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Abstract

The Ensemble Kalman Filter (EnKF) has been examined in a data assimilation experiment with a one-dimensional three-

component ecosystem model. The model is an extension of the zero-dimensional model developed by Evans and Parslow [Biol.

Oceanogr. 3 (1985) 327.]. The purpose of this paper is to examine the possibilities of using a sequential data assimilation

method for state estimation in a biological model, an approach which differs from the more traditional parameter estimation

studies. The method chosen is the Ensemble Kalman Filer (EnKF), and it has been shown that this method captures the

nonlinear error evolution in time and is capable of both tracking the reference solution and to provide realistic error estimates for

the estimated state. This is an indication that the methodology might be suitable for future operational data assimilation systems

using more complex three-dimensional models. D 2002 Elsevier Science B.V. All rights reserved.

Keywords: Ensemble Kalman filter; 1-D marine ecosystem model; Data assimilation experiment

1. Introduction

There is now a strong international focus on

development of data assimilation systems for biolog-

ical models. The purposes of these studies have so

far been twofold. A number of papers have consid-

ered the use of data assimilation techniques for

estimating poorly known parameters in the models,

e.g. Ishizaka (1993), Spitz et al. (1998), Lawson et

al. (1995, 1996), Prunet et al. (1996a,b), Fasham and

Evans (1995), Matear (1995), Hurtt and Armstrong

(1996). This is obviously a very important issue

since many of the model parameters are far from

empirical and need to be calibrated both through

laboratory experiments and by trial and error in the

open ocean. A few related references to parameter

identification problems in physical oceanography are

the papers by Smedstad and O’Brien (1991), Yu and

O’Brien (1991, 1992) and Eknes and Evensen

(1997). See also Evensen et al. (1998) which reviews

the formulation of the parameter estimation problem,

and Navon (1997) which provides a number of links

to parameter estimation problems solved in other

scientific fields.

Another application of data assimilation which has

become popular and useful in physical oceanography

and meteorology is related to state estimation. Thus,

one considers the problem of estimating the model

state over some time period by simultaneously

extracting a maximum amount of information out of
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a dynamical model and a set of observations. Data

assimilation methods have now been developed for

state estimation both in physical oceanography and

meteorology for use in operational forecasting and

monitoring systems. Recently, the focus has also

turned towards biological state estimation, for devel-

oping coupled biological and physical data assimila-

tion systems, which can be used for operational

forecasting of the coastal marine ecosystem. The

number of publications and applications of data

assimilation in physical oceanography is huge, and

there are several established techniques being used

with models of different complexity. A comprehen-

sive review of data assimilation methods is not

possible here, but one can differentiate between meth-

ods traditionally implemented for linear model

dynamics, e.g. the Kalman Filter, see Kalman (1960)

and Kalman and Bucy (1961) for the original works,

and the adjoint technique first properly introduced to

oceanography and meteorology by Talagrand and

Courtier (1987) and Courtier and Talagrand (1987).

These techniques have later been further developed

and extended to work with nonlinear model dynamics

with variable success. For example, the Extended

Kalman Filter applies a linearization for the error

covariance evolution which may become unstable

for some problems (Evensen, 1992), and a similar

problem applies for the adjoint method since a tangent

linear approximation constrains the length of the

assimilation time interval which can be used (Miller

et al., 1994).

On the other hand, there has also been a significant

development of new assimilation formulations and

techniques which have been tailored to work with

nonlinear dynamical models. One such method, the

Ensemble Kalman Filter (EnKF), is used in this study.

The method has been chosen based on its properties

for predicting error statistics for strongly nonlinear

systems, see Evensen (1994, 1997), and for its sim-

plicity and numerical efficiency.

The model parameters will be kept fixed with

predefined values. Thus, the model serves as a non-

perfect estimate of the true evolution of the biological

system (in some statistical sense), and thus contains

errors which are allowed for in the EnKF. Only the

prognostic variables, i.e. concentrations of the

nutrient, phytoplankton and herbivorous zooplankton,

will be estimated. This is as far as we know only the

third paper discussing state estimation in biological

models using data assimilation. The first paper was

the one by Natvik et al. (2001) where a weak

constraint inverse method was used with the original

zero-dimensional model by Evans and Parslow

(1985), and the second is a recent application by

Carmillet et al. (2001).

In this paper, a three-component one-dimensional

extension of the zero-dimensional ecosystem model

by Evans and Parslow (1985) will be used in data

assimilation experiments. In the following sections,

the ecosystem model is described and then the EnKF

is briefly explained.

We then present results from twin experiments

where simulated data are used in assimilation experi-

ments. Finally, a sensitivity analysis regarding the

levels of model and measurement errors is performed.

2. The model

Evans and Parslow (1985) investigated the bio-

logical features in the ocean common to annual

cycles, in particular, spring blooms. For this purpose,

they constructed a fairly simple differential equation

model of nutrients, phytoplankton and herbivores in a

mixed layer of varying depth, i.e. responding to

physical changes which have the same pattern from

year to year. The response of phytoplankton to light

was modeled in some detail, while other aspects were

less detailed.

Here, this model has been further extended to

contain a vertical dimension in addition to the time

dimension. This was done by replacing the terms

including diffusion rate (m in the original equations)

for the concentrations of nutrients, phytoplankton

and zooplankton, with a vertical diffusion term para-

meterized on the form (D/Dz)(Kz(z, M)(D/Dz)), where
Kz is a diffusion coefficient. The mixed layer depth

M is used as a physical input to the ecosystem

model. As in Natvik et al. (2001), a smooth version

of the mixed layer depth function M =M(t) is used

together with second order finite difference formulas

to estimate the rate of change of the mixed layer

depth M. A plot of the mixed layer depth function is

given in the upper left plot in Fig. 3 where the

reference solution for the concentration of nutrients is

also shown.
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The model equations describing the time evolution

for nutrients, N, phytoplankton, P, and herbivores, H,

are given by

DN
Dt

¼ � aðt; z;PÞN
jþ N

� r

� �
P þ D

Dz
Kzðz;MðtÞÞ DN

Dz

� �
;

ð1Þ

DP
Dt

¼ aðt; z;PÞN
jþ N

� r

� �
P � cðP � P0ÞH

K þ P � P0

þ D
Dz

Kzðz;MðtÞÞ DP
Dz

� �
; ð2Þ

DH
Dt

¼ fcðP � P0ÞH
K þ P � P0

� gH þ D
Dz

Kzðz;MðtÞÞ DH
Dz

� �
:

ð3Þ

The depth dependent diffusion parameter, Kz, is given

by

Kzðz;MðtÞÞ

¼ Kzb þ
ðKz0 � Kzb ÞðatanðcðMðtÞ � zÞÞ � atanðcðMðtÞ � DÞÞÞ

atanðcMðtÞÞ � atanðcðMðtÞ � DÞÞ ;

ð4Þ

where Kzb
= 8.64 (m2/day) and Kz0

= 864.0 (m2/day)

are the diffusion at the bottom and surface, respec-

tively, c = 0.1 m � 1 is the thermocline sharpness, D is

the total depth, and the rest of the variables and

parameters have the same meaning as in Evans and

Parslow (1985), i.e. they are appropriate to Flemish

Cap (an offshore bank east of Newfoundland) as in

Evans and Parslow (1985) (Table 1). Note, however,

that the photosynthetic light rate, a, is defined as in

Evans and Parslow (1985) and Natvik et al. (2001),

but instead of averaging it over the mixed layer depth,

it is now evaluated at the depths where it is needed

(see Appendix A). This is the reason why it is no

longer dependent on the mixed layer depth M, but just

of the phytoplankton concentration, time and depth.

The nutrient concentration at 200 m is kept con-

stant all through the year and serves as an infinite pool

of nutrients which are mixed into the biologically

active mixed layer by the vertical mixing term. The

concentrations of phytoplankton and herbivorous zoo-

plankton are both set equal to zero at 200 m and no

flux at the surface has been specified.

3. The Ensemble Kalman filter formulation

The data assimilation method adopted in this work

is the Ensemble Kalman Filter (EnKF) method first

introduced by Evensen (1994). The method was

formulated with nonlinear dynamics in mind, and

the emphasis was focused on deriving a method,

which properly could handle the error covariance

evolution in nonlinear models. The method has been

used successfully with a number of different dynam-

ical models, from the simple but highly nonlinear and

chaotic Lorenz equations in Evensen and Fario

(1997), to ocean circulation models by Evensen and

van Leeuwen (1996) and Evensen (1997). In the

EnKF, the errors are dominated by statistical noise

and there are no closure problems or unbounded error

variance growth as have been seen in assimilation

methods relying on the use of a tangent linear model.

The EnKF integrates an ensemble of model states

forward in time using the model equations. Normally,

the number of members (or samples) is of order 100.

If each individual member is integrated as a stochastic

differential equation, i.e. forced with a random noise

component which represents the model errors, it can

be shown that such an ensemble integration becomes

identical to a Markov Chain Monte Carlo (MCMC)

method for solving the Fokker Planck equation for the

evolution in time of the probability density of the

model state. Since the full nonlinear dynamical model

is used, the only approximation associated with this

Table 1

Physical parameters, appropriate to Flemish Cap, used in the data

assimilation experiments for the one-dimensional ecosystem model

Symbol Description Value

c Maximum grazing rate 1.0 day� 1

f Grazing efficiency 0.5

g Loss to carnivores 0.07 day� 1

j Uptake half saturation 0.5 mmol N m� 3

r Plant metabolic loss 0.07 day� 1

K Grazing half saturation 1.0 mmol N m� 3

P0 Grazing threshold 0.1 mmol N m� 3

These are the same parameters as used by Evans and Parslow

(1985).
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approach is that a finite number of members are used

in the ensemble.

The ensemble is integrated forward in time until

measurements are available. At these time instants, an

analysis scheme is used to update or correct the model

state in a statistically consistent way. The updated

state can be considered as the model forecast plus a

number of influence functions, one for each of the

measurements. These functions are multivariate stat-

istical functions computed from the ensemble statis-

tics, i.e. the cross-correlations between the different

variables in the model are included. Thus, a change in

one of the model variables will influence the other

variables. This analysis minimizes the error variance

of the analyzed estimate in a least square sense, and it

is based on estimates of the error statistics for the

model forecast and the measurements.

A particularly useful property of the EnKF is that

the analysis is repeated for each of the members in the

ensemble, and the resulting analyzed ensemble then

Fig. 1. Schematic figure showing how the EnKF works in relationship with an arbitrary model. See description in text.

M. Eknes, G. Evensen / Journal of Marine Systems 36 (2002) 75–10078



has the correct error statistics for the analyzed state.

Thus, there is no need for resampling to create a new

ensemble for the continuing integration. A detailed

presentation of the EnKF implementation is given in

Burgers et al. (1998).

A schematic illustration of the algorithm is given in

Fig. 1. The figure defines three boxes, i.e. the Initial-

ization box, the Integration box and the Analysis box.

The Initialization box takes the first guess model state

as input and creates an ensemble of size nrens by

adding pseudo random noise with prescribed statistics

to the first guess initial state. Each of these perturbed

model states is integrated forward in time until the

time when the first observation set becomes available.

This is done by calling the Integration box which

integrates one model state forward in time over a

specified time interval. Then each of the members is

input to the Analysis box, which computes a new

ensemble of analyzed model states based on the

ensemble statistics and the observations and their error

statistics. The analyzed ensemble is then integrated

forward to the next data time and the process is

repeated. The EnKF estimate is usually defined to

be the ensemble mean.

By use of object-oriented programming, a generic

EnKF has been developed. Thus, one has to specify

an object which defines a full model state and a

subroutine for the model integration and most models

can be included in the generic implementation, since

the analysis scheme operates on objects of full model

states.

4. Experiments

Several so-called twin experiments will now be

discussed. A twin experiment is just a notation for

data assimilation experiments where the data are

simulated using the model rather than using real data.

The only reason for using simulated data is to exam-

ine the properties of the assimilation methodology.

The motivation is that unless the method works fine in

the twin experiment, there is no point using it with

real data, and besides, it allows the method to be

examined in a controlled experiment where all the

error statistics are known.

First, the spinup solution, the reference solution,

the generation of measurements and a special run

called the climatology will be described. Then the

two main assimilation experiments are discussed.

These assimilation experiments both start from the

same initial ensemble as in the climatology simula-

tion and the simulated observations are now used to

update the model state sequentially in time using the

EnKF.

In all the experiments, the total integration time is

365 days. The total depth of the water column is set to

200 m and the resolution in time and depth is 1 day

and 10 m, respectively. The number of ensemble

members for these cases is 100, and the boundary

and initial errors are given in Table 2.

4.1. Spinup solution

The experiment has been set up as follows: first the

model is spun up during a 5-year simulation (see Fig.

2 where the spinup for the nutrient concentration is

shown), starting from initial values of N(z) = 10.0

mmol N m�3, P(z) = 0.1 mmol N m�3 and H(z) = 0.1

mmol N m� 3 in the whole water column. The solution

after 5 years has reached a nearly steady annual cycle

and is considered to be one realization out of a large

number of possible model solutions.

4.2. Reference solution

The reference model trajectory, the ‘‘true’’ state, is

defined by choosing one of the initial ensemble

members (to be defined in Section 4.4) and integrating

Table 2

The variances used in the climatology and the main data

assimilation experiments

Description N P H

Model error variance

((mmol N m� 3/day)2)

3.64� 10� 5 6.04� 10� 8 1.91�10� 8

Initial error variance

((mmol N m� 3)2)

1.0� 10� 2 1.0� 10� 6 1.0� 10� 6

Upper boundary

error variance

((mmol N m� 3)2)

1.0� 10� 4 1.0� 10� 4 1.0� 10� 4

Lower boundary

error variance

((mmol N m� 3)2)

1.0� 10� 2 1.0� 10� 4 1.0� 10� 4

Measurement

error variance

((mmol N m� 3)2)

0.33� 101 5.44� 10� 3 1.72� 10� 3

M. Eknes, G. Evensen / Journal of Marine Systems 36 (2002) 75–100 79



it forward 1 year. The initial value for the concen-

tration of nutrient for the reference solution is shown

in Fig. 2.

Note that a stochastic model error is added at every

time step to account for the uncertainty in the model

equations, i.e. we are actually integrating the system

Dw
Dt

¼ FðwÞ þ q; ð5Þ

where w(z,t)=(N(z,t), P(z,t), H(z,t)), F is the right hand

side of Eqs. (1)–(3) and q(z,t) is the stochastic error

term (further details are given in Appendix C).

The reference solution is plotted as the left column

of Fig. 3. In the upper plot, we have also included the

mixed layer depth as a function of time. The phyto-

plankton concentration is at its highest in the period

between 100 and 160 days (i.e. April to June). This is

the period where there is a phytoplankton spring

bloom. These results are similar to what was found

by Evans and Parslow (1985) using the zero-dimen-

sional version of the model. The largest bloom is in

the upper 50 m, but there is an obvious bloom in all of

the upper 100 m.

There is a depletion of nutrient concentration

during the phytoplankton bloom and it only starts

recovering after the phytoplankton concentration has

decreased, but it is still low until day 300 in the upper

100 m, which is the time when the winter deepening

of the mixed layer starts and leads to entrainment of

nutrients from below the mixed layer.

The bottom plot in Fig. 3 shows the concentration

of herbivorous zooplankton. It has its largest value in

the period from about days 150 to 175 when the

phytoplankton bloom is ending. As the concentration

of zooplankton is increasing, there is enhanced graz-

ing on the phytoplankton biomass until it has nearly

vanished and the zooplankton begins to die and the

concentration decreases to about the level it had

before the bloom.

4.3. Simulation of measurements

The simulated observations are generated by meas-

uring the reference solution and then adding inde-

pendent Gaussian noise with zero mean and a

prescribed variance to the observations.

Measurements were generated every 4th day at 20-,

60-, 100- and 140-m depth. For Experiment 1 (Case

1A in Table 3), all three components of the model

state are observed, and thus, there is a total of 12

measurements at each of 121 different times over 1

year. For Experiment 2 (Case 5C in Table 3), only the

phytoplankton variable is observed, and thus, the

corresponding number at each of the measurement

times is 4. The measurement errors for the different

experiments are explained in Table 3.

4.4. Generation of the initial ensemble

For the assimilation experiment, we generated a

new initial condition by adding another pseudo ran-

dom field to the spinup solution. This was then

considered to be our ‘‘best guess estimate’’ of the

truth (see Fig. 2). The same initial variance for the

initial condition as in the reference case was used.

An ensemble of model states was then generated

by adding pseudo random fields to the ‘‘best guess

estimate’’. Again, the statistics is the same as for the

reference solution, and the mean of the ensemble

equals the best guess estimate. The covariance in

depth has been treated as in Evensen (1994).

Some of the ensemble members for the nutrient

concentration N used initially are shown in Fig. 2.

Note that, in fact, any of these ensemble members

could have been used to generate a reference solution

for the twin experiments.

Fig. 2. The spinup simulation for the concentration of nutrients, N,

at the surface. The total spinup time is 5 years, and at the end, the

initial reference and mean estimates together with the initially

generated ensemble are shown.
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4.5. Climatology

A statistical climatology can be generated by a

pure ensemble simulation with no influence from the

data. The ensemble is integrated forward in time for

1 year and the resulting ensemble mean is denoted

the climatology. The spreading of the ensemble

members around this mean determines the variance

or uncertainty in the climatology. The climatology

solution is shown in the right column of Fig. 3, and

it clearly deviates from the reference solution. The

phytoplankton concentration is lower, since each of

the ensemble members is blooming at slightly differ-

ent times and the averaging of the ensemble smooth-

ens out the peaks in time. However, it should be

noted that even if the result is far from the reference

solution, this is also represented well by the error

estimate from the ensemble statistics, which will be

discussed in connection with the assimilation experi-

ments.

Fig. 3. The reference (left) and the climatology (right) solutions of the concentration of the nutrient N (top), the phytoplankton P (middle) and

the zooplankton H (bottom), respectively. The mixed layer depth is shown as the thick solid line in the upper left plot. All variables are presented

in mmol N m� 3.
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The spreading of the ensemble around the mean,

i.e. the variance, provides an estimate of the uncer-

tainty of the mean as a function of time. The clima-

tology run is made in order to be able to examine the

impact of the assimilation of data, by comparing the

EnKF estimate with the climatology run. A more

realistic estimate will now be found by including the

information contained in the measurements.

4.6. Error measures

When discussing twin experiments, it is possible to

compute a measure of the distance between the EnKF

estimate and the reference case which is referred to as

the residual root mean (in depth) square, hereafter

denoted resRMS. It is defined as

resRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kdim

Xkdim
i¼1

ðwref
i � west

i ÞT ðwref
i � west

i Þ

vuut ;

ð6Þ

where kdim is the total number of grid points in depth,

while the vectors wref and west holds the reference

solution and the EnKF (or climatology) estimate on

this grid.

The corresponding residual over the time and depth

domain is computed as

resRMStd

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kdim

1

ndim

Xkdim
i¼1

Xndim
j¼1

ðwref
i;j � west

i;j Þ
T ðwref

i;j � west
i;j Þ

vuut ;

ð7Þ

where ndim is the total number of grid points in

time.

The EnKF provides a statistical error estimate

which can be compared with the absolute value of

the residual between the reference solution and the

current estimate. To be able to compare with the

Table 3

The errors, ensemble sizes (nrsamp) and residual root mean squares (resRMStds) of N, P and H in the different twin experiments

Experiments Observation Stdobs (%) Stdmod (%) nrsamp resRMStdN resRMStdP resRMStdH

Case 1A NPH 30 1.0 100 1.23e� 1 4.17e� 2 2.06e� 2

Case 1B NPH 30 1.0 70 1.43e� 1 3.87e� 2 2.08e� 2

Case 1D NPH 30 1.0 40 1.44e� 1 4.58e� 2 2.21e� 2

Case 1E NPH 30 1.0 10 1.86e� 1 6.47e� 2 2.79e� 2

Case 1F NPH 30 1.0 120 1.28e� 1 3.93e� 2 2.03e� 2

Case 1G NPH 30 1.0 150 1.33e� 1 4.03e� 2 2.08e� 2

Case 1H NPH 30 1.0 1000 1.27e� 1 4.01e� 2 2.02e� 2

Case 2A NPH 30 3 100 2.67e� 1 3.01e� 2 3.50e� 2

Case 2B NPH 1 3 100 6.32e� 2 1.07e� 2 7.82e� 3

Case 3A N 1 3 100 8.18e� 2 4.49e� 1 1.38e� 1

Case 3B N 1 1 100 5.94e� 2 3.56e� 1 1.33e� 1

Case 3C N 30 1 100 1.40e� 1 4.17e� 1 1.11e� 1

Case 4A P 1 3 100 1.30e� 1 7.33e� 3 7.47e� 3

Case 4B P 1 1 100 4.93e� 2 3.22e� 3 2.77e� 3

Case 4C P 30 1 100 9.81e� 2 2.13e� 2 1.52e� 2

Case 5A H 1 3 100 5.24e� 1 3.13e� 1 2.78e� 3

Case 5B H 1 1 100 1.61e� 1 1.24e� 1 1.58e� 3

Case 5C H 30 1 100 1.38e� 1 1.43e� 1 1.26e� 2

Case 6A (nB) NPH 1 1 100 1.05e� 1 4.04e� 1 9.58e� 2

Case 6B (oB) NPH 1 1 100 2.73e� 2 3.77e� 3 2.94e� 3

The resRMStd refers to the fact that the resRMS has been averaged over time and depth domain. It is calculated for each of the three state

variables and says something about the distance (time mean distance) between the ‘‘true’’ reference solution and the EnKF estimate. The

standard deviation of the errors in the model dynamics (Stdmod) and the standard deviation of the errors in the observations (Stdobs) are given as

certain percentages of the time and depth mean of the reference solution (taken over 1 year) and the observations used, respectively. The

corresponding variances are the squares of the numbers found by calculating these percentages. Note that measurements from the bloom period

only (oB = onlyBloom) have been assimilated in Case 6A, while measurements from the pre- and post-period of the spring bloom period

(nB= noBloom) have been assimilated in Case 6B.
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resRMS, we define the ensemble root mean (in depth)

square (ensRMS) by

ensRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kdim

Xkdim
i¼1

r2
i

vuut ; ð8Þ

where r2 is the error variance provided by the EnKF.

If the analysis is done properly, the predicted

ersRMS and actual resRMS values should be of the

same order of magnitude.

Clearly, a large number of assimilation experiments

should be used to get a statistical intercomparison

between the estimated and true errors. In this case, we

only consider one simulation and expect the true

errors to be ‘‘similar’’ to the estimated ones. This

turns out to be the case in the experiments presented

below where the absolute values of the residuals are of

the same magnitude as the estimated errors, although

slightly lower.

4.7. Experiment 1: Observing all the three ecosystem

components

In this experiment, referred to as Case 1A in Table

3, data from all the three ecosystem variables are

assimilated. The resulting EnKF estimate is shown in

Fig. 4. What is seen by comparing this estimate with

the reference solution (Fig. 3) is that we now seem to

have a more realistic estimate of all the three compo-

nents compared to the climatology simulation. The

phytoplankton spring bloom occurs at the same time

and has approximately the same magnitude as in the

reference solution, and the other two components are

also very similar to the corresponding components of

the reference solution. Note the discontinuities in

time, at the measurement times, which is a character-

istic of sequential assimilation methods.

For the concentrations of phytoplankton and her-

bivorous zooplankton, both of them have the largest

errors during the spring bloom (i.e. around days 100–

160). This is due to the fact that the model is the most

unstable in this periods (see Appendix B).

For the nutrient concentration, the largest error is

around day 90, at the time when the spring bloom

starts, but the values are otherwise oscillating around

0.0075, i.e. they are at about the same level through-

out the whole year.

4.8. Experiment 2: Observing P only

This experiment, which corresponds to Case 4C in

Table 3, is similar to Experiment 1, except that only

phytoplankton observations are assimilated. The

resulting estimate is shown in Fig. 5. Clearly, the

phytoplankton observations are sufficient to control

the whole model state including nutrients and zoo-

plankton. Thus, the multivariate statistical influence

functions are used to update both the observed vari-

able and the two other model variables simultane-

ously. For future studies, it would be interesting to

examine how complicated models can be and still be

controlled by the EnKF when measurements of only

one or a few of the model variables are available.

When comparing the results between Experiments

1 and 2, the model solutions are very similar, and

also close to the reference solution. However, one

would expect the estimated standard deviations and

absolute values of the residuals to be larger in

Experiment 2 since less information is assimilated.

This is true for the nutrients, but for the phytoplank-

ton and zooplankton, the resRMSs are of about the

same magnitude.

The observed phytoplankton variable is better

controlled than the two others, but there is also a

strong effect from the observations on the nutrients, N,

and the herbivorous zooplankton, H. This is seen in

particular during the spring bloom where the phyto-

plankton data also provides a strong update of the

zooplankton.

4.9. Discussion

The resRMSs for the climatology, Experiments 1

and 2, are shown in Fig. 6. In the climatology case,

the resRMSs for all the three components are quite

small until about day 100 when it starts increasing.

While the resRMS for the nutrient reaches a maxi-

mum value at about day 150, the resRMS for the

concentration of phytoplankton reaches its maxima

about at day 140. The resRMS for the concentration of

zooplankton, however, has two peaks, one around day

120 and another at about day 160. This is in the spring

bloom period where the model is the most unstable

(see Appendix B), and the errors therefore are the

largest. After the phytoplankton spring bloom period,

at about day 170, the resRMSs for the phytoplankton
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concentration have decreased to about the same level

as before the spring bloom. For the concentrations of

nutrient and zooplankton, the resRMS levels from the

pre-bloom period are not reached before until about

day 300. In the case of the nutrients, this is mostly due

to a high variance below the mixed layer, which is not

Fig. 4. Experiment 1 (Case 1A): The EnKF estimate (left plots) and comparison of the corresponding resRMS and ensRMS measures (right

plots), for nutrient N (upper), phytoplankton P (center) and herbivorous zooplankton H (lower).
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corrected until the next winter deepening and thus

enhanced mixing of nutrients.

In general, the estimated root mean squares

(ensRMSs), and the residual root mean squares

(resRMS) are of similar magnitudes in Experiments

2 and 1. This is true for all the three ecosystem

components, but it is especially notable for the con-

centrations of phytoplankton and zooplankton. An

Fig. 5. Experiment 2 (Case 4C): The EnKF estimate (left plots) and comparison of the corresponding resRMS and ensRMS measures (right

plots), for nutrient N (upper), phytoplankton P (center) and herbivorous zooplankton H (lower).
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interesting point is the fact that the reduction of errors

in the analysis step is significant for the unobserved

zooplankton during the spring bloom. Thus, the result

after the reduction is that the ensRMS and the resRMS

are at about the same level as in Experiment 1 at the

measurement locations. This shows that even if only

the phytoplankton concentration has been measured,

the statistical cross-correlations provided by the

ensemble statistics are sufficient to update also the

zooplankton concentration.

From the plots in Fig. 6, it is seen that the errors

decrease every time observations are assimilated and

are increasing in between the measurement times. The

increase is caused by a combination of stochastic

model errors and the internal nonlinear instabilities

inherent in the model dynamics. In addition, the signal

as well as the rate of change of the various concen-

trations are the strongest in this period. The stochastic

model errors are accumulated in a linear fashion

(although their effect evolves by the nonlinear equa-

tions). The internal instabilities are strongest during

the spring bloom, where small perturbations will grow

quickly (see Appendix B). In addition, the signal as

well as the rate of change of the various concentra-

tions are the strongest in this period. After the spring

bloom, the dynamics are stabilizing and perturbations

decrease, thus, errors are decreasing too. A linear

stability analysis (see Appendix B) shows that the

tangent linear operator has eigenvalues larger than one

during the spring bloom and less than or equal to one

elsewhere, and thus, the model is unstable in the

spring bloom period but stable elsewhere. The

strength of the EnKF is that it can handle these

nonlinear and unstable regimes in a consistent way,

and thus makes the method suitable for applications

with models of this character, such as marine ecosys-

tem models. This also shows that the measurements

are mostly needed during the spring bloom where the

instability is the strongest.

This will be further discussed and proven to be

true, for our model and method, in the next section.

5. Sensitivity studies

In the following sections, the impact of varying the

ensemble size, the number of measurements and prior

error variances for the assimilation experiments will

be studied. Experiments where observations of the

nutrient concentration, N, only, and the zooplankton

concentrations H, only, are assimilated, will also be

Fig. 6. Comparison of the resRMS values for the two main

experiments and the climatology solution; nutrient N (upper),

phytoplankton P (center) and zooplankton H (lower).
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presented. Finally, the effect of using measurements

from the bloom period, only, and from only the

periods before and after the phytoplankton bloom will

be presented. The same configuration as in Section 4

is used, and the errors in the boundaries and initial

conditions are the same in all the experiments. How-

ever, the errors in the dynamics and measurements

variy (see Table 3).

In all the plots concerning the varying variances in

Section 5, the estimates of the concentrations of the

three state variables at 20 m and the time series of the

depth averaged residual root mean square (resRMS)

are shown.

5.1. Impact of ensemble size

The size of the ensemble is important. If too few

members are used, we will not be able to get the

correct estimate of the error covariances in the pre-

dicted model state. Previous experience indicates that

about 100 members are sufficient, but this has to be

checked for every new model system (Evensen and

van Leeuwen, 1996; Evensen and Fario, 1997; Hou-

tekamer and Mitchell, 2001).

In Fig. 7, the relative difference between the

concentration of phytoplankton in the respective

cases, 1A, 1D, 1G and 1H, are shown. The difference

at a certain time, has been calculated according to the

formula

relP ¼ P � P1H

P1H

; ð9Þ

where P is the concentration of phytoplankton for the

actual experiment and P1H is the corresponding con-

centration in Case 1H. Thus, the difference between

two cases has been normalized by the concentration of

phytoplankton from Case 1H where the largest ensem-

ble size (1000 members) was used. As may be seen

from Fig. 7, the relative difference relP1H, is shown as

the line relP= 0. When using 40 ensemble members,

only, the amplitude of the errors is quite large and it

contains many oscillations. Increasing the size of the

ensemble to 100 results in errors, which are mainly

within 10%, except from a few locations. The errors

are only marginally smaller when the ensemble size is

increased to 150. Thus, the improvement gained by

using a larger ensemble than in Case 1A would only

be marginal, and therefore, an ensemble of 100

members was chosen for our main experiments.

The theory behind the EnKF method implies that

the accuracy of the representation of statistics in the

EnKF should be proportional to 1ffiffiffiffiffiffiffiffiffiffi
nrsamp

p , where nrsamp

is the number of ensemble members. The plot in Fig.

7 confirms that this is true for the experiments in this

paper.

5.2. Definition of error variances

The errors in the measurements for ecosystem

variables are roughly known. The errors in chloro-

phyll-a data obtained from Sea-viewing Wide Field-

of-view Sensor (SeaWiFS) are said to be about 30–

35% of the actual measurement value (Hooker et al.,

1992). In situ data of the same measurement type

contain slightly smaller errors (roughly about 20–

30%). Measurements of zooplankton may contain

large errors due to the rather unprecise net-towing

technique used when measuring them. Since the path-

ways and parameters of ecosystems are not yet well

known, the errors in the models available today may

also be quite large. Another source of errors is the fact

that the observations usually are defined in terms of

chlorophyll-a while the model is defined in terms of

phytoplankton nitrogen. Thus, a transformation

between them has to be done and this may introduce

new errors into the system.

The EnKF requires the specification of both the

variances for the errors in the model and the errors in

Fig. 7. Relative differences for phytoplankton concentration in cases

using 1000, 150, 100 and 40 members in the ensemble, respectively.

All the error variances were as in Experiment 1.
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the data. The choices of error variances affect the

assimilation results. By choosing a small error var-

iance for the observations, one assumes that the

observations are fairly accurate and therefore only

contain small errors. In such a case, the EnKF

estimate will be close to the observations.

To ensure that the error bars of the observations

and model estimates are statistically consistent, about

68.3% of the intervalls [d� rd/d + rd] and [m� rm/

m + rm], where d, m, rm and rd are the observation,

the model estimate, the standard deviation for the

observation and the standard deviation for the model

estimate, respectively, should be overlapping. This is

true for a Gaussian distribution (Emery and Thomson,

2001). In other words, the prior assumption about the

error statistics needs to reflect the true errors in the

system. Otherwise, the predicted error variances will

be erroneous and also the updates during the analysis

may be suboptimal.

When studying the impact of different error var-

iances in the measurements, we have used measure-

ments of only one of the state variables. If more than

one variable is assimilated, it becomes difficult to

determine how much of the update is due to the direct

measurements and how much is due to the multi-

variate covariances.

In Fig. 8, results for the nutrient concentration from

Cases 3A to C (see Table 3) are shown. In these cases,

observations of the concentration of nutrients, only,

have been used in the assimilation. The sizes of the

errors in the dynamics and the measurements are

calculated as a certain percentage of the time and

depth mean of the reference solution.

By comparing the two lower plots in the left

column of Fig. 8, the effect of different error variances

for the measurements may be observed. In the first

experiment (the middle plot of the figure), the stand-

ard deviation of the errors in the observations is set to

1% (Case 3B in Table 3), while in the second experi-

ment (the bottom plot of the figure) they have been

increased to 30% (Case 3C in Table 3). The errors in

the model have in both cases been set to 1%. It is easy

to see that the EnKF estimate for the nutrients in the

first experiment (middle plot) is much closer to the

reference solution than in the second experiment

(bottom plot). In the second experiment, there is

hardly any impact of the observations at all when

comparing with the climatology run. Our faith in the

model compared to our faith in the data is much larger

in this case than in the first.

By increasing the errors in the dynamics, the faith

in the model is reduced and the result is an estimate

which is closer to the observations. The relative

impact of the observations has then been increased.

In the leftmost upper plot of Fig. 8, results from an

experiment, where the model errors are increased to

about 3% while the measurement errors are still 1%

(i.e. Case 3A in Table 3), are shown. From this plot, it

is easy to observe that the EnKF estimate is closer to

the observations than to the climatology. This is also

reflected when comparing the plots in the right

column of the figure. The resRMSs for the EnKF

estimate of nutrients are the most reduced when the

measurement errors are the smallest.

It is also obvious that the climatology estimate is

further away from the reference solution in Case 3A

than in the two other experiments shown in Fig. 8.

This is due to the fact that by increasing the errors in

the dynamics, the ensemble spreads more during the

integration and the model estimate will deviate more

from the reference solution. (Note that the climatology

for different dynamical errors differ.)

Thus, the EnKF estimate is closer to the reference

solution when the errors in the measurements are

small and closer to the climatology, or pure ensemble

run, when these errors were assumed large and/or if

the dynamical errors are assumed small.

The effect on the variables that are not measured is

discussed in Section 5.4.

5.3. Assimilation of all the three state variables in the

model

Several experiments have been performed, observ-

ing all three model variables, with different magni-

tudes of model and measurement errors. The sizes of

the dynamical and measurement errors are again given

in Table 3. For all the experiments in this paper, a

value called the depth and time averaged residual root

mean square, referred to as the resRMStd, is calcu-

lated for each of the three state variables, N, P and H.

This value is a measure of the distance between the

reference solution and the EnKF estimate averaged

over the depth–time domain, and it is used to check

how well the EnKF does in tracking the reference

solution in the different experiments performed.
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What may be observed from Table 3 is that the

resRMStds are increased as the model, and/or meas-

urement errors are increased (compare Case 2A with

Cases 2B and 1A).

Note that the values in Table 3 only show results of

one realization of the experiments. To compute stat-

istically consistent resRMStds of such experiments,

several repetitions of the same cases should have been

Fig. 8. The reference solution, climatology, the EnKF estimate at 20 m below the surface (left column) and the corresponding resRMS values

(right column) for nutrients N in the Cases 3A (upper plots), 3B (middle plots) and 3C (bottom plots).
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done with different random seeds and the average

values of the resRMStds for these runs should be

used.

5.4. Assimilation of one state variable, only

In the following, we present some experiments

where measurements of only one of the state variables

are assimilated. These experiments will provide infor-

mation about the multivariate properties of the assim-

ilation scheme, and about the controllability of the

system, dependent of which variables are assimilated.

5.4.1. Assimilation of nutrient measurements

In Section 5.2, estimates and corresponding resid-

ual root mean squares (resRMSs), for the nutrient

concentration for the Cases 3A–C, were shown. In

this section, we will focus on the effect the assim-

ilation of nutrients has on all the three state variables

in the model.

When assimilating nutrients only, the updates of

this variable is likely to be better than for the two

others. All the state variables will, however, be

influenced by the measurements through the multi-

variate properties of the assimilation scheme, which

takes into account the estimated covariances between

the different model variables.

In the upper plots of Fig. 8, results from Case 3A

for all the three state variables are shown. As may be

observed from this figure, the EnKF estimate for the

nutrient concentration is reasonably good while the

estimates of phytoplankton and zooplankton are only

weakly updated and have values somewhere in

between the climatology and the reference state.

The errors are also the mostly reduced for the

nutrients, as may be seen from the plots in the right

column of the figure. Neither of the concentrations

of phytoplankton and zooplankton reach the maxi-

mum value of the reference solution and they are

both closer to the climatology than to the reference

state.

When decreasing the errors in the model dynamics

to 1%, as is done in Case 3B, the resRMStds for all

the three state variables are reduced (see Table 3).

This indicates that the EnKF for all the state variables

is closer to the reference solution than in Case 3A,

when averaging the distances between them over both

depth and time. In the last experiment to be discussed

in this section, the measurement errors are increased

to about 30%. The model errors are still 1% (see Case

3C in Table 3). Compared to the resRMStds in Case

3B, the corresponding values, for the nutrients and

phytoplankton, are increased. Even if the resRMStd

for the zooplankton concentration is decreased, the

sum of the resRMStds is increased. This implies that

the EnKF estimate, as a total, is further away from the

reference solution than in Case 3B. Anyway, the

estimates for phytoplankton and zooplankton are not

satisfactorily updated in any of the Cases 3A–C. In all

the experiments discussed here, the bloom period

comes too early, lasts too short and has a shape which

is more similar to the climatology than to the refer-

ence state.

5.4.2. Assimilation of phytoplankton measurements

In this section, the experiments called Cases 4A–

C in Table 3 are discussed. In these cases, observa-

tions of the phytoplankton concentration, only, are

assimilated. The largest resRMStd for the nutrients is

found when the dynamical errors are the largest, i.e.

in Case 4B. For the zooplankton, however, the

largest resRMStd is found in Case 4C where the

measurement errors are large. Just as was the case for

the experiments in the previous section, the sum of

the resRMStds increases when the errors, either in

the model dynamics or in the measurements, are

increased.

In Fig. 9, results from Case 4A, for all the three

state variables, are shown. The figure shows that the

variable, which experiences the poorest update, is the

nutrient concentration. This is true for all the cases in

this section. However, even for this variable, the

EnKF estimate is closer to the reference solution than

to the climatology. The best result for the nutrients is

found when the model errors are the smallest. Even

when the measurement errors for the phytoplankton

are 30%, the nutrient concentration is satisfactorily

updated (see Experiment 2, Fig. 5). The zooplankton

and phytoplankton concentrations are both well

updated in all the three cases (see the resRMStds in

Table 3). This shows that the influence from the

phytoplankton measurements is larger on the zoo-

plankton concentration than on the concentration of

nutrients. The reason might be that the zooplankton

and phytoplanton are stronger correlated than the

phytoplankton and nutrients.
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Thus, it is possible to achieve good results by only

using measurements of the concentration of phyto-

plankton with the EnKF technique and the simple 1-D

model used in this paper.

5.4.3. Assimilation of zooplankton measurements

The experiments to be discussed in this section are

the Cases named 5A–C in Table 3. In these cases,

only observations of zooplankton are assimilated.

Fig. 9. Case 4A: The reference solution, climatology, the EnKF estimate at 20 m below the surface (left column) and the corresponding resRMS

values (right column) for nutrient N (upper), phytoplankton P (center) and herbivorous zooplankton H (lower). Only observations of

phytoplankton P have been assimilated and the errors were set to 1% for the measurements and 3% for the model dynamics.
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As may be noted, the percentages of errors are the

same as in the cases in the two previous sections, and

just as for those experiments, the sum of the

resRMStds is increased when the errors in the dynam-

ics and/or the measurements are increased. This is true

even though the resRMStd for the nutrients is

(slightly) decreased when the measurement errors

are increased from 1% to 30% (Cases 5B and 5C).

Fig. 10. Case 3A: The reference solution, climatology, the EnKF estimate at 20 m below the surface (left column) and the corresponding

resRMS values (right column) for nutrient N (upper), phytoplankton P (center) and herbivorous zooplankton H (lower). Only observations of

nutrients N have been assimilated and the errors were set to 1% for the measurements and 3% for the model dynamics.
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Results from Case 5A are shown in Fig. 11. From

this figure, it is obvious that the update of the nutrients

is not as good as in the experiments in the previous

section. It is especially poor from about days 40 to 90.

However, some improvement is seen when the dynam-

ical errors are the smallest, i.e. as in Cases 5B and 5C.

Fig. 11. Case 5A: The reference solution, climatology, the EnKF estimate at 20 m below the surface (left column) and the corresponding

resRMS values (right column) for nutrient N (upper), phytoplankton P (center) and herbivorous zooplankton H (lower). Only observations of

zooplankton H have been assimilated and the errors were set to 1% for the measurements and 3% for the model dynamics.
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Fig. 12. Case 6B: The reference solution, climatology, the EnKF estimate at 20 m below the surface (left column) and the corresponding

resRMS values (right column) for nutrient N (upper), phytoplankton P (center) and herbivorous zooplankton H (lower). Observations of all the

three state variables have been assimilated, but only during the bloom period. The errors were set to 1% both for the measurements and the

model dynamics.
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The updates of the concentration of phytoplankton

seem to be a bit better than they were seems to be

stronger here than in the experiments in Section 5.4.1.

The EnKF for this variable is closer to the reference

solution for most of the time period (see the middle

plots of Fig. 11) and the resRMStds are more reduced

Fig. 13. Case 6A: The reference solution, climatology, the EnKF estimate at 20 m below the surface (left column) and the corresponding resRMS

values (right column) for nutrient N (upper), phytoplankton P (center) and herbivorous zooplankton H (lower). Observations of all the three state

variables have been assimilated, but only outside the bloom period. The errors were set to 1% both for the measurements and the model dynamics.
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than in the experiments where only nutrients data

were used (see Table 3).

Overall, the best result, for all the three state

variables, is the one where the errors in the zooplank-

ton measurements are the smallest and the model

errors the smallest, i.e. the results from Case 5B (see

the resRMStds in Table 3).

5.4.4. Summary

What has been seen in the previous sections is that

in cases where only one state variable is measured and

the measurement errors are allowed to be up to 30%,

the results from the cases where phytoplankton data,

only, were assimilated give the best result. The EnKF

of the concentration of nutrients, which were the

poorest update, was close to the reference solution

through the whole year. The updates of the concen-

trations of phytoplankton and zooplankton almost

fitted the reference solution perfectly at all times (see

Fig. 9). In the experiments where measurements of

only nutrients and zooplankton were used, assimilation

results were far from as good (see Figs. 10 and 11).

Thus, the best result for all the three variables when

measurements of one model variable, only, are used,

is obtained when measurements of the concentration

of phytoplankton are used. This may be caused by the

fact that the phytoplankton is controlling much of the

model evolution, by grazing on nutrients and being

the prey for the zooplankton.

Note that the conclusion here is valid only for the

NPZ model used in this study. If another model was

used, the conclusions might change.

5.5. Assimilation of data from different time periods

In all the previous experiments, the residual root

mean squares (resRMS’s) are the largest in the spring

bloom period, i.e. from about day 60 to about day

160. The changes in the model dynamics, especially

for the phytoplankton and zooplankton, are also the

most rapid during the start and end of this period (see,

e.g. Fig. 8). Therefore, it is likely that data are mostly

needed in this period to control the evolution of the

model. In Fig. 12, results at 20 m from an experiment,

referred to as Case 6B in Table 3, verify this. In this

experiment, observations, from all the three state

variables, were assimilated during the bloom period,

only. By comparing the resRMStds from this experi-

ments with the other experiments in this paper, one

may see that the resRMStds are relatively small and

from Fig. 12, it is easy to see that the EnKF does a

good job in tracking all the three variables both during

the bloom and elsewhere.

In Case 6A in Table 3, the resRMStds and the sizes

of the errors used for an experiment with measure-

ments from the time periods before and after the

phytoplanktom spring bloom, only, are given. Plots

of the EnKF estimate for this experiment are shown in

Fig. 13. Here, the estimate is good outside the bloom

period while it is unable to describe the bloom

accurately. Thus, it seems to be more important to

use measurements from the spring bloom period than

from the rest of the year in order to achieve a good

overall estimate.

This is no surprise. After all, it is in the spring

bloom period, the models are the most unstable (see

Appendix B) and the most rapid changes in the

ecosystem take place. For the rest of the year, the

model is stable, and thus, it will perform well for these

periods even without, or with a few measurements

only. Therefore, the main issue is to have data from

the bloom period.

6. Summary

An Ensemble Kalman Filter has been used with a

simple three-component marine ecosystem model

which is a one-dimensional extension of the vertically

integrated ecosystem model by Evans and Parslow

(1985). First, two assimilation experiments are

described, one where observations of all three model

variables were assimilated and a second where only

observations of the phytoplankton variable were

assimilated. Both of these experiments show that the

EnKF is capable of handling the nonlinear instabilities

during the spring bloom, which is a critical issue when

choosing a particular assimilation technique. The

performance of the assimilation cases was also shown

to significantly reduce the errors compared to a

climatology simulation where no data were assimi-

lated. Of particular interest is the result that even if

only observations of the phytoplankton variable are

assimilated, the assimilation system is capable of

controlling the evolution of the whole model state

including the zooplankton and the nutrients. This is a
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capability of the EnKF, which provides a consistent

multivariate analysis scheme based on the ensemble

statistics which include the information about cross-

correlations between different model variables. There-

after, an extensive sensitivity analysis was presented.

Here, it was concluded that an ensemble size of 100

seemed to be sufficient for the ensemble Kalman filter

to converge. Further, the assimilation of nutrients only

or zooplankton only provided less control over the

model. The results in this paper give in our opinion an

indication that the EnKF may become useful for

applications where more sophisticated ecosystem

models are used.
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Appendix A. Vertical dependence of

photosynthetic light

As in Evans and Parslow (1985), formulas for

photosynthetic light rate and the phytoplankton

growth caused by light are assumed equivalent. How-

ever, while Evans and Parslow (1985) averaged it over

the mixed layer depth, it is here calculated online at

given depths where it is needed. Thus, the specific

growth rate for phytoplankton averaged over a day at

the depth, z, is now given by

aðt; z;PÞ ¼ 2Q2 s
allJ

ek1zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðallJÞ2

Q2
e�2k1zi

s
� 1

0
@

1
A;

ð10Þ

where k1 ¼ k þ l mz0 PðzV; tÞdzV. The parameters k, l

and all are given in Table 4 and the light level at the

surface at noon J, and the daylength 2s are defined as

in Evans and Parslow (1985). Note that in the expres-

sion above, a goes towards zero when the depth, z,

goes to infinity.

Appendix B. Stability analysis of the model

In this section, we perform a stability analysis (see

Struble, 1962) of the model systems (1) systems (2)

systems (3). Let /T(t,z)=(N(t,z), P(t,z), H(t,z)) and f be

defined as the right hand side of the equation (1) to

(3), i.e.

fð/ðt; zÞÞ ¼

� a0N
jþN

� r
h i

P

þ a0N
jþN

� r
h i

P � cðP�P0ÞH
KþP�P0

;

þ fcðP�P0ÞH
KþP�P0

� gH

8>>>>><
>>>>>:

ð11Þ

where we have omitted the diffusion terms and

assumed that the specific growth rate a(t,z,P) = a0 is

constant, to simplify the calculations. For simplicity,

the diffusion term has been omitted in the further

analysis, meaning that we are only considering the

stability of the biological interactions in a local point,

i.e. at a certain depth in our case.

Further, the constant a0 only changes the light

distribution with depth and should not alter the con-

clusions.

We can now write our model equation on the form

D/ðt; zÞ
Dt

¼ f ð/ðt; zÞÞ: ð12Þ

The stability characteristics, or eigenvalues, of a

nonsingular trajectry /(t,z) of such an equation are

Table 4

Physical light parameters, appropriate to Flemish Cap, identical to

the ones used by Evans and Parslow (1985) in their first experiment

Symbol Description Value

k Light attenuation by water 0.10 m� 1

l Light attenuation by phytoplankton 0.12 m2/mmol

b Cloud cover 0.9

Q Maximum photosynthetic rate 2 day� 1

all Low light photosynthetic slope 0.04 m2/W day

/ Latitude 47jN
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reflected in the stability characteristics of a singular

solution of a related equation. Let us assume that /* is
a neighbouring solution of our equation, then the

perturbation function h(t,z) =/(t,z)�/*(t,z) satisfies
the perturbation equation

Dgðt; zÞ
Dt

¼ f ð/ðt; zÞÞ � f ð/ðt; zÞ � hðt; zÞÞ

¼ f*ðhðt; zÞÞ; ð13Þ

where the right hand side vanishes for h(t,z) = 0. (i.e.
for / =/*). Thus, / is a stable solution of Eq. (12) if,

and only if, the trivial solution, h = 0 of Eq. (13) is

stable.

For our model system, the perturbation equation is

given by

Dg
Dt

¼ Að/Þh; ð14Þ

where the matrix A is given by

A ¼

� a0P
ðjþNÞ2 � a0N

jþN
� r

h i
0

a0P
ðjþNÞ2

a0N
jþN

� r � cKH

ðKþP�P0Þ2
� cðP�P0Þ

KþP�P0

0 fcHK

ðKþP�P0Þ2
fcðP�P0Þ
KþP�P0

� g

0
BBBBB@

1
CCCCCA:

ð15Þ

Here, the terms quadratic in gN, gP and gH have been

neglected and the Taylor expansions

N

jþ N
¼ N

jþ N
þ gN

j

ðjþ NÞ2
� ðgN Þ2

2!

2j

ðjþ NÞ3

þ OððgN Þ3Þ ð16Þ

and

P � P0

K þ P � P0

¼ P � P0

K þ P � P0

þ gp
K

ðK þ P � P0Þ2

� ðgPÞ2

2!

2K

ðK þ P � P0Þ3
þ OððgPÞ3Þ

ð17Þ

have been used.

The matrix A, is called the tangent linear operator

or the Jacobi matrix, (Dfi/D/j), of our original model.

Of course, f(/,t) has to be assumed continuously

differentiable in /.
Thus, to check the stability of our model systems

(1) systems (2) systems (3), we need to calculate the

stability characteristcs, i.e. the eigenvalues k of A.

These are found by solving the system

detðkI � AÞ ¼ 0; ð18Þ

where A is evaluated given the trajectory /.
For a linear system, the eigenvalues will be con-

stant in time. For a nonlinear system, like the one in

this paper, the eigenvalues are functions of the state

variables and thus dependent on time. The absolute

values of the eigenvalues determine whether a system

is stable or not. At times when kmaxV 1, the model

system is stable and at times when kmax > 1, the

system is unstable.

The absolute values of the resulting three eigen-

values for our model is shown in Fig. 14. As may be

observed, our system is stable in the period from day 0

to about day 100 and from day 160 to the end of the

year, while it is unstable during the spring bloom

period (days 100 to 160).

Appendix C. Stochastic forcing in the EnKF

In the EnKF, all the statistical information is

represented by an ensemble of model states. The size

of the ensemble is normally chosen large enough to

Fig. 14. The three eigenvalues of the linearized three-variable model

system as a function of time.
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reduce the statistical fluctuations in the ensemble

statistics to an acceptable level. The creation of the

initial ensemble and the stochastic forcing used is

based upon the use of psudo random statistical per-

turbations, see e.g. Evensen (1994) and Grønnevik

and Evensen (2001).

A.1. Initial ensemble

Starting from a best guess model state w̄, ensemble

members are created by adding smooth pseudo ran-

dom perturbations to w̄.
This is done using a formula which for nutrients

N(z), for member j, becomes

NjðzÞ ¼ NðzÞð1þ NjVðzÞ
ffiffiffiffiffiffiffi
r2
ini

q
Þ ð19Þ

where NjV(z) is a perturbation which is smooth in depth

as determined by a specified covariance function. The

ensemble of such perturbations has for each depth a

normal distribution N(0, 1). Thus, in the formula

above, we are adding perturbations with variance

equal to r2. A similar equation is used for the other

ecosystem variables.

A.2. Model errors

The dynamical variance (stochastic model error) is

incorporated into the model using the formula

NjðzÞ ¼ NjðzÞð1þ NjVðzÞ
ffiffiffiffiffiffiffiffi
r2
dyn

q
Þ; ð20Þ

and the variances used in the different experiments are

given in Table 3. It applies to the entire vector of state

once every day during the forward integration.

A.3. Measurement errors

The ensemble of measurements is generated using

the formula

dj ¼ dð1þ lj

ffiffiffiffiffiffiffiffi
r2
obs

q
Þ ð21Þ

where lj is a random number taken from a Gaussian

distribution with mean equal to zero and standard

deviation equal to one. The standard deviation of the

errors in the measurements used is given in Table 3.
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