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Abstract

Ž .The linear mild-slope equation MSE is examined in the limit of very shallow water. This is done by means of a series
Ž .comparison with the more ‘exact’ linear classical theory E valid over arbitrary uniform slopes and known to have a

Aminimum normB solution basis pair, respectively, regular and logarithmically singular at the shore line. It is shown that the
agreement between E and MSE is exact for the first three terms for the regular wave and the first two for the singular wave.
It is further demonstrated, by application of this example, that the MSE represents a better approximation than does the

Ž .classical linearised shallow water equation SWE in the case of extremely small depth. In particular, if solutions to each are
tuned to the same finite wave height at the shoreline, then MSE predicts the correct curvature of wave height there whereas
SWE does not.

ŽThe work of Booij Booij, N.A., 1983. A note on the accuracy of the Mild-Slope Equation. Coastal Engineering 7,
.191–203. is supported and varied to allow performance on very steep beds to be tested against exact values rather than

Ž .those of numerical simulation. Those tests are carried out both as Boundary Value Problems, BVP Scheme A and Initial
Ž .Value Problems, IVP Scheme B with matching results on global error. Methods are found of specifying phase and group

velocity, which are consistent with linear wave beach theory and lead to improvements in solving the MSE over steep flat
beaches. The improvements are found generally superior, in the case considered, to those of some recently developed
‘modified’ and ‘extended’ MSEs. Finally, it is demonstrated, and confirmed by both asymptotic theory and calculation, that
the addition of evanescent modes constitutes improvement only in intermediate depths and is not recommended in depths of

Ž .the order of only a wavelength on a steep e.g. 458 beach. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ž .The mild-slope equation MSE , originally con-
Ž .ceived by Berkhoff 1974 , has been widely used

) Corresponding author. Fax: q44-020-8732-1717.
Ž .E-mail address: ulf@lgu.ac.uk U.T. Ehrenmark .

over the last two decades to model the evolution of
water waves over varying topography. In recent

Ž .works, Li 1994a examines a generalised conjugate
gradient method for improved computational effi-

Ž .ciency and in Li 1994b is studied an evolution
equation whose lower order approximation is the
MSE. Meanwhile, various improvements to the MSE

Ž .have been obtained, e.g. Kirby 1986 derived the

0009-2541r01r$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.
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Ž .‘extended MSE’ and Chamberlain and Porter 1995
Ž .CP derived the ‘modified MSE’, works, which are

Ž .both applicable to rippled beds, whilst Massel 1993
derived an approximation accounting also for
evanescent waves and thus increasing the applicabil-
ity on steep slopes. In a simpler version, Massel
Ž .1995 used the approximation without the evanes-
cent waves to examine the wave transformation on a

Ž .submerged reef. Porter and Staziker 1995 improved
the use of the modified MSE on depth gradient
discontinuities by including also evanescent modes
and developing a set of jump conditions, which
result in conservation of mass but a discontinuity in
surface elevation. They also pointed to deficiencies
in Massel’s model when the discontinuities are pre-
sent. The works cited give a good up-to-date bibliog-
raphy on the subject. See also Chamberlain and

Ž . ŽPorter 1997, pp. 49–53 or Dingemans 1997, Ch.
.3 for a more complete list of references.

The present work, which will focus on steep beds
andror very shallow water, will investigate the per-
formance of the various existing versions of the
MSE described above for which the fundamental
wavenumber k is calculated from linear Airy theory.
The new approach introduces the idea of computing
this wavenumber instead from the known exact lin-
ear solution. The opportunity arises of comparing
results from the new technique herein with those of
CP and Massel who both end up with an additional
term in the MSE. This term appears, in each case, to

Žincrease locally the ‘effective’ wavenumber whilst
.depth is decreasing and this will be shown also as

the case in the comparison with the classical exact
solutions of the full linearised system. Thus, the
ultimate aim is to explore the possibility of quantify-
ing the wave-number enhancement required with
respect to depth and bottom inclination. However,
the present work will be restricted to a uniformly
sloping bed since the chief objective is to establish
this dependency by comparison with an exact solu-
tion rather than numerical simulations. Encouraged
by the results in the present work, the authors intend
to examine further a case of non-uniform slope. This
will be the subject of a separate study.

Ž . Ž .Booij 1983 and others cited above have carried
out a number of numerical experiments to test the
accuracy of the MSE when applied to bottom topog-
raphy of varying degrees of slope. Booij found the

best results were obtained for propagation parallel to
bottom contours but, even in the case of normal
propagation the inclination restriction turned out to
be surprisingly generous, with good results achieved
for gradients as large as 1:3. Porter and Staziker
Ž . Ž1995 noted that modifications to the equation in-

.corporating evanescent waves increased signifi-
cantly the capability of the equation and reasoned
that slopes of order 1 in 1 could be used. These

Žworks did not, however, quantify errors relying
mainly on subjective judgement from graphical out-

.put nor did they consider aspects of the accuracy for
extremely small depths, such as might be expected to
be covered by a theory of non-breaking waves inci-
dent over a plane beach or artificial sloping breakwa-
ter. One aspect of this, which we will draw attention
to in this work, is that the MSE and its various
counterpart improvements discussed above have a

Ž .similar property to the shallow water equation SWE
Ž .and the full Laplace Equation in cylindrical polars
namely that the fundamental solution pair near the

Ž .shoreline consists of a regular bounded solution
Ž .and a singular unbounded solution . A numerical

routine, which proceeds into very shallow water is
Ž .therefore liable to pick up an unwanted parasitic

component of the unbounded solution through round-
Žing errors in a marching scheme Hildebrand, 1956,

.p. 209 . We highlight this phenomenon by recalculat-
ing the solution adding just the first evanescent wave
mode and examining its asymptotic behaviour.

The intention then, in this paper, is to identify the
behaviour of the MSE for the very near-shore zone,
further to quantify errors involved with steeper shoals
and to examine a possible modification from which a
better description may be determined. In doing this,
we will be reminded that basic Airy theory, on which
the MSE theory is constructed, is a limiting form of
a more global linearised theory over a plane beach.

Ž .Friedrichs 1948 examined this problem for har-
monic functions in great detail and deduced the Airy
theory as a certain asymptotic limit. That limit
Ž .Friedrichs’ second limit assumed beach angle a™

0 with the local depth h held fixed. One of the
limiting expressions resulted in confirmation of the
classical Airy dispersion relation for the wavenum-
ber k:

ksk cothkh , 1Ž .`
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which of course is the ‘bread and butter’ of most
linear water wave theories and in particular that of

Ž . 2the MSE. In Eq. 1 , we have written k sv rg`

where v is the monochromatic circular frequency.
ŽWe will refer to Friedrichs, 1948 for the essentials
of the classical plane beach problem, with deference
to some of the earlier authors, e.g. Stoker, 1947,
Hanson, 1926 or even Kirchhoff, 1899, who was the
pioneer of the regular standing wave description in a
sector of steep slope; this is because Friedrichs con-

.structed the asymptotic theory referred to above .
The MSE is written in Section 2 and the implica-

tion is considered of the restriction to its application
Ž .given by Berkhoff 1974 to the case of a plane

Žbeach. In Section 3, we write the classical minimum
.norm solutions of the full Laplace equation problem

Ž .Ehrenmark, 1988 . This enables ‘testing’ of the
MSE performance for very small depths and for
various slopes. The tests of the latter show consider-

Ž .able similarity with the results of Booij 1983 but
by working against an ‘exact’ solution, we have the
possibility of more accurately assessing errors and
the implications of a possible remedy.

An analytical treatment using the method of
Ž .Frobenius see, e.g. Spain and Smith, 1970 , which

effectively involves expressing both components of
Žthe potential in series expansions about hs0 where

.h is the uniformly increasing depth , shows that the
Ž 2 .MSE, in these cases, is accurate to O h in the

limiting case of vanishing depth. This is considered
to be a vital result in a quest for knowing how
‘good’ the MSE really is in shallow water and, in
particular, a comparison with a similar analysis using

Ž .the classical shallow water theory Lamb, 1932
Ž .reveals that the latter is only correct to O h . It is

Ž .therefore unable unlike the MSE accurately to de-
scribe, for example, curvature near the shoreline of a
solution with given amplitude there. The details of
this analytical study are delivered in Section 4 and
the results confirm generally investigations for less

Ž .moderate depths carried out by Booij 1983 for bed
angles up to pr4.

In Section 5, we attempt to model an improve-
Ž .ment to the MSE performance for slopes 1 by

incorporating a modified scheme to compute
wavenumber variation over a plane beach. It was

Ž .shown by Ehrenmark 1994b that the piecewise
Airy set-down computation becomes inaccurate at an

exponential rate as beach angle is increased and
similar albeit slightly less dramatic results appear to

Žhold for the wavenumber computation also Ehren-
.mark, 1994a . In particular, we find that wavenum-

y1 Ž Ž ..2ber appears to increase like h r ln h in the
‘exact’ theory as h™0 whereas the Airy theory of

Ž y1r2 .course predicts the behaviour O h .
The results of the numerical tests are delineated in

Section 6. These include treatments both of initial
Ž .value problem IVP and the two-point boundary

Ž .value problem BVP driven by data from the ‘exact’
theory. Comparison is then undertaken with equiva-
lent results calculated from the alternative versions
of the MSE referred to above. In all cases, it is
confirmed that these improve the basic MSE perfor-
mance to some degree but that the improvement
obtained with the present approach is considerably
more significant. A global measure to quantify the
various improvements is introduced. The effect of
including one evanescent wave mode is discussed in
Section 7 and it is shown, with the help of asymp-
totic expressions, that this becomes an increasingly
dangerous strategy near the shore andror as further
modes are included. Section 8 summarises the find-
ings and emphasises that, whilst the present results
are related only to the case hY s0, there should be
sufficient evidence here to suggest that further work
in the same direction on cases hY

)0 would be
worthwhile.

2. The MSE and near-shore restrictions

The MSE may be taken in the form:

= cc =fqk 2cc fs0, 2Ž .g g

Ž . Ž .e.g. Li 1994b . Here, f is the complex valued
horizontal variation in velocity potential F :

coshk zqhŽ .
FsR f x , y exp yiv t , 3Ž . Ž . Ž .½ 5coshkh

csvrk is phase velocity and c sEvrEk is groupg

velocity. The Liouville transformation

c
fs 4Ž .

cc( g
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Ž . Ž .Radder, 1979 conveniently modifies Eq. 2 into
the Helmholtz form

Dcqk 2cs0, 5Ž .c

where

D cc( g
2 2k sk y . 6Ž .c cc( g

The condition, which is usually taken to prevail
for the application of MSE is:

< <= h
<1 7Ž .

kh

and it is not hard to see from this, that the theory
applied over a plane beach of angle a requires

hk 4k ky1 tanas tanhkhtana . 8Ž .` `

If the depth is approaching zero, we know also from
Ž . Ž Ž .Eq. 1 that tanh kh;kh since it is Eq. 1 which

Ž y1r24. .informs that ksO h as h™0 so that a
Ž .condition equivalent to Eq. 8 will be:

k
<cota 9Ž .

k`

and this condition is surprisingly stringent for less
gently sloping beaches. Clearly, in view of the growth

of k as h™0 the theory appears to be inapplicable
in a certain nearshore zone. The MSE has however
been shown to be applicable also for slopes of order

Ž .unity Booij, 1983 , so careful regard should be paid
Ž . Ž .to the significance of Eq. 9 . Friedrichs 1948 first

displayed wavenumber variation computed from Eq.
Ž .1 for a beach of angle pr30. The equivalent curves
for Kskrk in the cases as68, as188, as308`

and as458 plotted against a non-dimensional depth
Hsk are displayed in Fig. 1. When plotted in this`

way, the wavenumber becomes independent of slope.
Shown in these graphs also are the alternative com-
putations of wavenumber such as obtained by Ehren-

Ž .mark 1994a using the classical exact linear theory
for arbitrary slopes. These show that the Airy theory
computations become increasingly unreliable both
near the shoreline and as the gradient of the sloping
bottom increases.

ŽIf we take Xsk x where x is a horizontal`

surface coordinate measured positive seaward from
.the shoreline then the value Xscota is of some

significance. It was shown to be the position of
minimum of the Airy shoaling coefficient and was

Ž .observed by Friedrichs 1948 to be remarkably close
to the value obtained with that of the exact theory
despite the considerable asymptotic differences in

Fig. 1. Wavenumber curves for Airy theory and the new theory.
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these as X™0. The point is also one where the
maximum set-down is theoretically established
Ž .Ehrenmark, 1994b and using the breaker criterion
that wave amplitude a is approximately 40% of

Ž .mean depth Longuet-Higgins, 1972 , it would ap-
pear that waves of amplitude in excess of 0.4rk`

will have broken before reaching this point. In terms
of wave period T , this means approximately that

2 Ž .10a)T in MKS units for breaking to occur
seaward of the point Xscota .

The point about the above comparison is that, for
most wind driven gravity waves, we could expect
breaking to occur when X-cota . The implication

Ž .of Eq. 9 , on the other hand, can be seen to be
equivalent to X4 tana . The precise interpretation
of the last inequality is, of course, a matter for the
mathematical modeller. However, if it were not at
least replaceable by:

X)10tana ,

it is hard to see how reasonable numerical approxi-
mations could be expected. Suppose then, that the
MSE were to be applicable across the breaker zone,
perhaps by modelling with a frictional loss to simu-

Žlate turbulent exchange see e.g. Longuet-Higgins,
.1972 . On the basis of the above, that would require

the bottom slope restriction a-a where tana s0 0

1r610, in order to make sure that the breaker zone
was within the MSE applicability region.

3. The ‘exact’ classical linear theory

Ž .As the equations stand, neither the basic MSE
Ž .nor the classical linear theory Friedrichs, 1948 are

applicable across the surf zone. However, in the case
of 2-D flow, the effectiveness of the MSE, or subse-
quent modifications of it, for very small depths can
be readily tested against solutions of the Friedrichs
theory, which will be referred to as the ‘exact’ theory
for convenience. The comparison with a 2-D model
should be sufficient to bring out any intrinsic weak-
ness of the MSE and in any case is thought reason-
ably justified for these depths on the grounds that
refraction would, in the absence of edge waves,
sustain a solution whose oscillatory part is primarily
a cross-shore one. In the remainder of this work
therefore, we shall be disregarding wave breaking

and work with a purely low amplitude non-breaking
wave theory.

The full classical problem may be described by
the use of cylindrical polar coordinates. Solutions,
expressed as inverse Mellin transforms, have been

Ž .fully described by Ehrenmark 1987, 1994b in a
series of papers. The two fundamental potential func-
tions f , f , which are, respectively, regular andr s

Ž .logarithmically singular at the fixed shoreline en-
able the full velocity potential to be expressed in the
form

fsR f q imf exp iv t . 10� 4Ž . Ž . Ž .r s

If we take ms0, we get perfect reflection whilst
the case ms1 corresponds to a pure progressing
wave incident from infinity. Thus, in all cases except
perfect reflection, there will be a singularity at the
shore line, which allows energy to propagate freely
according to the unsteady Bernoulli equation, until
that line is reached at which point the singularity acts
as a sink of mean energy. It would be preferable to
describe the very near shore flow therefore, using a
model where energy is dissipated more uniformly
across the surf zone. The complexities of trying to do
this are, however, quite considerable and would only
obscure the chief purpose of the present work. To
test the performance of the MSE, we shall examine
both the regular and singular solutions. For a bounded
standing wave ms0, it is well known that the
amplitudes at Rs0 and Rs` are in the ratio 6M,

Ž .where aspr2 M, e.g. Stoker 1947 .
If M is not too large, we may usefully employ the

finite expansion for f given by Stoker, since this isr
Ž Ž ..in closed form. Writing b sexp ip krMq1r2 ,k

this expansion is

M
iuf sR c exp Re b , 11Ž .Ž .Ýr k k½ 5

ks1

where

ky1Mq1 k jp
c sexp ip y cot ,Łk ½ 5ž / ž /4 2 2 Mjs1

j)1; c sc , 12Ž .1 M

Ž .and the polar representation R,u is used, with
us0 as the SWL and usya as the bed. The

Ž .representation 11 is of a wave of amplitude unity
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as R™`. Note that Rsv 2 rrg where r is the
physical distance from the shoreline and that, on
us0, R corresponds to X used earlier. The similar
representation of the singular component requires
evaluation of an integral along a contour C from
q` to Reiub proceeding anti-clockwise about thek

origin. The full expression is:
ytM e

iupf sR c exp Re b ipy d t .Ž .Ý Hs k k½ 5tcks1

13Ž .
The asymptotic behaviour of the regular and sin-

gular potentials as R™` is:

1
Rsinuf ;e cos Rcosuq My1 p , 14Ž . Ž .r ž /4

1
Rsinuf ;e sin Rcosuq My1 p . 15Ž . Ž .s ž /4

Alternative descriptions in terms of inverse Mellin
Ž .transforms are found in, e.g. Ehrenmark 1988 .

In some of the testing that follows, we shall be
examining the accuracy of the MSE approximation

Ž .to the problem that yields Eq. 11 as solution. The
ŽMSE is often applied with radiation conditions e.g.

.Li, 1994a , but in this case we can take boundary
conditions from the test solution and then examine
the reproduction of intermediary values.

4. Near-shore limit

For shallow beaches, the Airy theory may be
invoked. We need to expand both cc and K 2ccg g

Ž .where for convenience, Kskrk . Solving Eq. 1`

iteratively, we obtain:

1 1 4 16 16
2 2 3K s q q Hq H q H

H 3 45 945 14,175

qO H 4 16Ž . Ž .
where H is the non-dimensional depth given by
KHskh. An expansion for cc , noting that 2cc sg g

2Ž .c 1q2 KHrsinh 2 KH , is similarly

2 8 82 2 3 4vrg cc sHy H q H y HŽ . g 3 45 945
32

5 6y H qO H 17Ž . Ž .
14,175

so that

1 2 82 2 2 3vrg K cc s1y Hq H q HŽ . g 3 45 945

8
4 5q H qO H 18Ž . Ž .

14,175

and the approximate MSE for arbitrarily small depth
H may now be solved by the method of Frobenius. It
is easy to see that the roots of the indicial equation
are identical, so that one solution will be bounded at

ŽHs0, whilst the other is logarithmic there see
.Spain and Smith, 1970, p. 11 . Solutions behave

therefore, at least qualitatively, in an identical fash-
ion to the exact solutions discussed in Section 3. Let
us examine the regular solution in a little detail. If
we insert the expansion:

`

nf H s b H 19Ž . Ž .Ý n
ns0

where HsX tana into the one-dimensional version
Ž .of Eq. 2 and equate like powers of H we obtain,

b sylb1 0

4b slb ly1Ž .2 0

and

9b sylb l2r4 y11lr12q23r45 ,Ž .3 0

where lscot2a . In order to make the comparison
with the exact solution, we require an expansion of
that also for small H. Such an expansion has been

Ž .written by Ehrenmark 1988 and its value on SWL
Ž .is rewritten, Ehrenmark, 1994a , in the more conve-

nient form:

` N NX'f s M ycot ja 20Ž . Ž .Ý Łr ½ 5N ! js1Ns0

where it is understood that the product is given the
value unity if Ns0. Note also that XsH cota .

Ž . Ž .Comparison between Eqs. 19 and 20 shows that
Ž 2 .the expressions agree exactly to O H . We already

know that the expressions cannot be identical, but
this agreement for very small H confirms the hy-
pothesis that the MSE can be used for arbitrarily
small depths despite the conflict of requirements

Ž .implied by Eq. 7 et seq.
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Equations for b , b have also been derived4 5
Ž .through a symbolic package REDUCE ;

8b lq42b ly32b y315b lq1344b0 1 1 2 2

q945b ly7560b q15,120b s0,3 3 4

and

8b lq120b ly160b q630b ly1200b0 1 1 2 2

y4725b lq37,800b q14,175b l3 3 4

y189,000b q354,375b s0.4 5

A similar consideration of the singular component
of the exact solution requires the near-shore expan-

Ž .sion Ehrenmark, 1994a :

My1 N NX'pf sy M ln Xyl ycot jaŽ . Ž .Ý Łs N½ 5N ! js1Ns0

qO X M ln X 21Ž . Ž .
on the SWL where,

2a
l sl qc Nq1 yc N q ;Ž . Ž .N Ny1 sin2 Na

My1

l sc 1 ya tan jaŽ . Ý0
js1

and c is the usual digamma function. The strategy
for a more precise expression arising from the error

Ž . Ž .term in Eq. 21 is given in Ehrenmark 1988 but is
not required here. To invoke a comparison, we write
a full Frobenius expansion:

` `

n nf H s ln H b H q b HŽ . Ý Ýn n
ns0 ns0

Ž .into the transformed MSE:

d 2 8 df
21y Hq H q PPP H½ 5ž /d H 3 45 d H

1 2
2 2qcot a 1y Hq H y PPP fs0 22Ž .ž /3 45

and, having already established agreement through
the regular solution in terms of ln H and H ln H,
comparing coefficients of the term in H 0, we now
get:

2b0 22b qb y qb cot as0.1 1 03

The role of b and b is merely as arbitrary0 0

constants when a specific solution is chosen, so the
Ž .challenge is to compare terms in O H between

the MSE and the full expansions. These are,
2 Ž Ž �� 4respectively, b and ycot a b yb 1q 2a r1 0 0

� 44..sin2a . Whilst these are not identical, it is inter-
esting to note that, as a™0, we have equality up to
Ž 2 .O a .
We conclude that the MSE performs well even for

extremely small depths and that solutions with a
weak singularity are only slightly less well repro-
duced than those which remain regular as the shore
line is approached, Note in particular, however, that
if we carry out a similar investigation for the regular

Žwave using instead the classical linear SWE Lamb,
.1932, Art. 185 :

g=P h=z sE2zrEt 2 ,Ž .
Ž .then this is equivalent to approximating Eqs. 17

Ž .and 18 by just the first term on the right hand sides
resulting in, for example 4b sl2b , which thus, if2 0

a-pr4, overestimates the curvature of the solution
at the shoreline by a factor cos2arcos2a . The view

Ž .therefore of, e.g. Berkhoff 1974 that for small
depth the MSE is seen to reduce to the SWE, whilst
undoubtedly true, seems to somewhat conceal the
strength of the former in shallow water.

5. A proposed improvement on steep shoals

ŽIn previous work Ehrenmark and Williams,
.1996 , it was noted that Airy values for the wave

parameters contributed increasingly to errors as the
beach slope was steepened. Modifications were de-

Žfined in which the wavenumber or equivalently the
.phase velocity was calculated from the linear wave

beach theory. The amount by which this wavenum-
ber was scaled, compared with the Airy wavenumber
at the same depth was found. A new group velocity
was then found by dividing the Airy group velocity
by this factor. The MSE was then solved. This gave
good improvements for 68 and 188 beaches but per-
formed less well for the steeper 308 and 458 beaches.

Ž .The proposal in Ehrenmark and Williams 1996 for
this phase velocity C based on classical linear wave
theory, which follows the ‘peak’ of a wave defined
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by EhrETs0 is given in non-dimensional form
Ž .with a prime denoting an x derivative as:

2 2f qfr s
Cs . 23Ž .X X

f f yf fs r r s
us0

Ž . ŽThis can be readily derived from Mei 1992 , Eq.
. Ž .3.6a, Ch. 1 by setting Ss ty i log f q ifr s

� X 4therein, thus giving ksyTT F rF where Fsfr
Ž .q if . We retain Eq. 23 in the current work buts

seek to improve matters by making some identifica-
tions with analogues from Airy theory. The Airy
dispersion relation gives an expression for the group
velocity c :g

g
y2c s D , 24Ž .g d2v

where the dispersion relation connecting circular
wave frequency v, acceleration due to gravity g,
depth h and wavenumber k is:

v 2 sgk tanhkh , 25Ž .
Ž Ž ..also given by Eq. 1 and the shoaling coefficient

Ž .D is defined by Burnside, 1914 :d

y1r22kh
D s tanhkh 1q . 26Ž .d ½ 5ž /sinh2kh

We non-dimensionalise by writing Kskrk and`
2 Ž .Hsk h where k sv rg then Eq. 25 becomes:` `

K tanh KHs1. 27Ž .
Putting Csk crv and C sk c rv, we find that` g ` g

Burnside’s shoaling coefficient is written as:

y1r22 KH
D s tanh KH 1q . 28Ž .d ½ 5ž /sinh2 KH

Ž .Finally the relation 24 becomes:

1
C s . 29Ž .g 22 Dd

We may attempt the identification of a group veloc-
ity in steep beach wave theory by replacing the
shoaling coefficient D of Airy theory with thed

) � 2 241r2 <shoaling coefficient D s f qf . Theus0d s r
Ž .analogue of expression 24 now reads:

1
C s . 30Ž .g 2 22 f qf� 4s r

This is, of course, a non-dimensionalised relation.
The group velocities from this new theory have

Ž .been numerically calculated using Eq. 30 for a
range of beach angles a . These have been plotted

Fig. 2. Group velocities for Airy theory and the new theory.
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Table 1
Ž .Residual error norms in MSE using Airy K and improved MSE

Ž . Ž .New K of regular, singular against a8

a8 Regular: Regular: Singular: Singular:
Airy K New K Airy K New K

6 0.039927 0.070490 0.060713 0.054848
18 0.017292 0.022680 0.067419 0.034839
30 0.154041 0.052224 0.163331 0.008524
45 0.895317 0.011426 0.135603 0.054877

Ž .against a non-dimensional depth H X sk h and`

are shown in Fig. 2. For comparison, the equivalent
Ž Ž ..quantities Eq. 29 from the Airy theory are also

Ž .calculated and when plotted against H X , these are
identical regardless of a . The graphs for the 38 and
68 beaches are virtually indistinguishable from the
Airy solution.

The MSE may be mapped into a Helmholtz equa-
Žtion using the Liouville transformation see Radder,

.1979 :

f CC sc 31Ž .( g

and since the proposed tests are for waves of ‘nor-
mal incidence’ the new equation is:

d2c
2qK cs0, X FXFX , 32Ž .c 0 12d X

Y

CC(ž /g
2 2where K sK y , K s1rC and thec CC( g

prime denotes differentiation w.r.t. X. The values C
Ž . Ž .and C are taken from Eqs. 23 and 30 , respec-g

tively. The functions f and f are supposed to ber s

known.
In the numerical experiments reported here, we

take X s1, X s20 and either prescribe c at these0 1
Ž .points Scheme A : BVP or prescribe c at X ,1

Ž .X yd X Scheme B : IVP . The solution is devel-1

oped using the standard Numerov method with step
Ž 6.length d X. The method is O d X and the choice

d Xs1r64 is found to be more than adequate. Two
Ž .families of solutions are examined a the ‘regular’

solutions where the boundary conditions specify val-
ues that correspond to the Stoker regular potentials

Fig. 3. Regular potentials for a 308 beach. Errors in the MSE boundary value solution using the new modification compared with that
obtained using Airy theory.
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Fig. 4. Singular potentials for a 308 beach. Errors in the MSE boundary value solution using the new modification compared with that
obtained using Airy theory.

Ž .and b the ‘singular’ solutions where the boundary
conditions specify values that correspond to the

Stoker singular potentials. The aim of these tests is
to reproduce numerically f and f . Solutions of ther s

Fig. 5. Regular potentials for a 458 beach. Errors in the MSE boundary value solution using the new modification compared with that
obtained using Airy theory.
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Fig. 6. Singular potentials for a 458 beach. Errors in the MSE boundary value solution using the new modification compared with that
obtained using Airy theory.

Fig. 7. Error computation for IVP: regular wave, beach anglespr6.
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MSE are then compared to ‘exact’ solutions for
various slopes and a residual norm is constructed to
measure the accuracy. Performance testing was
achieved with a simple residual formula of the type:

MSE EXACTÝ f yfp p p
´s 33Ž .

EXACTÝ fp p

where p denotes the mesh points used in the integra-
tion.

6. Numerical results

6.1. Scheme a — boundary Õalue tests

Table 1 shows the results of the method discussed
here.

The performance of this method is shown in Figs.
3–6. Each figure shows the errors in the MSE
solution using our new modification to the dispersion

relation compared with that obtained using Airy
theory.

For the plane beach considered here, this method
seems to perform well. It shows an improvement
over the earlier scaling method of Ehrenmark and

Ž .Williams 1996 and also has the advantage of being
consistent with the linear theory while the earlier
method was somewhat pragmatic.

6.2. Scheme b — initial Õalue tests

For these runs, the ‘exact’ values of the Stoker
potentials at Xs19.99 and 20.00 were taken as
initial values and the solution developed as an IVP
using again the Numerov technique. For conve-
nience, we chose the step-length 0.01. The results of
local error computation are shown in Figs. 7–10 for
the respective beach angles 308 and 458. The reader
comparing these results with those of Ehrenmark and

Ž .Williams 1996 , where a similar treatment was in-

Fig. 8. Error computation for IVP: singular wave, beach anglespr6.
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Fig. 9. Error computation for IVP: regular wave, beach anglespr4.

voked, will be aware of evidence of further improve-
ment of the results. In all cases, the compounded

Ž Ž .global error here, computed from Eq. 33 and
.identified on diagram legends is significantly re-

duced in the new scheme presented here. Note also
that the oscillatory nature of the local error results in
occasional ‘fortuitous’ vanishing of error. This had a

Žpeculiar effect on global error as calculated but not
. Ž .observed there by Ehrenmark and Williams 1996 .

The opportunity has also been taken of comparing
the new results with those that may be obtained

Ž .using i the modified MSE devised by Chamberlain
Ž . Ž .and Porter 1995 , and ii the extended MSE de-

Ž .vised by Massell 1993 . Results are also shown in
Figs. 7–10. In each of the tests, it is confirmed that
Ž .i represents improvement on the basic MSE whilst

Ž .the behaviour of ii seems only marginally better.
The approach adopted in the present work however,
is seen to be superior in comparison with all three
and for all beach slopes tested and for both regular

and singular components. Note that in all cases, a
Žvery substantial improvement in global error quanti-

.fied in the legend of each diagram is obtained
against the modified MSE and the extended MSE.

A possible additional reason for improvement on
Ž .other results i and ii above, is attributed to the

Žgrowth of parasite solutions see Hildebrand, 1956,
.p. 209 for fuller details as follows. The fundamental

Žsolution basis for all forms of the MSE or indeed
.the SWE consists of a pair, of which one component

is necessarily logarithmically singular as the depth
approaches zero. Any error in a marching scheme,
which is intended to describe, say, the bounded
solution will therefore implicitly induce, at each step,
a small component of the singular solution. This
‘parasitic solution’ will grow as the calculation pro-
ceeds toward the shore. For the singular wave com-
putation, the parasite is just a small component of the
regular wave and is therefore relatively unimportant.
For the regular wave, however, the parasite is a
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Fig. 10. Error computation for IVP: singular wave, beach anglespr4.

component of the singular wave, which itself be-
comes large as the shoreline is approached. The
present solution strategy gathers accurate values of

Ž .the wavenumber from an exact solution at each
step, thus, suppressing this particular source of error
whereas the alternative comparative works are forced
to rely on various approximations. This can be seen
to some extent in Figs. 7 and 8 for the 308 slope but
much more dramatically in Figs. 9 and 10 for the 458

slope. The observation sends a warning message
generally to numerical modellers working on a steep
slope in very shallow water.

6.3. Corollary

A referee of the first draft of this work legiti-
mately enquired whether the regular solution could
be computed right up to the shore line Rs0 using
the new approach. This query raised a number of
ramifications.

Firstly, of course, in both old and new models, the
wavenumber K is infinite at the shore line so that
the IVP problem can be solved as close as we please
to Rs0 but not at Rs0. Secondly, the approach to
infinity of K is somewhat milder in the old model
Ž y1r2 .R so that the new model might tend to oscil-
late more very close to the shoreline where the

y1 Ž .2approach to infinity of K is like R r ln R .
ŽIn performing the IVP numerical work for the

.308 beach prompted by the referee’s remark how-
ever, we found rather surprisingly that the old solu-
tion suddenly began to recover accuracy very near
the shoreline. This recovery was quite explosive with
the local calculation at, say, Rs0.1 showing more
than 5% error whilst at Rs0.01 this had diminished
to 0.015%. Calculations for the 458 beach were
similarly accurate near the shoreline. In both cases,

Žthe new solution behaved more poorly in this micro-
.scopic near-shore region. Clearly, these observa-

tions are of limited interest to the engineer, since the
linear solution is already invalid in here; however, in
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view of the mathematical interest, further details of
the solution here are discussed in Appendix A.

7. Evanescent wave modes

Ž .Several authors, e.g. Massel 1993 or Porter and
Ž .Staziker 1995 , have identified the need to include

evanescent modes for a more accurate description in
intermediate depths particularly when bed gradients
are substantial. These studies have not however,
considered effects in very shallow water and the
present simple model allows us to gain a better
understanding of the limitations of such proposals.

In order to keep the analysis and numerical work
as simple as possible in this experiment, we will
consider the addition of just one evanescent mode
and study its effect on a solution that would other-
wise be computed with only the fundamental oscilla-
tory component using piecewise linear Airy theory.
In the notation of Porter and Staziker, this would
reduce the problem to the solution of a pair of
coupled second order differential equations for f ,0

f the respective oscillatory and evanescent modes1

whose sum constitute the approximation to the

Ž .cross-shore spatial dependence of potential. The
equations are:

a f
Y qaX

f
X yk 2 a f qc T 2f0 0 0 0 0 0 0 00 0

q b yb Tf
X qc T 2f s0, 34Ž . Ž .10 01 1 10 1

a f
Y qaX

f
X yk 2a f qc T 2f1 1 1 1 1 1 1 11 1

y b yb Tf
X qc T 2f s0, 35Ž . Ž .10 01 0 01 0

where T denotes tana and k are the roots of then
Ž . Žeigenequation k tan k h sy1 the root ns0n n
.being purely imaginary . We have discussed earlier

Ž y1r2 .in this paper the observation that k ™O h as0

h™0 implies the logarithmic singularity of f at0

the shoreline. To study the behaviour of f , we1
y1Ž y1 .write k hsNpy tan k using the principaln n

branch of tany1. Examining the limit h™0, it is
straightforward to show that Nsn and that:

np 1 h
2k s y 1q qO h , h™0Ž .n 2 2½ 5h np n p

36Ž .
so that the equivalent evanescent ‘skin friction’ fac-

Ž y1.tors k are O h as h™0 also increasing inn

amplitude with increasing modal number. This may
go some way toward explaining the observation noted

Fig. 11. Regular wave 458 beach: error comparison for IVP using the Porter and Staziker solution with and without one evanescent mode.
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Fig. 12. Singular wave 458 beach: error comparison for IVP using the Porter and Staziker solution with and without one evanescent mode.

earlier namely that for the ‘exact solution’ ks
Ž y1 Ž Ž ..2 .O h r ln h , which is a stronger singularity

than that provided by the solution f . Somehow, the0

addition of evanescent modes greatly modifies this
behaviour in small depth.

We illustrate the observations by examining
Ž .details and a computation on a steep 458 beach of

both regular and singular components taking account
of the single evanescent wave mode. For this mode,
k ; prh y 1rp y hrp 3 so that tan k h ;1 1

Ž .ytan hrp ; yhrp , which yields a ; hr2.1

Thus, very near the shore, the differential equation
for wsf is asymptotically almost equivalent to:1

x 2 wY qxwX yp 2 ws r.h.s. 37Ž .
giving fundamental ‘complementary function solu-

� p yp 4tions’ x , x . The inclusion of the first evanes-
cent mode therefore fails to remain ‘uniform’ in the
asymptotic sense when distances from the shore x

yp < <are such that x ) log x . The computational re-
sults are shown in Figs. 11 and 12 where both types
of wave are computed and subtracted from the exact
solution. This gives the actual error of the modified
MSE both with and without a one term evanescent
wave and it is easy to see that the evanescent mode
has an improving effect only in intermediate depths

Ž .consistent with results of earlier authors but that in
very shallow water it provides unreliable results.
Clearly, in view of the asymptotics noted above,
taking account of further modes would only increase
the difficulties in very shallow water.

8. Conclusion

The work has studied the behaviour of the MSE
in the limit of vanishing depth. The results indicate
that, provided the beach slope is sufficiently small,
then the limit does not greatly affect the discrepan-
cies between the ‘exact’ and MSE approximations of
the same physical problem. However, for steep
beaches, there is a finite difference, which reveals

Ž 2 .itself from terms O X onwards for the regular
Ž .wave and from terms O X for the singular wave.

The work described has also attempted to high-
light the possibility of a more liberal use of the MSE
than was previously assumed possible. Tests against

Ž .three versions basic, modified and extended of the
MSE have been carried out and in all cases the
approach suggested in this work proves to be supe-
rior particularly for very steep beaches. For the 458
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beach, for example, the global error generated by
MSE experiments carried out on the interval 1-X
-20 is typically reduced from, respectively, 20%,
19% and 20% for the three versions to just 11% for
the present application to the unbounded wave and
5% to the bounded wave. For the latter, the differ-
ence is quite staggering and is thought to reveal the
activity of parasitic solutions, which themselves are
unbounded as depth approaches zero. Further testing
is required, particularly for non-uniform slopes but if
this proves successful, the MSE with a modified
wavenumber algorithm attached, should remain a
competitive option for coastal wave modellers. That
algorithm could take the form of an empirical rule
expressing the application wavenumber as a multiple
of the Airy theory value and this multiple could be
expected to depend mainly on the local bed slope in
the direction following the wave advance. Work on
this has been started by the authors in conjunction
with calculations on a non-uniform slope.
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Appendix A

We examine in detail, the very near field be-
haviour of the MSE using the proposal in the paper
whereby the wave and group velocities that govern
the propagation are determined heuristically from the
exact solution. With all terms evaluated on us0, we

Ž . Ž .have readily, from Eq. 23 and 29 that:

f f
X yf f

X
s r r s2K CC s 38Ž .g 22 22 f qf� 4s r

so that, in view of the near-field asymptotics of the
regular and singular solutions determined from Eqs.
Ž . Ž .20 and 21 , we have:

p 2a
2K CC ; 39Ž .g 4X log XŽ .

as X™0. Note the equivalent result using Airy
Ž .theory, whereby from Eq. 18 , it follows that

K 2 CC ;1 as X™0.g

We also need to examine the behaviour of CC .g

From the same source equations, we have:

CC ;a X 40Ž .g

Ž Ž ..as X™0. The asymptotic form of the MSE Eq. 2
is therefore:

d df4 2log X X X qp fs0 41Ž . Ž .½ 5d X d X

an equation which, for arbitrary constants a , a , has0 1

the general solution:

p p
fs log X a sin qa cos 42Ž .0 1½ 5ž / ž /log X log X

and it is therefore seen immediately that the very
near field structure of the fundamental solution pair
remains consistent with that of both the exact solu-
tion and the Airy approximation to the full MSE,

� 4namely 1, log X . The constants in a given applica-
tion would of course be different for the two meth-
ods and testing the reproduction of the regular stand-
ing wave, we have found that the Airy method is
more stable whereas for the singular standing wave
the new method is more stable. Both methods will,
of course, as X™0 ultimately exhibit parasitic val-
ues, which will dominate the true values but this

< <cannot be expected until ln X dominates p , i.e.
Ž y4 .X;O 10 . We are reminded however, that both

Ž .components regular and singular are required in
any description of a progressing wave, so even in

Žthis microscopically near-shore region where the
linear solution is in any case physically invalid and

.only of mathematical interest , the overall behaviour
remains superior for the model proposed in the pre-
sent work.
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