high- 
er-order terms even at this low order of the moments. 

The double integrals in (8a)-(8d) result from the two-wave 
interaction imposed by stopping the expansion of the elevation 

Different 

( Input ø• ba• ' ) .•[ Non-linear 
L speCtrUm :• •l System 

Abstract Natural process Observable 

Figure 1. Block diagram showing how the output or mea- 
sured spectrum differs from the input or bare spectrum in the 
general context of nonlinear systems. If the nonlinearities are 
"weak," then the output spectrum is equivalent to the input 
one with respect to low-order moment criteria. 

and the velocity potential at second order in (la) and (lb). One 
is tempted to neglect these double integrals by assuming that 
they should be much smaller than the leading single integral 
terms, but if so, then the second-order moments would merely 
be equal to the linear moments given by (7a)-(7d). Unfortu- 
nately, this assumption is only justified in certain particular 
cases. The condition of smallness of the double integral defines 
a stringent constraint, which can be translated as a compromise 
between short-wavenumber cutoff k• and rms height (o- h -- 
X/-•2oo). This can be put into an inequality given as 

kcCrh < 1. (10) 

So, if the sea state represented here by the significant wave 
height H s = 4or h is less then 4 m, say, then WNL theory is 
restricted to very long gravity waves [k• < 1 rad/m from (10)]. 
Therefore only waves longer than about 6 m should be admis- 
sible into WNL theory. 

In most of the previous studies, the double integrals were 
not included, even though the smallness condition was not 
satisfied. As a consequence, the omission of these extra terms 
in the elevation and slope variances may highly bias the results 
of the studies. This inconsistency manifests itself through an 
appreciable difference between the input surface spectrum (or 
bare spectrum) and the output spectrum (or measured spec- 
trum). The former is used to simulate the surface, and the 
latter is deduced from the simulated surface itself. This incon- 

sistency begins with the second-order moments as shown in (8) 
as opposed to (7a)-(7d). 

Some previous studies have anticipated a breakdown of the 
weakly nonlinear theory in its nonlinear moments [see, e.g., 
Barrick and Weber, 1977; Barrick and Lipa, 1985; Creamer et al., 
1989]. The breakdown or inconsistency that we discuss in the 
present paper is fundamentally different because it even effects 
the linear moments. Barrick and Lipa [1985, p. 91] showed that 
the "coupling coefficient" A [Weber and Barrick, 1977] "satu- 
rates" beyond a certain wavenumber cutoff. This saturation 
only affects the third-order moments [see Barrick and Lipa, 
1985, equation (22)]. The breakdown that we are considering 
causes the divergence of moments starting at second order and 
not a saturation of the third-order moments as suggested by 
Barrick and Lipa [1985]. 

The block diagram in Figure 1 sketches the process to recall 
the following obvious but important point: from the perspec- 
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Figure 2. The two-dimensional spectrum of Glazman et al. 
[1996] used in the surface generation to illustrate the incon- 
sistency. Nonlinear contribution to the slope variance is not 
negligible if waves as short as 40 cm are included. Omega is the 
inverse wave age defined as the ratio between the phase speed 
of the dominant wave and the wind speed (D = Cp/U•o). 
Percentage of linear variance in total (linear + nonlinear) is 
shown versus wind speed at a height of 10 m from the surface 
in meters per second. Dashed line denotes elevation, and dash- 
dotted line represents unidirectional slope variance. While the 
linear elevation stays at about 99% of the total variance, the 
linear slope variance, however, could drop to as low as a few 
percent in the contribution to the total variance. The nonlinear 
part in the slope variance is clearly not negligible for this 
particular wave cutoff and those chosen wind speeds. 

tive of statistical moments, the output is equivalent to the input 
only under weak nonlinearities. In the general case, however, 
the input and output spectra can become quite different. Fig- 
ure 2 shows the percentage of linear variance (equations (7a)- 
(7d)) in the total variance (equations (8a)-(8d)) as a function 
of wind speed for the two-dimensional wave spectrum utilized 
by Glazman et al. [1996]. The corresponding high-wavenumber 
cutoff is set to 40 cm as proposed by Glazman et al. [1996]. The 
degree of development of the sea is represented by the inverse 
wave age (D = Cp/Ulo = 1, where Cp is the phase speed of 
the dominant wave peak and U,o is the wind speed at a height 
of 10 m above the surface), which in this case corresponds to a 
nearly fully developed sea. While the linear elevation term 
carries 99% of the total variance, the linear slope variance 
drops dramatically to as low as a few percent. The nonlinear 
contribution to the slope variance is clearly not negligible for 
this particular wave cutoff at wind speeds greater than 3 or 4 
m/s. In fact, the double integral, which at first might be thought 
to be only a perturbation, provides 50% of the total slope 
variance for the most common open ocean wind speed of 7 m/s. 
Hence these results are highly contaminated by short gravity 
waves, which cannot be handled by WNL theory. Figure 3 is 
similar to Figure 2, but using a different two-dimensional spec- 
trum (unified spectrum of Elfouhaily et al. [1997]). Figure 3 
reinforces the point that the inconsistency is caused primarily 
by the misapplication of the theory and not because of the 
form of the chosen two-dimensional spectrum or its directional 
spreading. In the following subsections, we further demon- 
strate that the divergence arises from the fact that two spectra 
are needed at the same time, one at the input and a different 
one at the output of the simulation process. 

The output spectrum is assumed to be measurable and rep- 
resentative of the actual sea surface. In clear contrast, the 

unknown input spectrum should only be recognized as the 
analytical function associated with the nonlinear transform. 

3.3. Spectral Inversion 

To further investigate the consequences of the inconsistency 
referred to above, one can envision finding a particular spectral 
form that guarantees compatibility with the measured statisti- 
cal properties (i.e., low-order moments) of the simulated sur- 
face. With this property in mind, the moment equations (for 
the one-dimensional case) become 

Fin(k ) dk + 5 (c•22 Jr- S122)F,n(kl)Fin(k2) dk• dk2 

-- I Føut(/) dk (11a) 
k2F,n(k) dk + • (C•22 + S•2)Fin(k0 F,n(k2) dk• dk2 

f k2Fout(k) dk (11b) 
where the input or bare spectrum Fin is an unknown that must 
be deduced from the supplied observable spectrum Fout, which 
is assumed to be measurable and known. The coefficients c •,2, 
s ,,2, C •,2, and S •,2 are determined by WNL theory (see (5a), 
(5b), (9a), and (9b)). We note that the low-order moments of 
Fout must be consistent with the measurable moments of a 
realistic surface governed by two-wave interactions. The input 
spectrum Fin, however, is a fictitious spectrum that represents 
ideal waves that cannot interact with each other. It is also clear 

that Fin is dependent on the number of interactions consid- 
ered. In our case, only interactions to second order are con- 
sidered, which forces Fin , after inversion, to be exclusively 
determined by two wave-wave interactions. 

To keep the illustration relatively simple, we have chosen a 
one-dimensional Phillips spectral form given by 

F,n-- •,k -n' (12a) 
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Figure 3. Same as Figure 2, but with the unified two- 
dimensional spectrum [Elfouhaily et al., 1997], clearly showing 
that the inconsistency, lower percentages on the slope vari- 
ance, are not caused by the original shape of the two- 
dimensional spectrum but, rather, in where to apply the spec- 
trum in a nonlinear simulation. 
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Fou t = 13o k-nø (12b) 

according to Phillips [1977]. The parameters /3 and n are as- 
sumed to be constant, although this choice is not necessarily 
representative of real waves on a water surface. The point here 
is to illustrate the inconsistency with a typical one-dimensional 
example without having to solve the general two-dimensional 
problem. 

Equations (11a) and (11b) then reduce to 
2 k• 

13,H•,(-n,) + 13,[G•,•(-n,, 2 - n,) + G•,(2 - n,, -n,)] 

= 13oH•(-no) (13a) 

2 kc kc(2-n 2-n,) 13,H•(2 - n,) + 13,[Ga,-n,, 4 - hi) + 6Ga•,, 
kc + G•,•(4 - n,, -ni)] = /3oH•,(2 - no) (13b) 

where kp and k c are the wavenumber peak and cutoff, respec- 
tively. The functions H •:c and G• are analytical functions given kp 
in the appendix. 

The nonlinear system of (13a) and (13b) may be solved for 
the unknown amplitude and exponent of the input spectrum 
(•i, hi) for specified values of the corresponding output quan- 
tities (/30, no). In particular, we have inverted this system for 
a peak wavenumber, kp - 0.2 rad/m, and wind speed of about 
7 m/s, and (/30 = 5 x 10 -3 , no - 3) corresponding to a 
(one-dimensional) Phillips [1977] spectrum. Figure 4 shows the 
inverted amplitude of the spectrum. The corresponding expo- 
nent of the one-dimensional spectrum is plotted in Figure 5. 
For high-wavenumber cutoff values k c of 15 and 200 rad/m, we 
find that the parameters of the input spectrum must be/3i = 
3.0 x 10 -3, n i -- 3.40 and/3i = 1.5 x 10 -3, n i : 3.95, 
respectively. These high-wavenumber cutoff values were cho- 
sen in the SSB studies of Glazman et al. [1996] and Jackson 
[1979], respectively. We see from this example that for high 
values of kc, one must use an input spectrum whose amplitude 
and slope are significantly different in order to obtain an out- 
put spectrum whose low-order moments are consistent with 
the measurements. It is reiterated that the Phillips spectral 
form has been chosen only for illustration. One could gener- 
alize the approach outlined above to any suitable output spec- 
tra. The main point we wish to emphasize is that for high- 
wavenumber cutoff values, the output spectrum derived from 
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Ol ...... t: ol [1996] ->•..,.,•...,• 
Jockson [ 1979]"'"""••-->, I 
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High-wevenurnber cutoff kc (rd•rn) 

Figure 4. Inverted scale parameter •i by imposing a Phillips 
output spectrum 13o k-nø with/30 - 5 x 10-3 and no = 3. 
The results are displayed as a function of short wave cutoff for 
one peak wavenumber kp = 0.2 rad/m. 

¸ 

3.2 

1 lO lOO lOOO 

High-wevenurnber cutoff kc (rd/rn) 

Figure 5. Inverted exponent parameter n i for the same out- 
put spectrum as in Figure 4. Vertical lines indicate the corre- 
sponding spectral scale and exponent that Jackson [1979] and 
Glazman et al. [1996] should have used in order to obtain a 
spectrum of Phillips (5 x 10 -3 k -3) as a result of the sim- 
ulation. 

WNL theory must be significantly different from the input 
spectrum if the low-order moments are to remain unchanged. 

4. Effect on Sea State Bias 

This section establishes the link between the third-order 

moments and the sea state bias in order to illustrate one 

practical consequence of the inconsistent usage of WNL theory 
discussed above. 

4.1. Third-Order Moments 

We would like to know how much the SSB simulations are 

affected by the inconsistency revealed in the previous sections. 
To accomplish this goal, second-order moments are not suffi- 
cient; higher-order moments are required. The third-order 
moments are provided in the following equations: 

•3oo=3••c•2F(kOF(k2) dk•dk2 (14a) 

tru0 = If aX•F(kOF(k2) dk•dk2 
try02: f f aSF(k•)F(k2)dk•dk2 

(14b) 

(14c) 

where 

K•=If a•F(kOF(k2) dk•dk2 (14d) 

** (k**2 ß *%**s a •2 = • + k 2'2)C12 -- k • ,• 2 •2 (]5) 

Those moments have already been derived by Srokosz 
[1986], though presented in discrete form. At this point we 
stress the fact that third-order cumulants of the slopes are zero 
and not required in this paper. Had we expanded the hydro- 
dynamic equations to third order, we should have obtained 
nonzero third-order cumulants for the slope components. Thus 
non-Gaussian distributions of the slope components are driven 
by three-wave interactions or higher. 
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4.2. Induced Skewhess 

Again, for simplicity, we will provide a one-dimensional ver- 
sion of the problem using spectra of the Phillips form given by 
(12a) and follow a development similar to Jackson [1979] to 
compute the SSB. For a generalization of the SSB computation 
to two dimensions, the reader should refer to Srokosz [1986]. 
With these assumptions and restrictions we can use the results 
of the preceding section to write the second- and third-order 
moments as 

/(20 = 13oH•,(-no) (16a) 

/(02 = /3oH•(2 - no) (16b) 

/(30 6 2 kc -hi) (16c) = /3iGk,(1 - hi, 
2 kc /(•2 = 2/3i[2G•,(1 - hi, 2 - hi) + G•(3 - n•, -n•)] 

(16d) 

where the first and second subscripts of/( refer to the order of 
the height and slope, respectively, appearing in the expression. 
For example, the/(•2 term is a third-order moment represent- 
ing the height slope variance correlation. Also, one should note 
that these expressions force the height and slope variances 
(i.e.,/(20 and/(02) of the input and output spectra to be equal, 
as discussed in the previous section. For this reason, the output 
spectrum may be used in (16a) and (16b). Results for an 
inconsistent computation (where these moments are not 
forced to be equal) may be obtained simply by changing the 
subscripts / in (16c) and (16d) to o. With these definitions, the 
skewhess parameters may then be defined as follows: 

/(30 
/•'30 = . 3/2 (17a) 

/420 

/(12 

X,2 = x//(20 (17b) K02 

4.3. Sea State Bias Simulation 

When these skewnesses parameters enter the joint distribu- 
tion of height and slopes, through a Oram-Charlier expansion, 
for example, the sea state bias can then be determined under 
the assumption of specular scattering by 

SSB= -• •-+ X,2 (18) 

as discussed by Jackson [1979]. The first term in (18) is usually 
referred to as the elevation skewness bias, while the second is 
the electromagnetic bias. 

Numerical realizations of the SSB are shown in Figure 6 
where we have plotted the SSB computed from (18) as a 
function of the high-wavenumber cutoff k c for kp = 0.20 
(rad/m) as before. The solid curve in Figure 6 shows a com- 
putation of the SSB where the second-order input and output 
moments have not been forced to be equal. This computation 
includes most of the previous SSB simulations [see, e.g., Jack- 
son, 1979; Glazman et al., 1996]. The dash-dotted curve, how- 
ever, shows the SSB using the inverted spectrum where sec- 
ond-order moments are equal. One can see from Figure 6 that 
with the cutoff at either 40 or 3 cm (denoted in Figure 6 by 
Glazman et al. [1996] and Jackson [1979], respectively), the 
SSB from a saturated spectrum of Phillips (5 x 10 -3 k-3) is 
about -5%. Using the inverted spectrum to compute the mo- 
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Figure 6. The relative one-dimensional sea state bias (SSB) 
as percent of significant wave height shown as a function of the 
high-wavenumber cutoff kc in radian per meters. Solid line is 
obtained by applying the Phillips spectrum (5 x 10 - 3 k- 3) at 
the input of the simulation by ignoring how the resulting spec- 
trum might look at the output. The dash-dotted curve is the 
result of the inverted spectrum when applied at the input of the 
simulation in order to be consistent with the Phillips spectrum 
(5 x 10-3 k-3) at the output. The difference could be as high 
as 3% in terms of SSB. 

merits rather than the output spectrum, we find that the SSB 
reduces to about -1.5% for Jackson's cutoff and about -2.5% 

for Glazman et al.'s cutoff. The point we wish to emphasize 
here is not that the SSBs computed with the inverted spectrum 
are more correct but, rather, that these values can be signifi- 
cantly different from ihose computed under a violation of 
WNL theory. We believe that when short waves (<6 m) are 
included in the computation, the inverted spectrum must be 
used to preserve consistency within WNL theory. It appears 
that there is significant uncertainty associated with SSB quan- 
tities predicted by the studies previously mentioned. Therefore 
these previous studies are not correct, even though their results 
appear to be closer to the observed ones in terms of SSB. A 
complete SSB investigation must start by correctly applying the 
WNL theory to long gravity waves (X > 10 m, say) and then 
judiciously adding intermediate and short scales. The absence 
of electromagnetic diffractions by shorter waves in the geomet- 
ric optics model must also be investigated to determine its 
domain of credibility. 

5. Conclusion 

We have shown in this paper that the theory of "weakly" 
nonlinear (WNL) waves as commonly used in generating 
higher moments of ocean-wave surface statistics has been mis- 
applied in the calculation of the sea state bias (SSB). As a 
result, a pronounced inconsistency, even for lower-order mo- 
ments, appears merely because the validity conditions of the 
theory are violated. To strictly avoid this inconsistency, only 
long waves must enter WNL theory. An exact extension of the 
theory can be made only by allowing higher-order interactions 
in the hydrodynamic equations. The inconsistency translates 
into a difference between the input and the output spectra. 
Even an approximate extrapolation of WNL theory cannot be 
achieved without an explicit inversion of the output spectrum. 
We have discussed how one might develop an inversion 
scheme that determines the required input wave spectrum for 
which the simulated moments remain consistent with a mea- 



ELFOUHAILY ET AL.: NONLINEAR WAVE THEORIES 7647 

sured spectrum. With this procedure, shorter waves may be 
included even after allowing the nonlinearities to come into 
play. This inversion scheme is solved analytically for a one- 
dimensional spectrum to illustrate how divergent, in terms of 
the low-order spectral moments, the previous methods can be. 
It is also demonstrated that the inconsistency in WNL theory 
can have a significant impact on the calculation of SSB. The 
latter is highly affected by intermediate-scale waves that can- 
not be predicted by WNL theory. A potential use of this theory 
would be in the generation of nonlinear long waves that may 
then affect shorter-scale waves through hydrodynamic modu- 
lation. 

Appendix: Definitions of Functions for 
the Inversion 

The functions H•(v) and G•(v, •) are defined as single 
and double integrals of power functions. 

•k k• I (1/•+ 1 1•+1) H•.(r ,): k '• dk = - r, + I • 0 •,+1 
a 

•k kb H•(r ,) = k '• dk- In (kdk•) 
a 

•,+1=0 

(Alb) 

•k kb G•b,(u, Ix)= H k k•( r,)k t* dk - 
a 

kj+• ab - H•(•)] 1.,+14:0 (Alc) 

where 

f kb T•(•) = k • Ink dk 
a 

k• '+l In k•, - k2 +• In k. k• .+• - k• +• 
p• + I (p• + 1) 2 

ab 1 (ln 2 k•, In 2 k.) T•(p•): k • Ink dk = • - 
a 

(Aid) 

p•+l•0 

(A2a) 

p•+l=O 

(A2b) 
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