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† Centre National de la Recherche Scientifique, IRPHE, Marseille, France
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Abstract.
This review is intended to provide a critical and up-to-date survey of the analytical

approximate methods that are encountered in scattering from random rough surfaces.
The underlying principles of the different methods are evidenced and the functional
form of the corresponding scattering amplitude or cross-section is given. The reader
is referred to the original papers in order to obtain the explicit expressions of the
coefficients and kernels. We’ve tried to identify the main strengths and weaknesses
of the various theories. We provide synthetic tables of their respective performances,
according to a dozen important requirements a valuable method should meet. Both
scalar acoustic and vector electromagnetic theories are equally addressed.
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1. Introduction

Wave scattering by rough surfaces is an important issue in diverse areas of science

such as measurements in Medical, Optics, Acoustics, Geophysics, Communications, and

terrestrial or extraterrestrial remote sensing. Approximate models are still a necessity

due to the insurmountable numerical complexity of realistic scattering problems. Even

today’s machines cannot cope with the enormous amount of computing demanded

in the case of rigorous numerical calculations of the most general three-dimensional

electromagnetic wave scattering from dielectric or conducting multi-scale surfaces.

This necessity has sprung the development of a myriad of approximate models

with more or less careful derivations from first principles such as Maxwell equations.

Even alerted users might find themselves lost in the meanders of more than twenty

approximate models with no or little guidance on which must be applied under what

conditions and for how long it holds until it breaks. The purpose of this review is to

help the practitioner finding his way among this plethora of models through a critical

and, we hope, exhaustive, survey. We attempted to take a census of the existing

methods and to classify them in generic families. We adopted a strategy of dissecting

all identified scattering models in the literature by providing their functional form along

with their general performances from an analytical point of view. Our readers will not be

overwhelmed by pages of geometric and arithmetic functions describing the coefficients

and kernels of each model. The reader is referred back to the original publications

for explicit expression of the kernels. For completeness however, explicit expressions

for the two fundamental approximations, first-order Kirchhoff and Small Perturbation

Method (SPM1), are given in the appendix. It is worth mentioning at this point of

our contribution that former general reviews can be found in the classical monographs

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Our review is only concerned with the analytical approximate scattering models.

Some other complementary reviews can be found in the recent literature. Saillard

and Sentenac [13] reviewed all rigorous numerical techniques for boundary integral

methods and large linear systems when short-range interactions dominate. Warnick and

Chew [14] listed several numerical approaches on scattering approximations, differential

equations and surface integral equation methods. More specific reviews can be found

in [15, 16] dealing mainly with two-scale models applied to large rough surfaces such as

the ocean surface.

After introducing the notation and normalization adopted for this paper, we present
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the classical approximate models. Then we present recent scattering theories along with

their interconnections before concluding with recapitulating tables.

2. Notation and Definitions

A rough surface Σ separates the vacuum (upper medium) from a homogeneous medium

(lower medium) with different index (optical or acoustical). We chose the right Cartesian

coordinate (x̂, ŷ, ẑ) system with z-axis directed upward and assume Σ is represented

by a Cartesian equation z = h(r) = h(x, y), where h is the realization of a random

stationary process. For an arbitrary vector a, the notation a will refer to its norm

and â to its direction. The three-dimensional position vector is R = (r, z). A

downward propagating electromagnetic plane wave with wave-vector K0 = (k0,−q0)

and wavenumber K = 2π/λ is incident on the surface and give rise to up-going scattered

wave-vectors in directions K = (k, qk). The vectors k0 and k are the horizontal

components of the incident and scattered waves, respectively, and q0, qk are the vertical

(positive) components. They are related by the relation k2 + q2
k = k2

0 + q2
0 = K2. The

vector Q = K −K0 is the so-called momentum transfer [17] and plays an important

role in scattering theory. We will denote QH = k − k0 and Qz = qk + q0 its horizontal

and vertical components, respectively. Equivalently, we introduce W = K + K0

which is inspired from Dashen and Wurmser [18]. Analogously we define its horizontal

W H = k + k0 and vertical Wz = qk − q0 components.

The scattered field above and far away from the surface is related to the incident

one through the scattering operator which reads in dyadic notation:

Es(R) = S(r, z) · Ê0 =

∫
eik·r+iqkz

qk

S(k, k0)dk · Ê0, (2.1)

or equivalently at R →∞,

Es(R) = 2π
eiKR

iR
S(k, k0) · Ê0, (2.2)

which is a direct consequence of the Weyl representation of the Green’s function. Note

that all involved field quantities are scalar in the acoustic case. In the electromagnetic

case, the scattered field is usually decomposed over a polarization basis (e.g. circular,

linear horizontal and vertical etc...). Once expressed in the chosen polarization basis,

the tensor S(k, k0) becomes a 2x2 matrix called the scattering amplitude (SA, S(k, k0)).

Our normalization of the scattering amplitude (SA) differs by a trivial geometrical factor

from some other conventions. For instance, Voronovich [9] introduces the prefactor√
q0/qk instead of 1/qk in the defining equation (2.1). The scattering amplitude in our

definition and normalization takes the dimension of wavelength (meters).

The scattering amplitude satisfies some fundamental geometrical properties which

can be exploited to check the a priori correctness of an approximate method. The

reciprocity expresses the time reversal invariance of the wave in the harmonic regime:

S(k, k0) = ST (−k0,−k), (2.3)
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where the superscript T stands for the transposed dyad (or matrix). The shift invariance

refers to the phase-shifting (delays in the time domain) that results from horizontal and

vertical translations of the surface:

S(k, k0)|h(r−d)+D = e−iQH ·de−iQzDS(k, k0)|h(r) (2.4)

The tilt invariance expresses the fact that the scattering amplitude should not depend

on the choice of the reference plane and the related coordinate system. Precisely,

S(k, k0)|R(Σ) = S(k̃, k̃0)|Σ, (2.5)

where R is any rotation of the surface and the tilted vectors are the horizontal

components of the (inversely) rotated wavenumber vectorsR−(K),R−(K). We insist

on the fact that this is tensorial, and not matrix, equality. To express the tilt-invariance

in terms of scattering matrix, one must intertwine rotation matrices from one local

polarization basis to another (see for instance equations (21)-(23) of [19]).

The tilt-invariance is a very stringent condition and in general an approximate

method is only required to be tilt invariant to first-order, namely:

S(k, k0)|h+a·r = S(k̃, k̃0)|h + O(a2), (2.6)

where k̃ = k+qka and k̃0 = k−q0a. Given an approximate expression of the scattering

amplitude, it is sometimes impossible to verify the last property analytically, and one

often contents oneself with checking this in the limit of small roughness.

Some more quantities must be defined to better describe the measurables, such as

the scattered power and the ensemble averaged moments in the case of random surfaces.

The first order moment is also called the coherent scattered amplitude and defined as

V (k, k0) = 〈S(k, k)〉. (2.7)

The incoherent second order or the scattering cross-section of the rough surface is

σ = 〈|S(k, k)|〉 − |〈S(k, k)〉|. (2.8)

The norm and power in the previous equation must be applied to each element of

the SA matrix. For distributed targets (infinitely large surfaces of area), a normalized

radar cross-section must be used where the previous definition is normalized by the

total surface area. This latter definition is conventionally called sigma naught (σ0) and

used in remote sensing of rough surfaces such as those of oceans and soils. For spatially

homogeneous random rough surfaces, the shift invariance property imposes the coherent

scattered amplitude to vanish everywhere but in the specular direction (k = k0) and the

term V (k, k0) actually contains a factor δ(k−k0). For the same reasons, the incoherent

cross-section also contains delta-like terms (see the complete discussion in [9]), which is

the reason for rather using normalized radar cross-sections.

Very often, the scattering problem is simplified by assuming that the surface is

invariant along one space direction. Such a surface will be termed one-dimensional

(1D), as opposed to a two-dimensional (2D) surface which truly depends on two space

variables. In the following “1D” and “2D” case will refer to 1D and 2D surfaces,

respectively.
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3. Small Perturbation Method

The Small Perturbation Method (SPM) or Bragg theory is the oldest and perhaps most

popular method in scattering from rough surfaces. It is a perturbative expansion of the

scattering amplitude with respect to a small height parameter (in wavelength units). It

was first introduced by Rayleigh [20] for sound waves on sinusoidally corrugated surfaces,

then adapted by Fano [21] to optical gratings. Rice [22, 23] obtained explicit first-

(SPM1) and second-order formulas (SPM2) for 1D conducting surfaces and computed

the first-order in horizontal polarization for 1D dielectric rough surfaces. Later Peake

[24] derived first-order backscattering cross-sections for both polarizations. Valenzuela

completed the calculation at second-order for 1D perturbations of leveled [25] and tilted

[26] planes. The range of validity of SPM has been studied in detail via numerical

simulations, essentially in the 1D acoustic case [27, 28, 29, 30] and for Gaussian spectra.

3.1. Definition

The scattering amplitude for SPM is functionally written as a Taylor-Volterra expansion

in surface height (h) as:

S(k, k0) =
1

Qz

B(k, k0)δ(QH)− iB(k, k0)h(QH)

−Qz

∫
B2(k, k0; ξ)h(k − ξ)h(ξ − k0)dξ + . . . , (3.9)

where h(ξ) is the Fourier transform of the surface elevation. B(k, k0) and B2(k, k0; ξ)

are the first- and second-order coefficients, respectively. For explicit expressions and

normalization of these coefficients the reader is referred to the monograph by Voronovich

[9, 31] or to our appendices. Our normalization differs slightly from that of Voronovich

in that one needs to multiply by 2qkq0 the SPM1 coefficient B and by −qkq0/Qz the

SPM2 coefficient B2. Please do also pay attention to the fact that the expressions

of the kernels depends on the orientation of the vertical axis: some authors (in

particular Voronovich) chose to illuminate the surface from below. Transposition to

our convention requires formal replacements q, q′ → −q,−q′ and h → −h. Both B
and B2 possess the dimension of wavenumber squared K2 in our normalization. The

expression of the second-order kernel B2 is not unique, as any transformation of the type

B2(k, k0, ξ) → B2(k, k0, ξ) + J(k, k0, k − ξ) − J(k, k0, ξ − k0), where J is an arbitrary

tensor, leaves the second integral unchanged in equation (3.9). Different analytical

expressions for this kernel can be obtained, depending on which technique is employed

in the derivation, and this is sometimes misleading in the comparison of the different

methods (see the discussion of subsection 3.5). We will refer to this non-uniqueness

as gauge arbitrariness, a phenomenon which turns out to occur for other approximate

methods. By gauge transformation we will refer in the following to a transformation of

one or several integration kernels that leaves the scattering amplitude unchanged. Note

that we do not attach any physical meaning to the gauge, and consider it only as a

mathematical arbitrariness.
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3.2. The historical method

Historically, the perturbative expansion to an arbitrary order is termed the Rayleigh

method (also referred to as Rayleigh-Rice or Rayleigh-Fano procedure), which relies on

the Rayleigh hypothesis. It is assumed that the representation of the electromagnetic

field in terms of solely outgoing waves is still valid on the surface, whereas this holds

a priori only above its maximum excursion. This makes it possible to rewrite the

boundary condition for the field at the surface in terms of scattering amplitude and

simplifies considerably the identification of the perturbative orders. This method has

been used independently by several authors to derive the second-order perturbative

term, which is necessary to account for depolarization effects in the incidence plane [25],

the occurrence of surfaces plasmons [32, 33, 34, 35] and the shift of Brewster angles

[36, 37] in p-polarization. More recently, Voronovich [31, 9] derived from this method a

compact matrix formulation of SPM2 in the general vectorial dielectric case and Johnson

et al pushed the calculation to third- [38] and fourth- [39] orders to explore the Brewster

effect. The analytical formulas at successive orders become increasingly complicated and

dissuasive beyond the second-order, and attracted, as a matter of fact, little attention

in the literature. An efficient numerical recursive scheme for the perturbed field based

on the Rayleigh method was proposed by Bruno and Reitich [40, 41, 42]. This allows

in principle a computation of the perturbation series at arbitrary order. With the

additional use of Padé approximants it is possible to extend the perturbative domain

and to gain in accuracy. For the moment the method was numerically tested on gratings

only, with satisfactory results. A similar recursive scheme for the evaluation of the

perturbation series at arbitrary order was employed by Demir and Johnson [39] with

the difference that the recurrence concerns the integration kernels at successive orders

and not the scattered field.

3.3. The reduced-Rayleigh equations

An interesting refinement of the Rayleigh method is the so-called method of reduced

Rayleigh equations, first proposed in [43]. The equations obtained via the classical

Rayleigh method couple the unknown scattering amplitudes of the reflected and

transmitted waves that propagate in the two homogeneous media surrounding the

surface. Using simple but astute mathematical manipulations, the equations for

the scattering amplitude in reflection can be uncoupled, leading to a closed integral

equation expression for the latter. The derivation of the perturbative series becomes

straightforward. Proceeding this way, Soubret et al [44] found a more compact

formulation than Johnson et al [38] for the third-order scattering amplitude and tailored

the technique to the case of a slab with rough boundary. Reduced Rayleigh equations

are also employed in another context to obtain an expansion in permittivity contrast

rather than surface elevation [45].
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3.4. Formal Perturbation Methods

The reduced Rayleigh equations expresses the scattering amplitude as a solution of an

integral equation which is formally similar to the Lippmann-Schwinger equation (i.e a

second-kind integral equation), well-known in potential scattering. This inspired a new

formulation of the perturbative problem [46, 47] based on the mathematical formalism

of Quantum Mechanics, which guarantees a priori the reciprocity and unitarity of the

scattering operator. This approach allows the use of formal perturbation methods based

on diagrammatic techniques [48]. This leads to an improved perturbative scheme of the

coherent and incoherent scattering amplitudes [49], by relying on Dyson’s and Bethe-

Salpether equations. This statistical approach is sometimes referred to as self-energy

perturbation theory [50] and has been intensively exploited to study the backscattering

enhancement phenomenon [51, 52], which first appears at the fourth perturbative order

in height for the backscattered intensity (and thereby requires the third-order scattering

amplitude) or the shift of Brewster angle for 1D surfaces [53].

Another statistical approach based on formal perturbation methods is the so-

called smoothing method, which was developed primarily in the context of continuous

random media and discrete scatterers [54, 55], and which can be applied to any random

quantity that satisfies a second-kind integral equation. The smoothing method consists

in decomposing the field into a mean and fluctuating part, and to find a second-

kind integral equation for each component, starting from the equation satisfied by the

deterministic field. It is formally equivalent to the diagrammatic method as it leads

to the same Dyson’s equation for the mean field [48]. This closed equation implies a

complicated kernel (the so-called mass operator), which is formally given by an infinite

series, the first term of which is usually retained to find tractable solutions. The

resulting approximation for the mean field is known as first-order smoothing, bi-local

or Bourret approximation [56]. This is equivalent to performing the summation of an

infinite subseries in the perturbation series of the averaged field. This perturbative

approach possesses a larger domain of validity than the conventional one (i.e the one

based on iteration, truncation and averaging of the deterministic perturbation series).

The main reason is that only infinite subseries are capable of handling properly secular

terms in the perturbation series (see the excellent discussion by Frisch [48] and e.g.

the numerical comparisons in [57]). DeSanto [58] investigated in details the relations

between the smoothing and the diagrammatic method for rough surface scattering. He

demonstrated that the corresponding mass operators coincide up to second order in

surface height, but differ at third order. The smoothing method has been applied to

surface scattering by Wentzel [59], Watson and Keller [60, 61], DeSanto [58], Ishimaru

[57], Berman and Dacol [62] and Brown [63, 64]. Most of these studies are concerned

with the coherent field only. Watson and Keller were the first to work out the statistical

cross-section with the smoothing method, in the acoustical case:

σ0 =
1

|1 + R(k0; Ψ)|2
|B(k, k0)|2 Ψ(k − k0), (3.10)
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where Ψ is the surface power spectrum, B the SPM1 kernel. The corrective term R is

the Fresnel reflection coefficient corresponding to an effective rough surface impedance:

Zs =

∫
Ψ(k − ξ)η(ξ)dξ, (3.11)

for some kernel η. By comparison with the conventional perturbative method, this

formula can be seen to bring higher-order corrections to the SPM1 cross-section, which

is obtained by setting R = 0 in equation (3.10). This expression for the cross-section

is, however, not reciprocal. Berman and Dacol combined their “manifestly reciprocal

scattering amplitude” formalism [62] with the smoothing method to derive a similar

formula with reciprocal coefficients. The term smoothing approximation is also employed

to denote the first-term approximation of the intensity operator in Bethe-Salpether

equation, that is found by diagrammatic techniques. Ishimaru et al [57] recently

revisited the result of Watson-Keller for the Dirichlet problem with this approximation

and also found a similar formula with a modified, reciprocal, kernel:

σ0 =
1

|1 + R(k0; Ψ)|2 |1 + R(k; Ψ)|2
|B(k, k0)|2 Ψ(k − k0). (3.12)

The same result was found using similar smoothing techniques in the Neumann case

to correct for anomalous behavior of SPM1 at grazing angles [65, 66, 67, 68]. It can

be observed that the kernel η appearing in the surface impedance coincide (up to some

trivial factor) with the second-order Bragg kernel for the Dirichlet as well as Neumann

case, for reason that are not clear yet.

3.5. Rigorous derivations

For a long time, there has been a controversy as to the Rayleigh hypothesis leads to

the correct perturbative expansion. There is, however, a rigorous way to derive this

expansion, that does not resort to any a priori assumption on the field. It is based on

the so-called Extinction Theorem (also called Extended boundary condition or Ewald-

Oseen), which is a variant of Green’s theorem. The method yields, in principle, the

exact height expansion but is much more involved, as witnessed for example by the

complexity of the calculations presented in [6]. It is used to reinvestigate the second-

order expansion for 1D [69] and 2D conducting [70, 71] surfaces, as well as 1D [43] and

2D dielectric surfaces [72]. It is also employed to derive the intensity at fourth order in

height [73, 74] in the scalar Dirichlet case (i.e hard-pressure release acoustic problem)

and for 1D conducting surfaces [29]. The overall conclusion [43, 70, 75, 29] of these

studies is that Rayleigh-Fano procedure and the Extinction Theorem lead to identical

expansions in accuracy, even though the higher-order formulas are sometimes difficult

to compare as they do not enjoy unique expressions (see the above discussion on gauge

arbitrariness). More recently, a general mathematical argument [76, 9] asserted that

the Rayleigh hypothesis must yield the correct expansion at arbitrary order (at least for

analytic profiles), even though its domain of applicability is very restrained.
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Another original approach common to some authors [77, 78, 79, 80] consists in

expanding the field and its derivatives at the surface in perturbative orders. The

resulting expansion is then injected into the boundary conditions, from which effective

tangential fields [77] (resp. effective surface currents [78, 79]) are deduced. The radiated

field in space is then found by using Kirchhoff-Helmholtz formula [77] (resp. dyadic

Green’s functions [78, 79]). This procedure can be used for perturbation of non-planar

(for instance cylindrical) surfaces.

The main limitation of SPM is its restricted domain of validity, as it is valid

for small RMS height/wavelength ratios. In the limit of large wavelengths, however,

this approximation tends to the true solution of the scattering problem. Thus, SPM

constitutes the reference for any approximate method in the low-frequency limit.

4. Kirchhoff Approximation

Together with SPM, the Kirchhoff approximation (KA) is the oldest and most employed

approximate method. It addresses a complete different scattering regime than SPM,

since it is valid for large curvature radii or locally smooth surfaces [1]. The KA

is also known as the Tangent Plane Approximation (TPA) and the Physical Optics

(PO) approximation in its high frequency form. We will employ the first terminology,

when necessary, to distinguish the regular (TPA) and high-frequency (PO) form of the

Kirchhoff approximation.

4.1. Tangent Plane Approximation

We refer to the monographs by Ogilvy [8] or by Voronovich [9] for excellent historical

reviews on the Kirchhoff approximation. In this model, the field on the surface is

assimilated to the field that would be produced by a tangent plane at the same point.

Thus, it depends only on the Fresnel reflection coefficient at the local incidence angle.

KA is a local approximation, in that the supposed field at a point of a surface does

not depend on the surface elsewhere, and thus does not account for multiple scattering.

A second obvious limitation is that it does not consider curvature effects. Hence this

approximation applies a priori to gently undulating surfaces and incidence angles at

which shadowing and multiple scattering effects are negligible. The KA relies on the

physical intuition of the tangent plane. It can, however, be obtained in a mathematical

way. Meecham [81] was the first to recognize the Kirchhoff current as the zeroth iteration

in the second-kind integral equation governing the surface current, under scattering of

scalar acoustic waves from soft or hard surface or scattering of vector electromagnetic

waves from perfectly conducting surfaces.

The KA was first introduced by Brekjovskikh [82, 83] and extended by Isakovich

[84] to the statistical case. It was later treated in English in the acoustic [85] and

electromagnetic [86] cases but the common reference for the western community is the

book by Beckmann and Spizzichino [1], which treats the 1D dielectric and 2D acoustic
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problem. There have been several vector formulations of the TPA proceeding from the

exact Stratton-Chu equations [87, 88, 89, 90, 91, 92]. The TPA takes the following

functional form:

S(k, k0) =
1

Qz

∫
K(k0; ∇h) e−iQzh(r)e−iQH ·rdr, (4.13)

where the (obviously non-reciprocal) kernel is dependent on the local slope as expected.

It has the dimension of wavenumber squared K2 similar to the coefficients of SPM in

(3.9).

Rodriguez [17, 93] proposed a different approach to the KA, namely the Momentum

transfer expansion (MTE). He establishes a perturbative series for the surface current

with respect to a novel small parameter QH/Qz, which is the ratio of the horizontal and

vertical components of the momentum transfer. KA is recovered at first order while the

higher orders bring curvature corrections.

4.2. High-frequency regime

The complicated surface-dependence on the surface current via the local Fresnel

reflection coefficient make statistical formulas for the cross-section complicated in

addition to a deficiency in the fundamental reciprocity property. However, resorting to

some reasonable additional assumptions, Stogryn [91] establishes a simplified statistical

formula for the cross-section on Gaussian dielectric surfaces using Taylor expansions

about zero of the correlation function and related quantities. In the 1D acoustic

case, Dacol [94] also extracts the local dependence on the Fresnel coefficient via Taylor

expansions about zero. Kodis [92] establishes simplified formula by using the stationary

phase approximation (SPA) before averaging the intensity, while Barrick [95] shows that

the result is independent of the order in which the averaging process and the stationary

phase approximation are applied. The Physical Optics (PO) form of KA is also termed

the high-frequency Kirchhoff approximation (KA-HF), which simplifies to:

S(k, k0) = K(k, k0)
1

Qz

∫
e−iQzh(r)e−iQH ·rdr, (4.14)

where the SA now is reciprocal. Hence, by taking the high-frequency limit of TPA both

statistical simplicity and reciprocity property are repaired. In the literature, one might

find sometimes a small nuance about PO and KA-HF when shadowing is included or not.

We will not make any distinction between KA-HF and PO since shadowing effects are

not presently studied and can be added later on. Under perfect conducting conditions,

TPA and KA-HF coincide due to the linear dependence on the surface slope which can

be integrated by parts without invoking the station phase limit. Hence, some authors

linearize the dielectric TPA coefficients in slope instead of invoking the stationary phase

limit. This procedure does not yield the correct PO approximation. Explicit expressions

for KA-HF coefficients can be found in [9, 91, 96] or in our appendices along with a link

to those of SPM1.

In the high-frequency regime (i.e large wavenumber), the KA amplitude reduces

to the probability density function of slopes evaluated at specular points, as was first
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noted by Barrick [97]. This is called the Specular Point Theory (SPT), alternatively the

Geometrical Optics (GO) limit or the Ray-Optics approximation [85, 86, 1, 98, 3]. Its

most common form for single reflections is:

σ0 =

∣∣∣∣K(k, k)

Q2
z

∣∣∣∣2 P

(
−k − k0

qk + q0

)
, (4.15)

which is expressed in terms of the normalized radar cross-section where P is the

probability density function of surface slopes. GO is mainly used for sea surface

scattering [99, 95, 100, 101, 102] and when convoluted with SPM1 it leads to the well-

known Two-Scale Model (TSM) [103, 15, 16] (TSM = SPM1 * GO1).

4.3. Curvature corrections

Lynch [104] invokes the variational principle in the acoustical case with the KA

as a trial function to improve the tangent-plane approximation. He obtained local

curvature corrections to the Kirchhoff surface current. This method is subsequently

referred to as Lynch Variational Method (LVM), and refined and numerically tested

in [105, 106]. Another way to take curvature effects into account is the so-called

Local Parabolic Approximation (LPA), first introduced by Belobrov and Fuks [107, 108]

and subsequently refined in [109, 110]. It is based on a quadratic, rather than linear,

approximation of the surface height together with an appropriate representation of the

free-space Green’s function. The SA in both the LVM and LPA enjoys the functional

form of a TPA (4.13).

The radius of curvature and the scattering angles are the sole criteria for the validity

of KA [82, 16, 3, 104] whenever non-local effects are negligible. For surfaces with

Gaussian spectra the key parameter is the correlation length, which must remain much

larger than the wavelength [111, 112, 28, 113]. Under multiple scattering conditions,

surface shadowing must be included in the KA approximation in order to ensure energy

conservation, among other things.

4.4. Non-local corrections

For large surface slopes and elevations the non-local effects can no longer be neglected. A

possibility to include multiple-scattering phenomena is to consider further iterations of

the surface current equations [81, 114, 115]. However, this results in n-fold integrals that

are difficult to evaluate, whose convergence is questionable and which are not adapted

to numerical computations especially in terms of ensemble averaged formulas.

Originally, Jin and Lax [116, 96] developed the iterative high-frequency KA even

with shadowing effects to second order (KA2-HF). Their model has the general form:

S(k, k0) = K1(k, k0)

∫
e−iQzh(r)e−iQH ·rdr

+

∫∫∫
K+

2 (k, k0; ξ) e−i(k−ξ)·r1−i(qk+qξ)h(r1)ei(k0−ξ)·r2−i(q0−qξ)h(r2)dξdr1dr2,
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+

∫∫∫
K−

2 (k, k0; ξ) e−i(k−ξ)·r1−i(qk−qξ)h(r1)ei(k0−ξ)·r2−i(q0+qξ)h(r2)dξdr1dr2, (4.16)

where the second order kernel is a combination of the product of two first order

Kirchhoff approximations updated with some shadowing functions. Statistically

averaged shadowing corrections, suggested by Ray-Optics, were introduced by Bass and

Fuks [77, 117] and later rediscovered by Wagner [118], Smith [119] and Beckmann [120].

They have been widely used in conjunction with first- [121, 122, 123, 124, 125, 126, 127]

and second-order KA to elaborate a multiple scattering theory valid for large elevation

RMS [116, 96, 128, 129, 130, 131, 132]. Second-[133] and multiple-[134] reflections have

also been considered in this framework of Ray-Optics to explain qualitatively phenomena

such as the mechanism of backscattering enhancement.

Analytical attempts to include non-local corrections to the KA have been limited

to the second-order KA, based on one iteration of the surface current [129, 10, 135, 136,

137]. General non-local models will be detailed in later sections but one could mention

that the high frequency limit of these models is expected to reproduce the second-order

Geometrical Optics (GO2) defined as a correction to the GO1 cross-section by:∑
s=±1

∫
Ks

(k, k, ξ) P

(
− k − ξ

qk + sqξ

,− ξ − k

qξ − sq

)
dξ, (4.17)

where shadowing could be included as an extra weighting function along side the non-

local kernel.

For non-local models (4.16-4.17) based on a second-order KA, there is an ambiguity

on the integration domain of the spectral variable. A cut-off over evanescent waves (i.e

|ξ| > K) is implicit, even though the spectral integral stems from the Weyl expansion

of the Green’s function and should run over an infinite domain. The reason for doing

this is that the occurrence of both signs ±iqξh in the integrand phase would lead to

exponentially increasing terms for evanescent waves (for which qξ is positive imaginary)

and cause the integral to diverge. This ad hoc assumption seems to compensate for

another error introduced in removing the cumbersome absolute values |h(r1)− h(r2)|
originally present in (4.16).

An important drawback of KA is that it is not consistent with SPM1 in the limit

of small roughness. This is the main reason why a variety of so-called unifying methods

have been proposed in order to satisfy both the low- and high frequency limits.

5. Unifying theories

5.1. Meecham-Lysanov Method

The Meecham-Lysanov Method (MLM) is the oldest unifying theory and dates back to

the fifties. It was suggested independently by Meecham [138] and Lysanov [139], for

the Dirichlet case. The unknown surface current at the surface is sought via its first

kind (i.e single-layer potential) integral equation. The Weyl representation is used for

the corresponding Green’s function, together with a key “small-slope” assumption: the
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distance between two points on the surface is approximated by the horizontal lag. This

turns the surface integral into a convolution that can be Fourier inverted and provides

an approximate solution for the surface current. The resulting expression for the far-

field scattering amplitude is a triple integral (two space and one frequency variables)

with a simple kernel:

S(k, k0) =

∫∫∫
φ(k, k0; ξ)e−i(k−ξ)·r1−iqkh(r1)ei(k0−ξ)·r2−iq0h(r2)dξdr1dr2. (5.18)

The KA and SPM limit are recovered [9] and non-local effects are taken into account,

owing to the two-fold space integration. Yarovoy [140] generalized the method to the

2D pseudo-dielectric case (polarization effects are ignored since the field is assumed

scalar), using also an integral equation of the first kind for the surface fields. However,

the inversion procedure that is used in the Meecham-Lysanov method to estimate

the surface current seems not adaptable to the vectorial case, since the corresponding

integral operator is no longer invertible (essentially because it implies a projection on the

tangential direction). As a matter of fact, we are not aware of any vectorial formulation

of the method. Recently, however, a purely numerical approximate method inspired

from Meecham-Lysanov was proposed, the so-called Small Slope Integral Equation

(SSIE) [141]. Starting from the Magnetic Field Integral Equation, it makes the same

approximation on the Green’s function as Meecham-Lysanov. This transforms the

integral operator implying the unknown surface field into a convolution operator, that

can be implemented efficiently via FFT. This numerical method reaches in principle the

same accuracy as a Meecham-Lysanov procedure and is much faster than a rigorous

computation. The lack of analytical expression, however, prevents the use of statistical

formulas.

5.2. Phase-perturbation method

The Phase-perturbation method (PPM) originates from an idea by Shen and Maradudin

[142] but was developed by Winebrenner [143, 144] for the acoustic case. It relies on

an Ansatz first proposed by Lynch [104] and Rytov et al [7]: the surface current on

the rough surface is written as a multiplicative (unknown) phase correction to that of

a reference plane. It is then this phase, rather than the field itself, that is sought in

the form of a perturbative series. The corresponding expansion is found by imposing

consistency with SPM at all orders in the small roughness limit. The PPM functional

form is:

S(k, k0) = B(k, k0)
1

Qz

∫
e−iQzΦ(k,k0;[h])e−iQH ·re−iQzh(r)dr (5.19)

where the functional Φ is to first order in surface height

Φ(k, k0; [h]) =

∫
β(k, k0; ξ)h(ξ)eiξ·rdξ + · · · (5.20)

This method has been tested, discussed and compared with other approximations by

several authors [145, 146, 147, 148, 149, 150, 151, 9], essentially in the 1D Dirichlet case.
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To first-order, this method was shown [145] to recover KA and SPM in the appropriate

limits, and to possess a wider validity domain than the standard approximations. It is

also appropriate to establish statistical formulas via the use of cumulants [143]. Contrary

to both SPM and KA, PPM fails to satisfy reciprocity. A reciprocal variant of PPM

[152] sharing the same properties was, however, later proposed in the statistical case.

5.3. Small-Slope Approximation

The Small-Slope Approximation (SSA) was proposed by Voronovich [153, 31, 9, 154] as

a unifying theory that could reconcile SPM and KA. It starts from a structure Ansatz

for the scattering amplitude, that makes it formally similar to a KA integral with an

unknown multiplicative correction of the integrand. This guarantees the geometrical

properties that a scattering amplitude should satisfy a priori. By construction, SSA

respects the proper shifting that follows from horizontal and vertical translation of the

surface (in that it is already superior to SPM), as well as reciprocity. The unknown

correction to a reference plane is sought in a functional Taylor expansion of roughness.

This is done by requiring consistency with SPM at all orders in the limit of small

roughness, together with some intuitive (as it turned out later, [155, 156]) choice of

gauge to remove certain arbitrariness in the identification of coefficients. In practice,

the expansion is performed at the lowest two orders only, for higher terms become too

involved. The functional form of SSA at second order (SSA2) is:

S(k, k0) =
1

Qz

∫
e−iQzh(r)e−iQH ·r

(
B(k, k0)− iQz

∫
M(k, k0; ξ) h(ξ)eiξ·rdξ

)
dr, (5.21)

where:

M(k, k0; ξ) =
1

2
(B2(k, k0; k − ξ) + B2(k, k0; k0 + ξ)− B(k, k0)) . (5.22)

The first integral taken alone in (5.21) is the first-order SSA (SSA1). Here B and B2

are the first- and second-order kernels of SPM, respectively.

Contrary to most perturbative approaches, the expansion is not performed with

respect to a well-determined small parameter, but is realized as a functional series

of surface roughness. Dimensional arguments have lead Voronovich to identify the

successive iterations as orders in roughness slopes (whence the terminology). However,

further discussions and numerical tests have clearly demonstrated that the expansion

cannot be recast in powers of a single parameter [157, 158, 159]. SSA at first- (SSA1)

and second- (SSA2) order has been abundantly discussed and tested against rigorous

methods, essentially in the 1D case [30, 160, 161, 162]. Its qualitative predictions for

scattering on anisotropic sea spectra have been studied [163, 38, 164], but only recently

was it compared to 2D rigorous numerical [158] and experimental [165, 166] results. It

turns out from these experiments that SSA1 considerably extends the validity domain

of SPM, but remains outperformed by KA for large roughness in the domain where this

last method is known to be accurate. SSA2, however, seems to be remarkably accurate

and possesses some desirable properties than SSA1 does not display: it reduces exactly
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(in the conducting 2D case) or approximatively (in the dielectric 2D case) to KA in the

high-frequency limit [167], accounts properly for the large-scale tilting effects [19] and

can be incorporated advantageously in a two-scale model [168]. The main limitation

of SSA2 is its numerical complexity. It involves a double integral (one space and one

frequency variable) with an oscillating complex-valued kernel that exhibits branch cuts

and singularities. For this reason SSA1, which is given by a single integral as KA-HF,

remains mostly employed, and 2D numerical implementation of SSA2 was achieved only

recently [169, 166] in the statistical case.

SSA2 can be transformed to produce a manifestly reciprocal version of PPM,

including the dielectric vectorial case. This can be done easily by noting that the

functional (5.21) is obtained from the PPM functional (5.19) by mere linearization of

the exponential. This was first suggested by Berman and Dacol [62] in the 1D Dirichlet

case. The same observation can be used to produce a statistically tractable version of

SSA2, by making the reverse transformation (that is turning SSA2 to a PPM functional

form), as was done for instance in [165].

Several authors have tried rigorous mathematical approaches to SSA. Tatarskii

[155, 170] developed the Quasi-slope expansion (QSE) and McDaniel [171] the Extended

Small-Slope Approximation (ESSA) in the acoustic case. They proceed from the

extinction theorem or the Meecham-Lysanov method, respectively. Then, they seek

the surface single-potential in a functional Taylor series of height and find recursively

the coefficients. They resort to a small-slope condition at some point to render the

formulas tractable (actually at lowest-two orders). Some a priori assumptions, such

as reciprocity at every order, and gauge arbitrariness are relaxed, but the obtained

approximations are close variants to SSA. ESSA does not reduce to SPM2 due to the

presence of an asymmetric kernel in addition to that of SSA2. Another attempt to

derive SSA from first principles was made by Elfouhaily et al [157, 172] in the 2D

conducting case. Inspired by an earlier work of Holliday [173] in the backscattering

case, they proceeded through iterations of the surface current equation together with

refined small-slope approximations on the phase of the integrand. They obtained the

scattering field in a Kirchhoff functional form, which was only later [159] recognized to

coincide with SSA1.

Even though SSA2 requires a double integration, it does not take spatial non-

local effects into account (this can be seen in the high-frequency limit where it reduces

to the mere first order KA or GO1). To remedy this limitation, an improvement

of SSA was proposed by Voronovich himself [174], namely the Non-local Small-Slope

Approximation, NLSSA. Its Ansatz is identical to that of Meecham-Lysanov Method

(MLM). This method is in principle superior to SSA, but is difficult to use in practice.

It implies a triple oscillating integral which is unsuited to numerical applications. The

only numerical simulations we are aware of have been performed in the 1D Dirichlet

case for specific spectra [175, 176, 177, 178]. More recently, Elfouhaily et al [179, 180]

also adopted the MLM and NLSSA Ansatz for the Non-local Curvature Approximation

(NLCA).
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5.4. Operator Expansion Method

The Operator expansion Method (OEM) originated from Hydrodynamics [181, 182, 183]

and was first adapted to rough surface scattering by Milder for the 1D acoustic problem

[184]. It was subsequently extended to the 2D acoustic [185] case and to the conducting

[186] and dielectric vectorial problems [187]. The principle of OEM is to express the

scattered field as a Green-Helmholtz surface integral involving the so-called Dirichlet-

to-Neumann Operator (DtN). The DtN relates the value of the field at the surface to

the value of its normal derivative, one of which (Dirichlet or Neumann problem) or a

combination of which (dielectric case), is prescribed by the boundary condition. The

DtN is explicit for plane waves and can be sought in a functional series of height, whose

successive orders are determined recursively. It is only the DtN, and not the field itself,

that is expressed pertubatively and thus it is only a partial height expansion. This

makes the validity domain of OEM much wider than SPM. In the 1D acoustic case

[184], OEM was shown to reproduce analytically the SPM and KA expressions in the

appropriate limits. The functional form of OEM is:

S(k, k0) =

∫
e−ik·r−iqkh(r) N(k, k0; [h]) eik·r−iq0h(r)dr, (5.23)

where the kernel operator N(k, k0; [h]) is formally expanded in powers of surface

elevation h. In the acoustical case, the OEM kernel N does not depend on the scattering

geometry and thus the scattering amplitude is manifestly reciprocal. This is not the

case under general dielectric conditions.

The OEM iterations can be formally written as a succession of Fourier

multiplicators, that can be efficiently implemented by FFT. At the first level (actually

zero-th order for the DtN), the scattering amplitude is already a non-local triple integral

coinciding with Meecham-Lysanov method (at least in the Dirichlet case). The OEM is

very well adapted to the scalar problem but the vectorial formulation remains obscure

and has been in fact of little use. Numerical experiments have been performed for the

1D [184, 188] and 2D [185] Dirichlet case and for the vectorial case [186, 187]. For 1D

surfaces with Gaussian and Pierson-Moskowitz spectra [188], the OEM at first-order

appears superior to both KA and SPM, and to extend their added domains of validity.

For sinusoidal gratings [184, 186, 187] it was also shown to remain accurate for RMS

heights that go well beyond the perturbative domain and in any case superior to SSA1.

Statistical formulas are given in the 1D acoustic case and for the coherent field only

[189].

5.5. Tilt-Invariant Approximation

An important property that an approximate method should satisfy to cope with large

scales is the so-called tilt-invariance, as was recalled in the first section. It is the ability

to treat correctly perturbations of a slightly tilted plane. While this is not satisfied

by SSA1 and was only checked recently for SSA2 [19], Charnotskii and Tatarskii [190]

constructed a method that would primarily account for the tilting effect, namely the
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Tilt-Invariant Approximation (TIA), which they presented for the Dirichlet problem

only. They chose to write the surface current as a multiplicative unknown correction

to the Kirchhoff current, which is exact for a tilted plane. The unknown function is

sought, as usual, in a perturbative expansion that would be consistent with SPM. The

lowest order of the expansion leads back to KA, while SPM1 is recovered with the first

two terms:

S(k, k0) =
K(k, k0)

Qz

∫
e−iQzh(r)e−iQH ·rdr − i

∫∫
T1(k0; ξ)h(ξ)e−iQzh(r)e−i(QH−ξ)·rdξdr

+

∫∫∫
T2(k0; ξ1, ξ2)h(ξ1)h(ξ2)e

−iQzh(r)e−i(QH−ξ1−ξ2)·rdξ1dξ2dr. (5.24)

TIA is however not reciprocal in its correction to KA. Note that the first two integrals

possess the functional form of SSA2. Elfouhaily et al [159] actually demonstrated that

one could operate a simple gauge function change on SSA2 which transforms it into

TIA decomposition. The functional form of TIA motivated the finding of a new general

model for dielectric surfaces which is termed the local curvature approximation LCA

[191, 179]. LCA can be seen as a generalization of TIA to the dielectric case. The issue

of gauge arbitrariness and possible connection between models will be discussed in more

details in a later section.

5.6. Local Weight Approximation

In a series of papers [18, 192, 193], Dashen and Wurmser developed a novel formalism

for scattering from rough surfaces, which is intermediate between variational and

perturbative methods. They investigated the change of scattering amplitude resulting

from a infinitesimal variation of the rough surface itself (and not of a reference plane) and

deduced some interesting properties for the latter. In the 2D acoustic and conducting

case, they showed that, to first order in curvature, the scattering amplitude can be

written as a TPA integral with a local kernel, which is the solution of a differential

equation that is solved explicitly. They consequently obtained an expression of the

same complexity as the TPA, that takes into account curvature effects. LWA functional

form is:

S(k, k0) =
1

Qz

∫
G(k, k0;−Qz∇h) e−iQzh(r)e−iQH ·rdr. (5.25)

In addition, this approximation recovers the SPM and KA limits, is reciprocal

and tilt-invariant. The authors did not give a name to their new method, but it was

referred to by Milder [184] and subsequently others as Local Weight Approximation

(LWA). The main limitation of LWA is its inapplicability to the dielectric case, since

the differential equation for the local kernel becomes inextricable (due to the complex

slope dependence of the Fresnel coefficients). Albeit powerful, this approach remained

relatively unknown, perhaps because it has been developed by theoretical physicists

outside the radar community.
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5.7. Weighted Curvature Approximation

Recently, Elfouhaily et al [191, 179] derived a model inspired from Dashen and Wurmser

Ansatz, which they named the Weighted Curvature Approximation (WCA). They

arrived at a scattering amplitude which is a correction to SSA1 that possesses the

structure of LWA, namely a Kirchhoff integral with a local unknown kernel, and

construct such a kernel with all desirable properties: reciprocity, compatibility with

SPM1 and KA limits and shift- and tilt-invariance. This kernel includes curvature

effects since it is quadratic in its lowest order when expanded about zero. It is based on

a combination of SPM1 and KA kernels, evaluated at local angles. WCA is written as:

S(k, k0) =
1

Qz

∫
{B(k, k0)− T(k, k0;−Qz∇h)} e−iQzh(r)e−iQH ·rdr, (5.26)

where

T (k, k0; ξ) = B
(

k + k0 + ξ

2
,
k + k0 − ξ

2

)
−K

(
k + k0 + ξ

2
,
k + k0 − ξ

2

)
. (5.27)

Contrary to LWA, WCA enjoys a dielectric statistical formulation. The method

was tested on surfaces with Gaussian spectrum [194] and was shown to improve both

KA and SSA1 in some range of moderate roughness and in co-polarization. It is unable,

however, to predict a correct cross-polarization in the incidence plane. This is not

surprising since WCA is a local model.

5.8. Wiener-Hermite Approach

Nakayama (acoustic case) and Eftimiu (electromagnetic case) have employed a

probabilistic approach, that we will refer to as Wiener-Hermite Approach (WHA) to

the scattering problem. They consider the scattered field as a nonlinear stochastic

functional of the random surface, that can be expanded on a basis of orthogonal

processes. This is done via a functional Wiener-Hermite expansion. The unknown

deterministic coefficients are then found either by imposing consistency with SPM

[195, 196, 197, 198, 199, 200] or via the surface current equation [201, 202, 203]. Eftimiu

later refined this approach with an Ansatz similar to TIA: the surface current is written

as an amplitude correction to the Kirchhoff current and sought in a functional Wiener-

Hermite expansion. This last method is termed Phased Wiener-Hermite approach by

his author [204, 205]. The SPM1 limit is recovered at first order, but not the KA limit.

The diffuse scattering cross-section of WHA can be written as follows:

σ0(k, k0) = e−Q2
zρ(0)

{
δQH

F(k, k) +

∫
F(k, k; ξ)Ψ(ξ)dξ (5.28)

+

∫∫
F(k, k; ξ, ξ)Ψ(ξ)Ψ(ξ)dξdξ

}
,

where ρ(r) and Ψ(ξ) are the surface autocorrelation function and the surface power

spectrum, respectively. WHA is structurally equivalent to SPM in its statistical

formulation.
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WHA is in principle well-adapted to the statistical case as it is readily available

in ensemble averaged form, but in practice the analytical derivation of the Wiener-

Hermite functional expansion and the resulting expressions for the surface currents

become inextricably complicated beyond the first-order.

5.9. Unified Perturbation Expansion

In the Unified Perturbation Expansion (UPE), Rodriquez et al [206, 207, 208] pursued

the former idea of the momentum transfer expansion (MTE) but changes the small

parameter from QH/Qz to Wzh(r). SPM and KA are recovered with the lowest two

orders of the corresponding perturbative expansion, and SPM2 with the third order.

UPE in our notation becomes:

S(k, k0) =
K(k, k0)

Qz

δQH
− i

∫∫
F1(k0; ξ)h(ξ)e−iQzh(r)e−i(QH−ξ)·rdξdr (5.29)

+

∫∫∫
F2(k0; ξ1, ξ2)h(ξ1)h(ξ2)e

−iQzh(r)e−i(QH−ξ1−ξ2)·rdξ1dξ2dr.

This model is not reciprocal by construction since the expanded current is function

of the incident wave alone. Another limitation of UPE is that it is available for perfect

conducting surfaces only.

5.10. Full-Wave Approach

The Full-Wave Approach (FWA) has been introduced and developed over many years by

Bahar in the 1D case [209, 210, 211, 212, 213, 214], then modified to include local slope

dependence and extended to the 2D case [215, 216, 217, 218]. The surface is seen as the

lower boundary of a semi-infinite waveguide and the scattered field is decomposed over

a basis of local modes, with unknown coefficients. These local spectral components are

shown to satisfy a differential equation of propagation along the lateral direction, the

so-called telegraphist equation for cable and waveguide transmissions. Under further

approximations such as a small-slope assumption, the equation can be solved iteratively

by the method of subsequent approximations. In the 1D Dirichlet case, the first iteration

was recognized by Voronovich [9] to coincide with SSA1. As early as 1980, Bahar [219]

showed a version of his model fully compatible with SSA1 as we know it today.

Ever since FWA was introduced by Bahar in early seventies, it has been

continuously evolving at a rate of more than one paper a year on average, and it is

therefore difficult to accomplish a thorough review of this model in a short paragraph.

The functional form of FWA can be written as:

S(k, k0) =

∫
D1(k, k0;−Qz∇h) [e−iQzh(r) − 1]e−iQH ·rdr

+

∫∫∫
D+

2 (k, k0; ξ, [∇h])e−i(k−ξ)·r1−i(qk+qξ)h(r1)ei(k0−ξ)·r2−i(q0−qξ)h(r2)dξdr1dr2

+

∫∫∫
D−

2 (k, k0; ξ, [∇h])e−i(k−ξ)·r1−i(qk−qξ)h(r1)ei(k0−ξ)·r2−i(q0+qξ)h(r2)dξdr1dr2, (5.30)
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which encompasses all published, local and nonlocal, forms of FWA over the years. For

the local form we selected equation 2.12 in a recent revision of FWA [220]. The nonlocal

form comes from equation (1) in [221] with some adaptation to our notation.

The first integral in (5.30) is similar to SSA1 but with the kernel expressed in a

local frame of reference. This kernel enjoys the properties

D1(k, k0; k − k0) = K(k, k0) (5.31a)

D1(k, k0;0) = B(k, k0) (5.31b)

The first property ensures that the high-frequency limit or the Kirchhoff approximation

(KA). The second property yields the correct low-frequency limit SPM1 by relying too

heavily on the (-1) term between square brackets in (5.30). This (-1) term corresponds

to the diffraction field GD in equation 2.12 [220]. Indeed, if the (-1) term is dropped,

FWA will tend to KA for both low and high frequencies, see Thorsos and Winebrenner

[222]. Keeping this (-1) will cause a side effect by contaminating the ensemble averaged

radar cross section even away from specular, see Thompson and Chapman [223]. In this

paper, it was also demonstrated that FWA breaks even for a tilted planar surface which

jeopardies its tilt invariance property. It is obvious that the shift invariance property is

also not satisfied due to the same (-1) term.

The nonlocal kernels Ds
2 in the other multiple integrals (5.30) are merely expressible

as the product of two first-order coefficients D1. The additional integrals are recent

heuristic modifications of FWA to account for multiple scattering [135, 224, 221].

The FWA is essentially and originally a 1D method, as it relies on the telegraphist

equations, and the attempts that have been made by the author to extend it to

higher dimensions call on additional simplifying assumptions which are not always

mathematically justified. In an excellent critical review on the FWA, Collin [225, 226]

provided a clean and self-contained derivation of the 2D case and made comparisons

with other approximate methods. FWA is shown to reproduce SPM in the small-

roughness limit, but the KA limit is only recovered via the half-sum of the co-polarization

coefficients. FWA has been constantly improved and refined by his author and some

2D comparisons with experimental data are made [227], where it is found in better

agreement with data than KA and SPM. However, our subjective opinion is that FWA is

analytically as well as numerically very involved while the resulting gain in accuracy over

other unifying methods is not established. Moreover, the long series of mutually referring

papers and the successions of different versions of FWA that have been developed by

Bahar over thirty years render its understanding and numerical implementation difficult

to even advised users.

Two other scattering models were derived in a similar manner to FWA. The first

is the Local Spectral Expansion Method (LSEM) developed by Garćıa-Valenzuela and

Collin [228, 229] for 1D surfaces but for both conducting and dielectric cases. Their

first-order model is formed by the sum of two single integrals. The first integral is the

high-frequency Kirchhoff while the second is an original form where Wz = qk−q0 replaces

the standard vertical component of the momentum transfer Qz = qk + q0. The second
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order functional form is similar to that of SSA2 [31] and it helps the model retrieve the

low-frequency SPM2 limit. The expression of the total LSEM is:

S(k, k0) =
K(k, k0)

Qz

∫
e−iQzh(x)e−iQHxdx +

B(k, k0)−K(k, k0)

Wz

∫ (
e−iWzh(x) − 1

)
e−iQHxdx

−i

∫∫
F(k0; ξ)h(ξ)

(
e−iqkh(x) − eiqkh(x)

)
e−i(QH−ξ)xdξdx, (5.32)

where both SPM1 and SPM2 are reached. The Kirchhoff limit is, however, not formally

reached away from specular or backscatter where Wz = 0. LSEM fails also some other

fundamental properties such as reciprocity, shift and tilt invariances.

The other method based on a modification of FWA derivations is the Correction

Current Method (CCM) by Schwering et al [230]. The model has a single integral form

similar to the tangent plan approximation. The kernel of CCM is formed in its constant

part by that of SPM1 in the spirit of SSA1 and FWA. The variable part of the kernel is,

however, original and depends simply on a quadratic form of the surface slope. CCM is

hence very structurally similar to WCA [179] with the inclusion of less orders of surface

slope. CCM exists only for 1D perfect conducting surfaces and reads:

S(k, k0) =
B(k, k0)

Qz

∫ [
1 + αh′

2
(x)
]
e−iQzh(x)e−iQHxdx. (5.33)

CCM does not reach the Kirchhoff approximation or the Physical Optics under the high

frequency limit. However, the KA scattering amplitude is recovered through the half-

sum of Dirichlet and Neumann scattering amplitudes. CCM does, however, reproduce

the SPM1 low-frequency limit and stays reciprocal and simple to implement.

5.11. Improved Green’s Function Methods

Another variety of unifying theories can be grouped under the common denomination

of Improved Green’s Function Methods (IGFM). It is based on an improved choice of

the Green’s function in the Green-Helmholtz surface integral expressing the scattered

field. Kodis [231, 232] and Krill and Andreo [233] combine the variational principle

with the use of half-space Green’s functions. Berman and Perkins [234] invoked the

Half-space Green’s function in conjunction with the Kirchhoff current in the scalar case,

a procedure which was extended by Shaw and Dougan to the 2D conducting [235] and

dielectric [236] case. They obtain a hybrid formula for the scattering amplitude, which

is written as the sum of a KA term and an SPM-like term:

S(k, k0) = K(k, k0)
1

Qz

∫
e−iQzh(r)e−iQH ·rdr − i[B(k, k0)−K(k, k0)]h(QH). (5.34)

This expression is compatible with both SPM and KA in the appropriate limits to within

a small bias in the high-frequency limit due to the corrective term in h(QH). This model

does not preserve the required shift and tilt invariance properties.
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5.12. Volumetric methods

There is a category of approximate methods which we call volumetric because they

consider the case of a rough interface between two homogeneous media as a particular

space distribution of permittivity. The most famous is the Born approximation (BA)

which dates back to the early works of Quantum Mechanics (e.g. [237]) and was first

applied to general homogeneous rough surfaces in the context of X-ray and neutron

scattering [238]. The BA refers to a family of methods in which the unknown field

satisfies a Lippmann-Schwinger equation, that is essentially an integral equation of

second kind, with a “potential” term and a Green’s function in the integrand. This

is the usual representation of solution of the Schrödinger equation, but the electric field

satisfying Maxwell’s equations can also be put in this form, using the dyadic Green’s

functions and the permittivity contrast as potential. The solution can then formally be

expressed as an iteration series (the so-called Born- or Neumann series). The zeroth

iteration is the free field of the reference problem. The Born approximation corresponds

to the first iteration. In the context of scattering by rough surfaces, the incoherent

scattering amplitude takes the form:

S(k, k0) = U(k, k0)

∫
e−iQH ·re−iQzh(r)dr. (5.35)

This expression is structurally identical to SSA1 and KA-HF, but coincides with neither

of them. A consequence is that it does not recover SPM1 in the limit of small heights.

For small contrast, however, the kernel becomes identical to that of SSA1. Precisely, U
can be obtained from the SSA1/SPM1 kernel B by making the replacements q′0, q

′ → q, q0

and εq → q. The Born approximation is valid when the permittivity contrast between

the two media is small, regardless of the roughness. Therefore the BA is mostly used

in X-ray surface scattering, a regime in which the contrasts are extremely weak. The

main weakness of the BA is that it does not take properly into account the reflection

by the surface and therefore fails as one approaches the so-called critical angle, at

which total external reflection occurs [239, 240]. Another (related) shortcoming of

the method is its inconsistency with SPM1 in the limit of small heights. A great

improvement of BA in this respect can be obtained by choosing a more adapted reference

problem, namely the flat surface between two media. In that case the free space Green’s

function is replaced by the half-space Green’s function, that depends explicitly on the

Fresnel reflection coefficient at the plane interface . This is the so-called Distorted-

wave Born Approximation (DWBA), a method which takes again its roots in Quantum

Mechanics [237] and was developed in the eighties for X-ray scattering by rough surfaces

[239, 241, 240]. The incoherent scattering amplitude obtained by retaining the first-

iteration takes the following form:

S(k, k0) =
∑

s,s0=±1

Us,s0(k, k0)

∫
e−iQH ·rei(sq+s0q0)h(r)dr, (5.36)

where the sum runs over all possible signs s, s0 (four possibilities) and hence induces

different kernels. This method is known to provide accurate results as long as
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√
∆εQzh < 1, where ∆ε is the contrast of permittivity. The analytical expression (5.36)

can be further expanded in height to obtain SPM1 (it was in fact already known [242]

that a perturbative height expansion based on a Lippmann-Schwinger equation with

half-space Green’s function is consistent with SPM1). The advantage of a perturbative

approach based on volumetric method is the possibility to treat non-homogeneous media.

With a further iteration on the integral equation, the small-perturbation expansion up

to second-order in height can be recovered for rough deposits on top of homogeneous

substrates with different permittivity [243] or even heterogeneous rough deposits on

layered substrates [244].

The Mean-field theory (MFT) [245, 246] is a volumetric and statistical approach

to rough surface scattering inspired from DWBA. The roughness interface is seen as a

permittivity fluctuation in the strip limited by the maximum excursions of the surface.

A mean dielectric permittivity is obtained for each elevation by averaging over the

horizontal direction. Sampling over different elevations, a reference problem is defined

as a multi-layer medium whose Green’s function can be computed numerically. The

DWBA is then applied to this reference problem and an ensemble average is performed

to obtain the first two statistical moments of the electric field. This leads readily to the

mean diffuse intensity and the corresponding expression depends in a simple manner

on the reference field and Green’s function and the surface height-correlation function.

The method is semi-analytical inasmuch as the multi-layer Green’s function has to be

first computed numerically. The corresponding cross-section is of the form:

σ0 =

∫
U(k, k, z

′; ρ)U∗(k, k, z
′′; ρ)dz′dz′′

∫
e−iQH ·rL(r, z′, z′′; ρ)dr (5.37)

where L is an explicit functional with respect to the surface autocorrelation function

ρ(r) and ρ0 = ρ(0). U is related to the multi-layer field and Green’s function and

depends only on the surface via its RMS height. The key parameter for the validity

of the method is the permittivity contrast, which must remain moderate (∆ε < 2).

Contrary to practically all surfacic approaches, the MFT becomes more accurate at small

correlation lengths, at a given level of (moderate but non-perturbative) RMS roughness

and permittivity. It is thus able to cope with surface parameters that do not fall in the

(known or supposed) validity domain of any surfacic method, typically for correlation

length and RMS height that are one third of wavelength. The reason is that fast

permittivity fluctuations are in favor of the homogenization process that is done at each

elevation. This has been confirmed by numerical [245, 246] as well as experimental [247]

tests. The MFT has also been numerically shown in excellent agreement with SPM1

for small roughness and moderate permittivity. Its main limitations are its restriction

to small and moderate roughness and the inability to predict cross-polarization in the

incidence plane.
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5.13. Integral Equation Method

In the late 1980’s, the Integral Equation Method (IEM) model was developed to bridge

the gap between SPM and PO models [248]. Initially an IEM version covering the

scattering from perfectly conducting surfaces was published [249, 250]. Subsequently

the IEM model was extended to include the case of scattering from a dielectric rough

interface [251, 10]. IEM is essentially a second iteration of the iterative Kirchhoff

approximation [114, 96]. It provides an iterative solution of the pair of integral equations

for the tangential components of the electric and magnetic fields, at the dielectric

interface, developed by Poggio and Miller [252]. The expressions of the tangential surface

fields are sought as the superposition of the Kirchhoff surface fields and corrective terms

originated by the complementary surface currents. Hence, IEM has this functional form:

S(k, k0) =

∫
F1(k, k0;−Qz∇h) e−iQzh(r)e−iQH ·rdr (5.38)

+

∫∫∫
F+

2 (k, k0; ξ, [h])e−i(k−ξ)·r1−i(qk+qξ)h(r1)ei(k0−ξ)·r2−i(q0−qξ)h(r2)dξdr1dr2

+

∫∫∫
F−

2 (k, k0; ξ, [h])e−i(k−ξ)·r1−i(qk−qξ)h(r1)ei(k0−ξ)·r2−i(q0+qξ)h(r2)dξdr1dr2.

One drawback of this approach is that the conditions for the convergence of the

iterative series are not known a priori. For instance, the parameter which should be

considered as small for this approach depends on the statistics of the rough surface under

study. To obtain the scattering coefficient expressions of 1D rough surfaces in a relatively

simple form several additional approximations are made in the IEM model (for a critical

review see [136]). In the low frequency region (i.e. Ks < 2, K being the impinging

wavenumber and s the surface RMS heights), the scattering coefficient consists of

single and multiple-scattering contributions. The single scattering term is a mere

Kirchhoff approximation, whereas the multiple scattering terms are given as three-folds

bidimensional integrals (quite demanding in terms of numerical computation). Some of

the assumptions made in the IEM development have subsequently been recognized as

simplistic by the same original authors. This is the case of the spectral representation

of the Green’s function (as well as of its gradient) where one of the phase terms was

arbitrarily dropped leading to wrong results for the computation of cross-polarized

components (i.e. multiple-scattering contributions). In addition, for slightly rough

surfaces, the IEM fails to reproduce SPM in the general bistatic geometry [157]. An

improved version of IEM was released in 1997 [253], then a further corrected version

was published in 2000 [254]. The expressions of co-polarized scattering coefficient

(i.e. single scattering contribution) as well as the general IEM expressions (including

multiple-scattering terms) have been continuously amended until recently [136, 255, 256].

Extensions of the IEM model to take into account multi-scale roughness statistics have

also been suggested [257, 258]. The IEM accuracy should deteriorate at large incidence

angle and for small radius of curvature of the rough surface. The IEM predictions of co-

polarized backscattering coefficient rough surfaces with moderate slopes and heights

have been widely investigated through numerical and experimental studies (see for



CONTENTS 26

instance [10, 259, 260]), where reasonable agreement was found.

6. Connections between functional forms

6.1. Local and non-local models

In the course of this review we several times employed the terminology “local” and

“non-local” for the different models. Although these concepts are rather intuitive in

terms of scattering process, it is difficult to give a general mathematical definition. We

propose to term a model local if the corresponding scattering amplitude can be written

as a single space integral with a kernel that depends only on the surface and a finite

number of derivatives (in general zero, one or two) at a given point. The generic form

of a local model is:

S(k, k0) =

∫
F[k, k0; r; h(r); (∇h)(r); ..; (∇nh)(r)]dr (6.39)

SPM1, TPA or WCA are examples of local models. A model will be referred to as non-

local of degree (p, q) if the associated SA is a functional in h(r) and h(ξ) that requires

at least p + q integrations, with p ≥ 0 spatial and q ≥ 1 spectral variables. The generic

form for S(k, k0) is:∫
F[k, k0; r1; ..; rp; ξ1; ..; ξq; h(r1); ..; h(rp); h(ξ1); ..; h(ξq)]dr1..drpdξ1..dξq (6.40)

Note that possible derivatives of h can be absorbed in the Fourier integrals. The

dependence of the kernel on the Fourier variables ξ must not be solely polynomial,

otherwise the integral can be reduced to a local form. For instance, SPM2, PPM, MLM

and TIA are non-local (0, 1), (1, 1), (2, 1) and (1, 2), respectively. Whenever a model

has a purely statistical formulation (such as GO), we will apply the same terminology

to its scattering cross-section.

The relevant question one might ask now is whether there are any possible

connections between these models. What is the transformation that reduces a non-

local model to a local one? Positive answers to these questions clarify most models and

help understanding not only the functional forms but also the corresponding kernels.

Indeed, most previously listed models share roughly the same functional form but with

major differences in their coefficients or kernels. Building bridges across models could

also be seen as a criterion of cross-validation of kernels in use. Connection between

models can be established in two ways: by a gauge transformation (which preserves the

degree of non-locality) or by reduction of spatial integrals.

6.2. Gauge transformation

The main difference between SSA (5.21) and TIA or LCA (5.24) is that the first single

integral is multiplied by the SPM1 kernel instead of the Kirchhoff one. This minor

difference has a fundamental repercussion on the second order kernel in the double

integral. It also indicates that there is some arbitrariness in the separation of the



CONTENTS 27

scattering amplitude in the sum of a single and double integrals. The possibility of gauge

arbitrariness was already discussed by several authors including [9, 155, 171, 191, 179].

In this prospect, we provide the reader with a general gauge function which transforms

SSA2 (5.21) to TIA/LCA-form (5.24) (discarding the third integral). This gauge

function changes the first- and second- orders SSA according to

B(k, k0) ⇒ K(k, k0), (6.41a)

M(k, k0; ξ) ⇒ M(k, k0; ξ)− [B(k, k0)−K(k, k0)]
W H

Wz

· ξ

Qz

. (6.41b)

This transformed second-order kernel does not necessarily coincide with that of LCA or

TIA. However, the gauge transformation makes the functional forms agree.

6.3. Reduction of non-local models

Two major families of non-local models can be identified in our previous extensive list of

functional forms. The first is based on the Meecham-Lysanov form (5.18). The second

family regroups all iterative Kirchhoff models as in (4.16). While it seems difficult

to establish links between these families, it is possible to compare their respective

transforms after a reduction process from a double spatial integral to a single one.

This reduction process is not trivial but can be outlined succinctly as follows. Let us

employ the triple integral in (4.16) as a general form which includes MLM (5.18) if the

s = ± sign is set to zero and the kernel to φ. We first start by defining the change

of variable inspired from [171], (r1, r2) ⇒ (u1 + αu2, u1 − (1 − α)u2) where α is an

arbitrary positive parameter (0 ≤ α ≤ 1). This change of variable translates the fact

that the mathematical limit of the non-local model when r1 tends to r2 depends on how

the two vectors approach each other. This arbitrariness in taking the limit is reduced

in our derivation to the sole arbitrary parameter α. The reduction process yields a

constant coefficient and a kernel which will be placed in the single and double integrals

as in (5.21), respectively. These reduced coefficients are

B̃(k, k0) = Ks
2(k, k0, kα), (6.42a)

M̃(k, k0, ξ) = (qk + sq
ξα

)Ks
2(k, k0, ξα)− (qk + q0)Ks

2(k, k0, kα)

+(q0 − sq
ξ+ξα

)Ks
2(k, k0, ξ + ξα) (6.42b)

where kα = αk + (1 − α)k0 and ξα = kα − αξ. These transformations can be applied

with particular choices of α. All the previously listed non-local models can be reduced

to the SSA (5.21) and LCA (5.24) functional forms by setting α to 0 or 1 and q0/Qz,

respectively. A perfect counter example of the SSA-LCA decomposition is when one

takes α = 1/2 in the reduction of the non-local models. In this case, the reduced model

preserves all the limits reached by its non-local parent even though Kirchhoff and SMP1

kernels are not readily apparent in the analytical decomposition.
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7. Synthetic tables

To summarize and possibly complete all the properties of the different methods that are

discussed in the core of this review, we propose a set of synthetic tables, which we hope

retain and outline the most important features. Table 1 recalls the abbreviations that

are in use for the different methods. Any acronym of the form XXXN will refer to the

method XXX at N th order (for instance GO1, SPM2, SSA1, etc...). In Table 2, we tried

to identify the main principles underlying the construction of the approximate methods.

We listed the models according to the number of properties in common, starting from

the most basic ones (lower numbers). This corresponds to a “first-filled column” or

lexicographic order. For practically all the methods, the starting point is either a closed

(first- or second-kind) integral equation for the surface field and /or its derivative (which

we regroup under the vague denomination of surface currents), or some requirement

for the scattering amplitude (such as e.g. matching the boundary conditions, as in

the Rayleigh-Rice procedure, or satisfying several geometrical properties, as in the

SSA). The exception is the family of volumetric methods, which start from volume

integral equations for the electric field. Then we inventoried the most usual recipes

that are suited to derive a surface current or a scattering amplitude. There are a

limited number of them: guessing a structure for the unknown field/amplitude and

operating a perturbative expansion or requiring consistency with SPM in the small

height limit, iterating the integral equations, choosing an appropriate reference Green’s

function, estimating oscillatory integral by means of the stationary phase approximation.

Table 3 presents the list of properties that are satisfied by the different methods. The

most discriminating criterion in our opinion is that the method be not restricted to

a particular non-realistic case (1D or conducting surfaces) and be able to treat the

most general dielectric vectorial problem. Then, there are several a priori properties

that a scattering amplitude should satisfy, as mentioned in Section 2: reciprocity, shift

invariance, tilt invariance. Satisfying these abstract properties does not ensure that

the method will be systematically accurate in various roughness domains, but it is

a universal and systematic criterion to see whether an approximation can be a good

candidate for a given type of surface. For example, a method that does not satisfy the

shift invariance (such as SPM) has no chance to hold beyond the perturbative regime

(small roughness), a method that does not possess the tilt-invariance property will not

be able to cope with surfaces with large scales, etc...A further important test is that the

method satisfy the fundamental high- and low-frequency limit, namely GO1 and SPM1.

This ensures that the method be at least as good as the latter. Checking in addition

that the method is not restricted to small height or large correlation lengths indicates

an actual extension of validity domain with respect to the SPM1 and GO1. Finally, an

important criterion from a practical point of view is the existence of statistical formulas

for the cross-section and an efficient numerical implementation (which should be fast,

stable and easy). Note that this notion of numerical efficiency is quite subjective and

we chose to remain vague in this statement. By “fast” we mean essentially an analytical
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expression that involves a single integral when it comes to local model, and the extensive

use of FFT or a small number of integrations (given by the degree of non-locality) when

it comes to a non-local model. By “stable” we means that the integration procedure is

not complicated by the occurrence of a singular, oscillating or diverging kernel, which

would require heavy over-sampling or specific quadrature rules. By easy, we mean that

there exists an explicit, readable and ready-to-implement formula for the scattering

cross-section. We added some extra suitable properties for a non-local model: to be

able to predict a correct cross-polarization in the incidence plane (a requirement that

no local model is able to meet) and to satisfy the second-order fundamental high- and

low-frequency limit SPM2 and GO2. We have adopted the following diagrammatic rule

to read the table: any “positive” feature of a method is accounted for by a box (empty,

crossed or filled). We make a distinction between properties that are inherent to the

model (satisfied “by construction”) and those which are a suitable but not necessary

outcome (satisfied “upon inspection”). We left an empty square for the models that

satisfy a property only partially or under special conditions (specular, backscattering,

conducting case, etc...). Once again, we insist on the fact that a method will not be

more accurate in general than another one just because it has more boxes in the Table.

These desirable properties serve as indicators of the “good” candidates to perform well

across the regimes.

8. Conclusion

We provided a review of approximate scattering wave theories from random surfaces

in a unified notation that put the emphasis on the functional form of the scattering

amplitude. We classified the models in three families, that follow approximatively

the historical evolution. The low-frequency models (SPM and variants), the high-

frequency approximation (Kirchhoff and variants) and the so-called unified methods,

that aim at bridging the gap between the former two. We tried to outline the main

principles of the methods, the list of which is recapitulated in Table 2. We attempted to

evaluate the different methods according to a dozen of general criteria which we believe

are fundamental. The different performances are synthesized in Tables 3 and 4. We

made a distinction between local and non-local models, for which we proposed a precise

definition. Some horizontal and vertical links between non-local models are developed

in order to explain their apparent differences. At the present time, there does not

seem to be a universal method that is to be preferred systematically. All the methods

present a compromise between versatility, simplicity, numerical efficiency, accuracy and

robustness, with a different weighting in these various fields. At a first glance at the

tables, it appears obvious that no approximate model has fulfilled all listed criteria.

Moreover, most models did not even satisfy half of the requirements. One should also

mention that a fair comparison can only be accomplished between models that address

the same scattering problem (acoustic, conducting, dielectric, 1D, 2D, etc ...). There is

still room for improvement in the development of approximate scattering methods, and
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we hope the check-list of performances we proposed in Tables 3 and 4 will help future

researchers and users.

Appendix A. Recapitulation of our vector notation

Incident and scattered wavenumbers and their related variables are defined as follows

K0 = k0 − q0ẑ (A.1a)

K = k + qkẑ (A.1b)

qk =
√

K2 − k · k (A.1c)

q0 =
√

K2 − k0 · k0 (A.1d)

K2
0 = K2 = K2 (A.1e)

Q = K −K0 (A.1f)

W = K + K0 (A.1g)

QH = k − k0 (A.1h)

W H = k + k0 (A.1i)

Qz = qk + q0 (A.1j)

Wz = qk − q0 (A.1k)

More definitions and normalization are given in section 2.

Appendix B. Neumann and Dirichlet boundary conditions

From [9, 192], one can write the first-order small perturbation method (SPM1) B and

high-frequency Kirchhoff K coefficients for both the Neumann (N ) and Dirichlet (D)

boundary conditions as

BN (k, k0) = 2[K2 − k · k0], BD(k, k0) = −2qkq0 (B.1)

KN (k, k0) = −KD(k, k0) = [K2 − k · k0 + qkq0] (B.2)

One can easily notice the following relationship between BND and KND,

KND(k, k0) = BND(
W

2
,
W

2
) (B.3)

This relationship can be explained by changing the notation to dyadic form with three

dimensional vectors. The first-order small perturbation method (SPM1) coefficients

become (see [192])

BN (W ; Q) =
1

2
(W + Q) · ẑẑ · (W −Q) (B.4a)

BD(W ; Q) =
1

2
(W + Q) · (ẑẑ − 2Q̂Q̂) · (W −Q) (B.4b)

while the Kirchhoff ones are

KN (W ; Q) = −KD(W ; Q) =
Q2

2
(B.5)



CONTENTS 31

The Kirchhoff coefficients are derivable from those of SPM1 by operating this simple

substitutions

ẑ ⇒ Q̂ (B.6a)

k, k0 ⇒ W

2
(B.6b)

qk, q0 ⇒ Q

2
(B.6c)

Hence,

KND(W ; Q) = BND(W ; Q)
∣∣∣∣∣∣∣∣∣
ẑ⇒Q̂

(B.7)

which merely expresses a change in the frame of reference.

Appendix C. Boundary conditions of an interface between two fluid half

spaces

The first medium has a density ρ1 and a speed of sound c1. In the second medium the

density and the celerity are ρ2 and c2, respectively. The wavenumbers in each medium

is defined as K1 = ω
c1

and K2 = ω
c2

where ω = 2πf and f is the frequency of the sound

wave.

For the first order small perturbation method SPM1 [9], one writes

B(k, k0) = 2qkq0
ρ2

2(K
2
1 − k · k0)− ρ2ρ1(K

2
2 − q′0q

′
k − k · k0)− ρ2

1q
′
0q
′
k

(ρ2q0 + ρ1q′0)(ρ2qk + ρ1q′k)
(C.1)

where

q′∗ =
√

K2
2 − k∗ · k∗ (C.2)

The Kirchhoff coefficient is

K(k, k0) = B(
W

2
,
W

2
) =

Q2

2
R(

W

2
) (C.3)

where R(k) is the standard Fresnel coefficient

R(k) =
ρ2qk − ρ1q

′
k

ρ2qk + ρ1q′k
(C.4)

We will see in the remainder of the appendix that the relationship in (C.3) holds even

for the dielectric electromagnetic case but in dyadic form.

Appendix D. Perfectly conducting boundary conditions

In the electromagnetic case the polarization matrices are usually expressed in the

canonical basis of vertical/horizontal incident and scattered polarization vectors:

V̂ i =
k0ẑ + q0k̂0

K
and Ĥ i = ẑ × k̂0 (D.1a)

V̂ s =
kẑ − qkk̂

K
and Ĥs = ẑ × k̂ (D.1b)
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The different matrices are then read using the convention:(
V̂ i → V̂ s Ĥ i → V̂ s

V̂ i → Ĥs Ĥ i → Ĥs

)
(D.2)

The SPM1 polarization matrix for the perfectly conducting boundary conditions is

B∞(k, k0) = 2

(
K2k̂ · k̂0 − kk0 Kq0(k̂0 × k̂) · ẑ
Kqk(k̂0 × k̂) · ẑ −qkq0k̂ · k̂0

)
(D.3)

The Kirchhoff matrix is

K∞(k, k0) =

(
[(K2 + qkq0)k̂ · k̂0 − kk0] K(qk + q0)(k̂0 × k̂) · ẑ
K(qk + q0)(k̂0 × k̂) · ẑ −[(K2 + qkq0)k̂ · k̂0 − kk0]

)
(D.4)

The property (B.7), valid in the scalar case, does not directly carry over to the

polarization matrices:

K∞(k, k0) 6= B∞(
W

2
,
W

2
)
∣∣∣∣∣∣∣∣∣
ẑ⇒Q̂

(D.5)

The reason for this is that some polarization mixing will not be accounted for in the

matrix form. One needs to rewrite these coefficients in dyadic form before applying any

transformation on the frame of reference.

The dyadic form of SPM1, see equation C9 in [192], is

B∞(W ; Q) =
1

2
(W + Q) · ẑẑ · (W −Q)I

+ ẑẑ · (QQ−WW ) + (QQ−WW ) · ẑẑ −Q2ẑẑ (D.6)

It can be shown that:

K∞(W ; Q) = B∞(W ; Q)
∣∣∣∣∣∣∣∣∣
ẑ⇒Q̂

=
Q2

2
(2Q̂Q̂− I) (D.7)

which is a compact dyadic form of the Kirchhoff coefficient under perfect conducting

conditions.

Appendix E. Fully dielectric boundary conditions

The SPM1 coefficients for dielectric boundary conditions are taken from [244]

BV V (k, k0) =
ε− 1

2

(
[1−R⊥(k)][1−R⊥(k0)]qkq0k̂ · k̂0

−[1 + R⊥(k)][1 + R⊥(k0)]
kk0

ε

)
(E.1a)

BV H(k, k0) = −ε− 1

2
Kq0[1 + R‖(k)][1−R⊥(k0)]ẑ · (k̂ × k̂0) (E.1b)

BHV (k, k0) = −ε− 1

2
Kqk[1−R⊥(k)][1 + R‖(k0)]ẑ · (k̂ × k̂0) (E.1c)

BHH(k, k0) = −ε− 1

2
K2[1 + R‖(k)][1 + R‖(k0)]k̂ · k̂0 (E.1d)
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where the standard Fresnel coefficients are defined as

R⊥(k) =
εqk − q′k
εqk + q′k

(E.2a)

R‖(k) =
qk − q′k
qk + q′k

(E.2b)

The primed variables are generically given by

q′∗ =
√

εK2 − k∗ · k∗ (E.3)

The SPM1 coefficients are readily available in dyadic form [244]

B(k, k0) = −ε− 1

2
K2
[
I− K̂K̂ + R(k)

]
· T(k0) (E.4)

The reflected R and transmitted T dyadic operators are defined by

R(k) = R⊥(k)p̂+
1 (k)p̂−1 (k) + R‖(k)p̂+

2 (k)p̂−2 (k) (E.5a)

T(k0) =
1√
ε
[1 + R⊥(k0)]p̂

−
1 (k0)p̂

−′

1 (k0) + [1 + R‖(k0)]p̂
−
2 (k0)p̂

−′

2 (k0) (E.5b)

Here the polarization vectors which are the basis for the dyads are again the vertical

and horizontal states, taken in the lower and upper medium:

p̂±1 (k) =
kẑ ∓ qkk̂

K
and p̂±2 (k) = ẑ × k̂ (E.6a)

p̂±
′

1 (k0) =
k0ẑ ∓ q′0k̂0

K
√

ε
and p̂±

′

2 (k0) = ẑ × k̂0 (E.6b)

The expression for B(k, k0) in (E.4) is reciprocal but not manifestly. In order to generate

a fully symmetric B(k, k0) one can rewrite (E.4) as

B(k, k0) = −ε− 1

2
K2
[
I− K̂K̂ + R(k)

]
· A ·

[
R(k0)− K̂0K̂0 + I

]
(E.7)

where A is

A = I +

(
1

ε
− 1

)
ẑẑ (E.8)

which is termed the pseudo-horizontal projector since under perfect conductivity (ε 7→
−i∞) this projector coincides with the standard horizontal one (A∞ = I− ẑẑ).

It can be demonstrated that the dielectric Kirchhoff polarization coefficients are

related to those of SPM1 by

K(k, k0) = B(
W

2
,
W

2
)
∣∣∣∣∣∣∣∣∣
ẑ⇒Q̂

=
Q2

2
R(

W

2
)
∣∣∣∣∣∣∣∣∣
ẑ⇒Q̂

(E.9)

This leads to

K(k, k0) =
Q2

2

R⊥(W/2)K̂K̂0 + R‖(W/2)(K̂ × K̂0)(K̂ × K̂0)

(K̂ × K̂0)2
(E.10)

which is consistent with that given by equation 10b in Jin and Lax [96].

This link between Kirchhoff and SPM1 is unveiled here mainly due a change of

frame of reference owing to a combination of our normalization along with the use of

the dyadic notation.
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Acronym Full name main references

BA Born Approximation [238, 240]

CCM Correction Current Method [230]

DWBA Distorted-wave Born Approximation [239, 240]

ESSA Extended Small-Slope Approximation [171]

FWA Full Wave Approach [209, 227]

GO Geometrical Optics [85, 86]

KA Kirchhoff Approximation [1, 3]

TPA Tangent-Plane Approximation [88, 89]

KA-HF High-Frequency Kirchhoff Approximation [91, 92]

IEM Integral Equation Method [10, 136]

IGFM Improved Green’s Function Method [234, 236]

LPA Local Parabolic Approximation [107, 110]

LSEM Local Spectral Expansion Method [228, 229]

LVM Lynch Variational Method [104, 106]

LCA Local Curvature Approximation [159, 191]

LWA Local Weight Approximation [192, 193]

MFT Mean-Field Theory [245, 246]

MLM Meecham-Lysanov Method [138, 139]

MTE Momentum Transfer Expansion [17, 93]

NLCA Non-Local Curvature Approximation [179, 180]

NLSSA Non-Local Small-Slope Approximation [174]

OEM Operator Expansion Method [186, 187]

PO Physical Optics [91, 92]

PPM Phase Perturbation Method [143, 144]

QSE Quasi Slope Expansion [155, 170]

SPM Small Perturbation Method [22, 23]

SSA Small-Slope Approximation [9, 31]

TIA Tilt-Invariant Approximation [190]

TPA Tangent Plane Approximation [88, 89]

TSM Two-Scale Model [3, 16]

UPE Unified Perturbation Expansion [206, 208]

WCA Weighted Curvature Approximation [179, 194]

WHA Wiener-Hermite Approach [195, 201]

Table 1. List of acronyms (alphabetical order) together with two main
references for the corresponding method.
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Method 1 2 3 4 5 6 7 8 9

SPM (Rigorous) x - x x x - - x -

PPM x - x x x - - - -

UPE x - x x - - x - -

FWA x - x x - - x - -

LSEM x - x x - - x - -

CCM x - x x - - x - -

TIA x - x x - - - x -

WHA x - x x - - - x -

OEM x - x x - - - - -

LVM x - x - - - x - -

LPA x - x - - - x - -

MTE x - x - - - - x -

TPA x - x - - - - - -

MLM x - - x - x - x -

QSE x - - x - - - x -

ESSA x - - x - - - x -

IGFM x - - - - x - - -

IEM x - - - - - x - -

SPM (Rayleigh) - x x x x - x - -

TSM - x x x x - x - x

NLSSA - x x x x - x - -

SSA - x x x x - - - -

NLCA - x x - x - - - x

LCA - x x - x - - - x

WCA - x x - x - - - x

LWA - x x - - - - - x

KA-HF (PO) - x - - - - - - x

GO (SPT) - x - - - - - - x

DWBA - - - - - x x - -

MFT - - - - - x x - -

BA - - - - - - x - -

Table 2. Main principles of the different methods, in the order of “first” filled columns.
A “x” in a row indicates that the method uses the corresponding rule.

1. Proceeds via estimation of a surface current.
2. Works directly on the scattering amplitude
3. Makes a structure Ansatz for the surface current or the scattering amplitude.
4. Uses a functional expansion of some quantity in surface height.
5. Requires consistency with SPM for the identification of some unknown series.
6. Uses a particular choice of Green’s function.
7. Uses second-kind Fredholm integral equation.
8. Uses first-kind Fredholm integral equation.
9. Uses the stationary phase approximation.
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Property 1 2 3a 3b 3c 4 5 6 7 8a 8b

SPM1 � � � ∅ ∅ � � � ∅ � ∅
TPA � � ∅ � � � � ∅ � ∅ �
KA-HF � � � � � � � ∅ � ∅ �
GO1 � � � - � � � ∅ � ∅ �
LVM ∅ ∅ ∅ � ∅ � � ∅ � ∅ �
LPA ∅ ∅ � � � � � � � ? �
MTE ∅ � ∅ � ∅ � � ∅ � ∅ �
SSA1 � � � � ∅ � � � � � ∅
IGFM � � � ∅ ∅ � � � � � �
LWA ∅ � � � � � � � � � �
WCA � � � � � � � � � � �
BA ∅ � � � ∅ � � � � ∅ ∅
DWBA ∅ � � ∅ ∅ � � � � � ∅
MFT ∅ � � ∅ ∅ � � � � � ∅
CCM ∅ ∅ � � ∅ � � � � � ∅

Table 3. Properties of the local models.

1. All types of surfaces (dielectric, conducting, acoustic)
2. Full two-dimensional surfaces.
3a. Reciprocal (manifestly)
3b. Shift invariant (to arbitrary order in shift)
3c. Tilt invariant (at least to first order in tilt)
4. Numerically fast and stable while easy to implement
5. Statistical formulae already available or easily derivable
6. Not restricted to large correlation lengths
7. Not restricted to small surface height
8a. SPM1 limit
8b. GO1 limit

The signification of the symbols is as follows:

�=satisfied by construction,
�=satisfied upon inspection,
�=satisfied under special conditions
(specular, backscattering, conducting case, etc...),
? =unknown or not tested.,
∅ =not satisfied,
-=irrelevant.
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Property 1 2 3a 3b 3c 4 5 6 7 8a 8b 9a 9b 10 11

SPM2 � � � ∅ ∅ � � � ∅ - ∅ � - � (0, 1)

GO2 � � � - � � � ∅ � ∅ - ∅ � � (0, 1)

WHA � � ? - ∅ � � � ∅ � ∅ � ∅ � (0, 2)

PPM ∅ � ∅ � ∅ ∅ � � � � � ∅ ∅ - (1, 1)

SSA2 � � � � � ∅ � � � � � � ∅ � (1, 1)

QSE ∅ � ∅ � � ∅ � � � � � � ∅ - (1, 1)

ESSA ∅ ∅ � � ∅ ∅ � � � � � ∅ ∅ - (1, 1)

LSEM � ∅ ∅ ∅ ∅ ∅ � � � � ∅ � ∅ - (1, 1)

LCA � � � � � ∅ ∅ � � � � ∅ ∅ ∅ (1, 1)

UPE ∅ � ∅ � ∅ ∅ � � � � � � ∅ � (1, 2)

TIA ∅ � ∅ � � ∅ ∅ � � � � � ∅ - (1, 2)

KA2-HF � � � � � � � ∅ � ∅ - ∅ � � (2, 1)

MLM ∅ � � � ∅ � ∅ � � � � ∅ ∅ - (2, 1)

NLSSA � � � � ∅ � ∅ � � � ∅ � ∅ � (2, 1)

OEM1 � � � � ∅ � ∅ � � � � ∅ ∅ ∅ (2, 1)

FWA � � � ∅ ∅ ∅ � � � � � ∅ ? ∅ (2, 1)

IEM � � ∅ � ∅ ∅ � � � � � ∅ � ∅ (2, 1)

OEM2 � � � � ? � ∅ � � � � � ? � (3, 2)

Table 4. Properties of the non-local models.

1. All types of surfaces (dielectric, conducting, acoustic)
2. Full two-dimensional surfaces.
3a. Reciprocal (manifestly)
3b. Shift invariant (to arbitrary order in shift)
3c. Tilt invariant (at least to first order in tilt)
4. Numerically fast and stable while easy to implement
5. Statistical formulae already available or easily derivable
6. Not restricted to large correlation lengths
7. Not restricted to small surface height
8a. SPM1 limit
8b. GO1 limit
9a. SPM2 limit
9b. GO2 limit.
10. Can predict correct cross-polarization in the plane of incidence
11. Degree of non-locality (p, q)

The signification of the symbols is as follows:

�=satisfied by construction,
�=satisfied upon inspection,
�=satisfied under special conditions
(specular, backscattering, conducting case, etc...),
? =unknown or not tested.,
∅ =not satisfied,
-=irrelevant.

We classified the models according to their degree of non-locality.


