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Abstract

The linear mild-dope equation (MSE) is examined in the limit of very shallow water. This is done by means of a series
comparison with the more ‘exact’ linear classical theory (E) valid over arbitrary uniform slopes and known to have a
“minimum norm” solution basis pair, respectively, regular and logarithmically singular at the shore line. It is shown that the
agreement between E and M SE is exact for the first three terms for the regular wave and the first two for the singular wave.
It is further demonstrated, by application of this example, that the MSE represents a better approximation than does the
classical linearised shallow water equation (SWE) in the case of extremely small depth. In particular, if solutions to each are
tuned to the same finite wave height at the shoreline, then MSE predicts the correct curvature of wave height there whereas
SWE does not.

The work of Booij (Booij, N.A., 1983. A note on the accuracy of the Mild-Slope Equation. Coastal Engineering 7,
191-203.) is supported and varied to alow performance on very steep beds to be tested against exact values rather than
those of numerical simulation. Those tests are carried out both as Boundary Value Problems, BV P (Scheme A) and Initial
Vaue Problems, |VP (Scheme B) with matching results on global error. Methods are found of specifying phase and group
velocity, which are consistent with linear wave beach theory and lead to improvements in solving the MSE over steep flat
beaches. The improvements are found generally superior, in the case considered, to those of some recently developed
‘modified’ and ‘extended” MSEs. Finally, it is demonstrated, and confirmed by both asymptotic theory and calculation, that
the addition of evanescent modes constitutes improvement only in intermediate depths and is not recommended in depths of
the order of only a wavelength on a steep (e.g. 45°) beach. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction over the last two decades to model the evolution of
water waves over varying topography. In recent

The mild-slope equation (MSE), originaly con- works, Li (1994a) examines a generalised conjugate
ceived by Berkhoff (1974), has been widely used gradient method for improved computationa effi-
ciency and in Li (1994b) is studied an evolution

equation whose lower order approximation is the

~* Corresponding auithor. Fax: +44-020-8732-1717. MSE. Meanwhile, various improvements to the MSE
E-mail address; ulf@Igu.ac.uk (U.T. Ehrenmark). have been obtained, e.g. Kirby (1986) derived the
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‘extended MSE’ and Chamberlain and Porter (1995)
(CP) derived the ‘ modified MSE’, works, which are
both applicable to rippled beds, whilst Massel (1993)
derived an approximation accounting aso for
evanescent waves and thus increasing the applicabil-
ity on steep slopes. In a simpler version, Massel
(1995) used the approximation without the evanes-
cent waves to examine the wave transformation on a
submerged reef. Porter and Staziker (1995) improved
the use of the modified MSE on depth gradient
discontinuities by including also evanescent modes
and developing a set of jump conditions, which
result in conservation of mass but a discontinuity in
surface elevation. They also pointed to deficiencies
in Massel’s model when the discontinuities are pre-
sent. The works cited give a good up-to-date bibliog-
raphy on the subject. See also Chamberlain and
Porter (1997, pp. 49-53) or Dingemans (1997, Ch.
3) for a more complete list of references.

The present work, which will focus on steep beds
and/or very shallow water, will investigate the per-
formance of the various existing versions of the
MSE described above for which the fundamental
wavenumber K is calculated from linear Airy theory.
The new approach introduces the idea of computing
this wavenumber instead from the known exact lin-
ear solution. The opportunity arises of comparing
results from the new technique herein with those of
CP and Massel who both end up with an additional
term in the MSE. This term appears, in each case, to
increase locally the ‘effective’ wavenumber (whilst
depth is decreasing) and this will be shown also as
the case in the comparison with the classical exact
solutions of the full linearised system. Thus, the
ultimate aim is to explore the possibility of quantify-
ing the wave-number enhancement required with
respect to depth and bottom inclination. However,
the present work will be restricted to a uniformly
sloping bed since the chief objective is to establish
this dependency by comparison with an exact solu-
tion rather than numerical simulations. Encouraged
by the results in the present work, the authors intend
to examine further a case of non-uniform slope. This
will be the subject of a separate study.

Booij (1983) (and others cited above) have carried
out a number of numerical experiments to test the
accuracy of the MSE when applied to bottom topog-
raphy of varying degrees of slope. Booij found the

best results were obtained for propagation parallel to
bottom contours but, even in the case of normal
propagation the inclination restriction turned out to
be surprisingly generous, with good results achieved
for gradients as large as 1:3. Porter and Staziker
(1995) noted that modifications to the equation (in-
corporating evanescent waves) increased signifi-
cantly the capability of the equation and reasoned
that slopes of order 1 in 1 could be used. These
works did not, however, quantify errors (relying
mainly on subjective judgement from graphical out-
put) nor did they consider aspects of the accuracy for
extremely small depths, such as might be expected to
be covered by a theory of non-breaking waves inci-
dent over a plane beach or artificial sloping breakwa-
ter. One aspect of this, which we will draw attention
to in this work, is that the MSE and its various
counterpart improvements discussed above have a
similar property to the shallow water equation (SWE)
(and the full Laplace Equation in cylindrical polars)
namely that the fundamental solution pair near the
shoreline consists of a regular (bounded) solution
and a singular (unbounded solution). A numerical
routine, which proceeds into very shallow water is
therefore liable to pick up an unwanted (parasitic)
component of the unbounded solution through round-
ing errors in a marching scheme (Hildebrand, 1956,
p. 209). We highlight this phenomenon by reca culat-
ing the solution adding just the first evanescent wave
mode and examining its asymptotic behaviour.

The intention then, in this paper, is to identify the
behaviour of the MSE for the very near-shore zone,
further to quantify errorsinvolved with steeper shoals
and to examine a possible modification from which a
better description may be determined. In doing this,
we will be reminded that basic Airy theory, on which
the MSE theory is constructed, is a limiting form of
a more global linearised theory over a plane beach.
Friedrichs (1948) examined this problem for har-
monic functions in great detail and deduced the Airy
theory as a certain asymptotic limit. That limit
(Friedrichs second limit) assumed beach angle o —
0 with the local depth h held fixed. One of the
limiting expressions resulted in confirmation of the
classical Airy dispersion relation for the wavenum-
ber k:

k = k.cothkh, (1)
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which of course is the ‘bread and butter’ of most
linear water wave theories and in particular that of
the MSE. In Eg. (1), we have written k, = w?/g
where o is the monochromatic circular freguency.
(We will refer to Friedrichs, 1948 for the essentias
of the classical plane beach problem, with deference
to some of the earlier authors, e.g. Stoker, 1947,
Hanson, 1926 or even Kirchhoff, 1899, who was the
pioneer of the regular standing wave description in a
sector of steep slope; this is because Friedrichs con-
structed the asymptotic theory referred to above).

The MSE is written in Section 2 and the implica-
tion is considered of the restriction to its application
given by Berkhoff (1974) to the case of a plane
beach. In Section 3, we write the classical (minimum
norm) solutions of the full Laplace equation problem
(Ehrenmark, 1988). This enables ‘testing’ of the
MSE performance for very small depths and for
various slopes. The tests of the latter show consider-
able similarity with the results of Booij (1983) but
by working against an ‘exact’ solution, we have the
possibility of more accurately assessing errors and
the implications of a possible remedy.

An analytical treatment using the method of
Frobenius (see, e.g. Spain and Smith, 1970), which
effectively involves expressing both components of
the potential in series expansions about h = 0 (where
h is the uniformly increasing depth), shows that the
MSE, in these cases, is accurate to O(h?) in the
limiting case of vanishing depth. This is considered
to be a vital result in a quest for knowing how
‘good’ the MSE redly is in shallow water and, in
particular, a comparison with a similar analysis using
the classical shallow water theory (Lamb, 1932)
reveals that the latter is only correct to OCh). It is
therefore unable (unlike the MSE) accurately to de-
scribe, for example, curvature near the shoreline of a
solution with given amplitude there. The details of
this analytical study are delivered in Section 4 and
the results confirm generally investigations for less
moderate depths carried out by Booij (1983) for bed
angles up to 7 /4.

In Section 5, we attempt to model an improve-
ment to the MSE performance for slopes (1) by
incorporating a modified scheme to compute
wavenumber variation over a plane beach. It was
shown by Ehrenmark (1994b) that the piecewise
Airy set-down computation becomes inaccurate at an

exponential rate as beach angle is increased and
similar abeit slightly less dramatic results appear to
hold for the wavenumber computation also (Ehren-
mark, 19944a). In particular, we find that wavenum-
ber appears to increase like h™!/(In(h))? in the
‘exact’ theory as h — O whereas the Airy theory of
course predicts the behaviour O(h~1/2),

The results of the numerical tests are delineated in
Section 6. These include treatments both of initial
vaue problem (IVP) and the two-point boundary
vaue problem (BVP) driven by data from the ‘ exact’
theory. Comparison is then undertaken with equiva
lent results calculated from the alternative versions
of the MSE referred to above. In all cases, it is
confirmed that these improve the basic MSE perfor-
mance to some degree but that the improvement
obtained with the present approach is considerably
more significant. A global measure to quantify the
various improvements is introduced. The effect of
including one evanescent wave mode is discussed in
Section 7 and it is shown, with the help of asymp-
totic expressions, that this becomes an increasingly
dangerous strategy near the shore and/or as further
modes are included. Section 8 summarises the find-
ings and emphasises that, whilst the present results
are related only to the case h' = 0O, there should be
sufficient evidence here to suggest that further work
in the same direction on cases h >0 would be
worthwhile,

2. The MSE and near-shore restrictions

The MSE may be taken in the form:
Vee, Ve + kcey b = 0, (2)

eg. Li (1994b). Here, ¢ is the (complex valued)
horizontal variation in velocity potential @:
coshk( z+ h)

¢= m{d)( x¥) coshkh

exp(—iwt)}, (3)

c= w/k is phase velocity and ¢y = dw /K is group
velocity. The Liouville transformation

b

CCg

¢ = (4)
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(Radder, 1979) conveniently modifies Eg. (2) into
the Helmholtz form

Ay +Kap=0, (5)
where

A CCy
kf =k?— o (6)

g

The condition, which is usually taken to prevail
for the application of MSE is:
vh 1 7
o < (7)
and it is not hard to see from this, that the theory
applied over a plane beach of angle « requires

hk, > k k™ ‘tan« = tanhkhtan « . (8)

If the depth is approaching zero, we know also from
Eqg. (D that tanh kh ~ kh (since it is Eg. (1) which
informs that k=0(h"'/?}) as h—0) so that a
condition equivalent to Eq. (8) will be:
k

PR < cota (9)
and this condition is surprisingly stringent for less
gently sloping beaches. Clearly, in view of the growth

of k as h— 0 the theory appears to be inapplicable
in a certain nearshore zone. The MSE has however
been shown to be applicable also for slopes of order
unity (Booij, 1983), so careful regard should be paid
to the significance of Eq. (9). Friedrichs (1948) first
displayed wavenumber variation computed from Eq.
(1) for abeach of angle 7/30. The equivaent curves
for K=Kk/k, inthe cases o =6°, a = 18°, a = 30°
and « = 45° plotted against a non-dimensional depth
H =k, are displayed in Fig. 1. When plotted in this
way, the wavenumber becomes independent of slope.
Shown in these graphs aso are the alternative com-
putations of wavenumber such as obtained by Ehren-
mark (1994a) using the classical exact linear theory
for arbitrary slopes. These show that the Airy theory
computations become increasingly unreliable both
near the shoreline and as the gradient of the sloping
bottom increases.

If we take X=k_ x (where x is a horizontal
surface coordinate measured positive seaward from
the shoreline) then the value X = cota is of some
significance. It was shown to be the position of
minimum of the Airy shoaling coefficient and was
observed by Friedrichs (1948) to be remarkably close
to the value obtained with that of the exact theory
despite the considerable asymptotic differences in
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Fig. 1. Wavenumber curves for Airy theory and the new theory.
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these as X — 0. The point is also one where the
maximum set-down is theoretically established
(Ehrenmark, 1994b) and using the breaker criterion
that wave amplitude a is approximately 40% of
mean depth (Longuet-Higgins, 1972), it would ap-
pear that waves of amplitude in excess of 0.4/k.
will have broken before reaching this point. In terms
of wave period T, this means approximately that
10a> T2 (in MKS units) for breaking to occur
seaward of the point X = cota.

The point about the above comparison is that, for
most wind driven gravity waves, we could expect
breaking to occur when X < cotw. The implication
of Eg. (9), on the other hand, can be seen to be
equivalent to X > tanw«. The precise interpretation
of the last inequality is, of course, a matter for the
mathematical modeller. However, if it were not at
least replaceable by:

X> 10tana,

it is hard to see how reasonable numerical approxi-
mations could be expected. Suppose then, that the
MSE were to be applicable across the breaker zone,
perhaps by modelling with a frictional loss to simu-
late turbulent exchange (see e.g. Longuet-Higgins,
1972). On the basis of the above, that would require
the bottom slope restriction a < «, wWhere tana, =
1/y10, in order to make sure that the breaker zone
was within the MSE applicability region.

3. The ‘exact’ classical linear theory

As the equations stand, neither the (basic) MSE
nor the classical linear theory (Friedrichs, 1948) are
applicable across the surf zone. However, in the case
of 2-D flow, the effectiveness of the MSE, or subse-
guent modifications of it, for very small depths can
be readily tested against solutions of the Friedrichs
theory, which will be referred to as the ‘exact’ theory
for convenience. The comparison with a 2-D model
should be sufficient to bring out any intrinsic weak-
ness of the MSE and in any case is thought reason-
ably justified for these depths on the grounds that
refraction would, in the absence of edge waves,
sustain a solution whose oscillatory part is primarily
a cross-shore one. In the remainder of this work
therefore, we shall be disregarding wave breaking

and work with a purely low amplitude non-breaking
wave theory.

The full classical problem may be described by
the use of cylindrical polar coordinates. Solutions,
expressed as inverse Méellin transforms, have been
fully described by Ehrenmark (1987, 1994b) in a
series of papers. The two fundamental potential func-
tions ¢,, ¢, which are, respectively, regular and
logarithmically singular at the (fixed) shoreline en-
able the full velocity potential to be expressed in the
form

¢ =R{(¢ +ipds)exp(iot)}. (10)

If we take u = 0, we get perfect reflection whilst
the case w =1 corresponds to a pure progressing
wave incident from infinity. Thus, in all cases except
perfect reflection, there will be a singularity at the
shore line, which alows energy to propagate freely
according to the unsteady Bernoulli equation, until
that line is reached at which point the singularity acts
as a sink of mean energy. It would be preferable to
describe the very near shore flow therefore, using a
model where energy is dissipated more uniformly
across the surf zone. The complexities of trying to do
this are, however, quite considerable and would only
obscure the chief purpose of the present work. To
test the performance of the MSE, we shall examine
both the regular and singular solutions. For a bounded
standing wave =0, it is well known that the
amplitudes a R=0 and R= < are in the ratio yM,
where a = 7/2M, e.g. Stoker (1947).

If M isnot too large, we may usefully employ the
finite expansion for ¢, given by Stoker, since this is
in closed form. Writing B8, = exp (im(k/M + 1/2)),
this expansion is

M
¢ = %{ b CkEXp( Rei%k)} ) (11)
k=1
where
C(M+1 k) k=1 j
ck=exp{|7r( 2 —E)}j_]_llcot(m),
j>1c,=¢cp, (12)

and the polar representation (R,0) is used, with
0=0 as the SWL and 6= —a as the bed. The
representation (11) is of a wave of amplitude unity
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as R— . Note that R= w?r/g where r is the
physical distance from the shoreline and that, on
0 =0, R corresponds to X used earlier. The similar
representation of the singular component requires
evaluation of an integral along a contour C from
+ to Re'B, proceeding anti-clockwise about the
origin. The full expression is:

7-rd>s=9t{ % ckexp(Re“’Bk)[irr—feTtdt“.

k=1 c
(13)

The asymptotic behaviour of the regular and sin-
gular potentials as R— « is:

) 1
¢, ~ eRS'””cos( Rcos@ + Z( M — 1)77) , (14)

. 1
b ~ eRS'”esin( Rcos6 + Z( M — 1)77) : (15)

Alternative descriptionsin terms of inverse Mellin
transforms are found in, e.g. Ehrenmark (1988).

In some of the testing that follows, we shall be
examining the accuracy of the MSE approximation
to the problem that yields Eq. (11) as solution. The
MSE is often applied with radiation conditions (e.g.
Li, 1994a), but in this case we can take boundary
conditions from the test solution and then examine
the reproduction of intermediary values.

4. Near-shore limit

For shallow beaches, the Airy theory may be
invoked. We need to expand both cc, and chcg
where for convenience, K =k/k,. Solving Eq. (1)
iteratively, we obtain:

1 1 4 16
Ki=—+—-+—H+_——H?+
H 3 45 945 14,175
+O(H?) (16)
where H is the non-dimensional depth given by
KH =kh. An expansion for ccy, noting that 2cc, =
c?(1+ 2KH /sinh 2KH), is S|m|IarIy

HS

(w/9)*cc TR ST LAY
o 3 45 945

- H5+ O(H® 17
14,175 (H5) (17)

so that

(0/9)°K2cc P PSP
0 3 45 945

4 5
+ 14’175H +O(H>) (18)
and the approximate MSE for arbitrarily small depth
H may now be solved by the method of Frobenius. It
is easy to see that the roots of the indicia equation
are identical, so that one solution will be bounded at
H =0, whilst the other is logarithmic there (see
Spain and Smith, 1970, p. 11). Solutions behave
therefore, at least qualitatively, in an identical fash-
ion to the exact solutions discussed in Section 3. Let
us examine the regular solution in a little detail. If
we insert the expansion:

b(H) = T B H" (19)
n=0

where H = X tana into the one-dimensional version
of Eqg. (2) and equate like powers of H we obtain,

Bi= —ABy
Ba=ABo(A—1)
and
9B; = —ABo(A?/4—11A/12 + 23 /45),

where A = cot%. In order to make the comparison
with the exact solution, we require an expansion of
that also for small H. Such an expansion has been
written by Ehrenmark (1988) and its value on SWL
is rewritten, (Ehrenmark, 1994a), in the more conve-
nient form:

XN N

FZ{ [T(- cotja)} (20)

NI 1

where it is understood that the product is given the
value unity if N=0. Note also that X=H cota.
Comparison between Egs. (19) and (20) shows that
the expressions agree exactly to O(H ?). We already
know that the expressions cannot be identical, but
this agreement for very small H confirms the hy-
pothesis that the MSE can be used for arbitrarily
small depths despite the conflict of requirements
implied by Eq. (7) et seq.
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Equations for B,, Bs have aso been derived
through a symbolic package (REDUCE);

8B, A + 428, A — 323, — 3158, A + 13448,
+945B,\ — 75608, + 15,1208, = 0,

and

8B,A + 1208, 1 — 1603, + 6303, A — 1200,
— 47258, + 37,8008, + 14,1758, A
— 189,000, + 354,3758; = 0.

A similar consideration of the singular component
of the exact solution requires the near-shore expan-
sion (Ehrenmark, 1994a):

M-1 XN N
Th=—VM ¥ (InX=Ay) 7 TT(~cotja)
N=0 f=1

+ O( XMInX) (21)
on the SWL where,

2a
Ay =Ay_y+ U (N+1) — ¢(N) + :
N N—-1 lp( ) lp( ) S|n2Na

M-1
Ag=9(1) —a ) tanja

j=1
and ¢ is the usual digamma function. The strategy
for a more precise expression arising from the error
term in Eq. (21) is given in Ehrenmark (1988) but is
not required here. To invoke a comparison, we write
a full Frobenius expansion:

¢(H)=InH Y BH"+ X bH"
n=0 n=0
into the (transformed) M SE:

d 2 8 do
— (1——H+—H2+ )H—
dH 3 45 dH

1 2
+eotu|l——-H+—H?*—---|¢p=0 (22
a( 3 45 )d’ (22)
and, having aready established agreement through
the regular solution in terms of InH and HInH,
comparing coefficients of the term in H°, we now
get:

2B
2B, +b, — TO + bycot?x = 0.

The role of b, and B, is merely as arbitrary
constants when a specific solution is chosen, so the
challenge is to compare terms in O(H) between
the MSE and the full expansions. These are,
respectively, b, and —cotZ(b, — B,(1 + {{2a}/
{sin2a}})). Whilst these are not identical, it is inter-
esting to note that, as « — 0, we have equality up to
O(a?).

We conclude that the MSE performs well even for
extremely small depths and that solutions with a
weak singularity are only dightly less well repro-
duced than those which remain regular as the shore
line is approached, Note in particular, however, that
if we carry out a similar investigation for the regular
wave using instead the classical linear SWE (Lamb,
1932, Art. 185):

ov- (hVZ) = 0% /ot?,

then this is equivalent to approximating Egs. (17)
and (18) by just the first term on the right hand sides
resulting in, for example 483, = A%, which thus, if
a < /4, overestimates the curvature of the solution
at the shoreline by a factor cos’ /cos2a. The view
therefore of, eg. Berkhoff (1974) that for small
depth the MSE is seen to reduce to the SWE, whilst
undoubtedly true, seems to somewhat concea the
strength of the former in shallow water.

5. A proposed improvement on steep shoals

In previous work (Ehrenmark and Williams,
1996), it was noted that Airy values for the wave
parameters contributed increasingly to errors as the
beach dlope was steepened. Modifications were de-
fined in which the wavenumber (or equivalently the
phase velocity) was calculated from the linear wave
beach theory. The amount by which this wavenum-
ber was scaled, compared with the Airy wavenumber
at the same depth was found. A new group velocity
was then found by dividing the Airy group velocity
by this factor. The MSE was then solved. This gave
good improvements for 6° and 18° beaches but per-
formed less well for the steeper 30° and 45° beaches.
The proposal in Ehrenmark and Williams (1996) for
this phase velocity C based on classical linear wave
theory, which follows the ‘ peak’ of a wave defined
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by an/0T=0 is given in non-dimensional form
(with a prime denoting an x derivative) as.

oF + ¢2
d)s(ﬁ; - d)rd)é 9:0.

This can be readily derived from Mei (1992), (Eq.
36a Ch. 1) by setting S=t—ilog (¢, +idy)
therein, thus giving k= —9{®’/ ®} where & = ¢,
+i¢. We retain Eq. (23) in the current work but
seek to improve matters by making some identifica
tions with analogues from Airy theory. The Airy
dispersion relation gives an expression for the group

(23)

velocity cg:
g
Cg = z Dd 2, (24)

where the dispersion relation connecting circular
wave frequency w, acceleration due to gravity g,
depth h and wavenumber K is:

w? = gktanhkh, (25)

(also given by Eq. (1)) and the shoaling coefficient
D is defined by (Burnside, 1914):

2kh )}1/2

1+ (26)

Do = {tanhkh sinh2kh

U.T. Ehrenmark, P.S. Williams / Coastal Engineering 42 (2001) 17-34

We non-dimensionalise by writing K=Kk/k, and
H =k, h where k, = w?/g then Eq. (25) becomes:

KtanhKH = 1. (27)

Putting C=k.c/w and Cy= kmcg/w, we find that
Burnside's shoaling coefficient is written as:

2KH ~1/2
Finally the relation (24) becomes:
1
C,= 207 (29)

We may attempt the identification of a group veloc-
ity in steep beach wave theory by replacing the
shoaling coefficient D, of Airy theory with the
shoaling coefficient Dy ={¢2 + ¢}/ ?lg—0. The
analogue of expression (24) now reads:

1
Co==—5—-
O 22+ 07
This is, of course, a non-dimensionalised relation.

The group velocities from this new theory have

been numerically calculated using Eq. (30) for a
range of beach angles «. These have been plotted

(30)

0.0 1 1 1 1 I 1 1 1 1 |

all angles

2 3
Depth H(X)

Fig. 2. Group velocities for Airy theory and the new theory.
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Table 1
Residual error norms in MSE (using Airy K) and improved MSE
(New K) of (regular, singular) against o°

and since the proposed tests are for waves of ‘nor-
mal incidence' the new equation is:

a’ Regular: Regular: Singular: Singular:
Airy K New K Airy K New K dy ,
6 0039927 0070490 0060713  0.054848 axz TKep=0, X =X<X,, (32)
18 0017292 0022680 0067419  0.034839
30 0154041 0052224 0163331  0.008524
45 0895317 0011426 0135603  0.054877

against a non-dimensional depth H(X) =k, h and
are shown in Fig. 2. For comparison, the equivalent
quantities (Eq. (29)) from the Airy theory are also
calculated and when plotted against H( X), these are
identical regardless of «. The graphs for the 3° and
6° beaches are virtualy indistinguishable from the
Airy solution.

The MSE may be mapped into a Helmholtz equa-
tion using the Liouville transformation (see Radder,
1979):

/CCy =y

(31)

CC,
where K2=K?— —(H) ,

CC,
prime denotes differentiation w.r.t. X. The values C
and C, are taken from Egs. (23) and (30), respec-
tively. The functions ¢, and ¢, are supposed to be
known.

In the numerical experiments reported here, we
take X, =1, X; =20 and either prescribe ¢ at these
points (Scheme A : BVP) or prescribe  at X,
X, — 86X (Scheme B : IVP). The solution is devel-
oped using the standard Numerov method with step
length 8X. The method is O(8X°®) and the choice
6X=1/64 is found to be more than adequate. Two
families of solutions are examined (a) the ‘regular’
solutions where the boundary conditions specify val-
ues that correspond to the Stoker regular potentials

K=1/C and the
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Fig. 3. Regular potentials for a 30° beach. Errors in the MSE boundary value solution using the new modification compared with that

obtained using Airy theory.
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Fig. 4. Singular potentials for a 30° beach. Errors in the MSE boundary value solution using the new modification compared with that
obtained using Airy theory.

and (b) the ‘singular’ solutions where the boundary Stoker singular potentials. The aim of these tests is
conditions specify values that correspond to the to reproduce numerically ¢, and ¢,. Solutions of the

10 T T T I T T T T l T T T T T T T T
- /—\\ Regul o A i .
gular 45° Beagh \ o
/ \ /
B ! \ / [—
- ! \ / \ ! v
; | J \ ! \
0.5— , | / \ i \—
- l \ | \ ! \ 4
| \ |
- 1 \ ‘
/ \ i
! ! \ I !
L ’ \ | .
S r ! \ ! ! ,, Y
) ! ‘
) r‘”"%’-“’"\,——'\’"ﬁf\—/
[5] N \ | \ 1 -
Al ; ! I \ ! i
\ ! ! | \ |
i 1 \ | \ | i
L ! ! ) \ 1 i
051" / \ ! ! !
-0.5— ! Vo —
\ ;e - Airy | \ !
Loy \ . \ / .
L ! \ \ ! i
\ ! ‘New, v
o N N R
L \/ ~ - B
_10 Il 1 1 | Il 1 1 1 I 1 Il 1 1 I 1 1 1 1
5 10 15 20

Shore Distance

Fig. 5. Regular potentials for a 45° beach. Errors in the MSE boundary value solution using the new modification compared with that
obtained using Airy theory.
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MSE are then compared to ‘exact’ solutions for
various slopes and a residual norm is constructed to
measure the accuracy. Performance testing was
achieved with a simple residual formula of the type:

MSE __ EXACT

o= Zp|d’p P |
EXACT
L] 24T

where p denotes the mesh points used in the integra-
tion.

(33)

6. Numerical results
6.1. Scheme a — boundary value tests

Table 1 shows the results of the method discussed
here.

The performance of this method is shown in Figs.
3-6. Each figure shows the errors in the MSE
solution using our new modification to the dispersion

relation compared with that obtained using Airy
theory.

For the plane beach considered here, this method
seems to perform well. It shows an improvement
over the earlier scaling method of Ehrenmark and
Williams (1996) and also has the advantage of being
consistent with the linear theory while the earlier
method was somewhat pragmatic.

6.2. Scheme b — initial value tests

For these runs, the ‘exact’ values of the Stoker
potentials at X =19.99 and 20.00 were taken as
initial values and the solution developed as an IVP
using again the Numerov technique. For conve-
nience, we chose the step-length 0.01. The results of
local error computation are shown in Figs. 7-10 for
the respective beach angles 30° and 45°. The reader
comparing these results with those of Ehrenmark and
Williams (1996), where a similar treatment was in-
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k 214 ... Extended MSE (Massel)
k
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Non—dimensional Seaward displacement: R:r(wz/g)

Fig. 8. Error computation for IVP: singular wave, beach angle = 7 /6.
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Fig. 9. Error computation for IVP: regular wave, beach angle = 7 /4.

voked, will be aware of evidence of further improve-
ment of the results. In all cases, the compounded
global error (here, computed from Eg. (33) and
identified on diagram legends) is significantly re-
duced in the new scheme presented here. Note also
that the oscillatory nature of the local error resultsin
occasional ‘fortuitous' vanishing of error. This had a
peculiar effect on global error as calculated (but not
observed there) by Ehrenmark and Williams (1996).

The opportunity has also been taken of comparing
the new results with those that may be obtained
using (i) the modified MSE devised by Chamberlain
and Porter (1995), and (ii) the extended MSE de-
vised by Massell (1993). Results are also shown in
Figs. 7-10. In each of the tests, it is confirmed that
(i) represents improvement on the basic MSE whilst
the behaviour of (ii) seems only marginally better.
The approach adopted in the present work however,
is seen to be superior in comparison with al three
and for all beach slopes tested and for both regular

and singular components. Note that in all cases, a
very substantial improvement in global error (quanti-
fied in the legend of each diagram) is obtained
against the modified MSE and the extended MSE.

A possible additiona reason for improvement on
other results (i and ii) above, is attributed to the
growth of parasite solutions (see Hildebrand, 1956,
p. 209 for fuller details) as follows. The fundamental
solution basis for al forms of the MSE (or indeed
the SWE) consists of a pair, of which one component
is necessarily logarithmically singular as the depth
approaches zero. Any error in a marching scheme,
which is intended to describe, say, the bounded
solution will therefore implicitly induce, at each step,
a small component of the singular solution. This
‘parasitic solution’ will grow as the calculation pro-
ceeds toward the shore. For the singular wave com-
putation, the parasite is just a small component of the
regular wave and is therefore relatively unimportant.
For the regular wave, however, the parasite is a
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Fig. 10. Error computation for IVP: singular wave, beach angle = 7 /4.

component of the singular wave, which itself be-
comes large as the shoreline is approached. The
present solution strategy gathers accurate values of
the wavenumber (from an exact solution) at each
step, thus, suppressing this particular source of error
whereas the alternative comparative works are forced
to rely on various approximations. This can be seen
to some extent in Figs. 7 and 8 for the 30° slope but
much more dramatically in Figs. 9 and 10 for the 45°
slope. The observation sends a warning message
generally to numerical modellers working on a steep
slope in very shallow water.

6.3. Corollary

A referee of the first draft of this work legiti-
mately enquired whether the regular solution could
be computed right up to the shore line R= 0 using
the new approach. This query raised a number of
ramifications.

Firstly, of course, in both old and new models, the
wavenumber K is infinite at the shore line so that
the VP problem can be solved as close as we please
to R=0but not a¢ R= 0. Secondly, the approach to
infinity of K is somewhat milder in the old model
(R 1/2) 50 that the new model might tend to oscil-
late more very close to the shoreline where the
approach to infinity of K islike R™* /(InR)2.

In performing the IVP numerical work (for the
30° beach) prompted by the referee’s remark how-
ever, we found rather surprisingly that the old solu-
tion suddenly began to recover accuracy very near
the shoreline. This recovery was quite explosive with
the local calculation at, say, R= 0.1 showing more
than 5% error whilst a¢ R = 0.01 this had diminished
to 0.015%. Calculations for the 45° beach were
similarly accurate near the shoreline. In both cases,
the new solution behaved more poorly in this (micro-
scopic) near-shore region. Clearly, these observa
tions are of limited interest to the engineer, since the
linear solution is already invalid in here; however, in
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view of the mathematical interest, further details of
the solution here are discussed in Appendix A.

7. Evanescent wave modes

Several authors, e.g. Massel (1993) or Porter and
Staziker (1995), have identified the need to include
evanescent modes for a more accurate description in
intermediate depths particularly when bed gradients
are substantial. These studies have not however,
considered effects in very shallow water and the
present simple model alows us to gain a better
understanding of the limitations of such proposals.

In order to keep the analysis and numerical work
as simple as possible in this experiment, we will
consider the addition of just one evanescent mode
and study its effect on a solution that would other-
wise be computed with only the fundamental oscilla-
tory component using piecewise linear Airy theory.
In the notation of Porter and Staziker, this would
reduce the problem to the solution of a pair of
coupled second order differential equations for ¢,
¢, the respective oscillatory and evanescent modes
whose sum congtitute the approximation to the

31

(cross-shore) spatial dependence of potential. The
equations are:

ay ¢y + 8y b — Kgagdo + Coo T g

+(byy — b)) T + €14 T%, =0, (34)
a ¢+ d by — kiayd, + ¢y T,
— (byy — bgy) Tehg + €, T =0, (35)

where T denotes tana and k,, are the roots of the
eigenequation k, tan(k,h)= —1 (the root n=0
being purely imaginary). We have discussed earlier
in this paper the observation that k, > O(h~'/?) as
h— 0 implies the logarithmic singularity of ¢, at
the shoreline. To study the behaviour of ¢,, we
write k,h=Nm —tan~*(k;') using the principa
branch of tan~!. Examining the limit h— 0, it is
straightforward to show that N = n and that:

nar

k ! 1 "
= —_— = — + [
" h nm { n?m?

+O(h2)}, h—0
(36)

so that the equivalent evanescent ‘ skin friction’ fac-
tors k, are O(h™*) as h— 0 aso increasing in
amplitude with increasing modal number. This may
go some way toward explaining the observation noted
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Fig. 11. Regular wave 45° beach: error comparison for VP using the Porter and Staziker solution with and without one evanescent mode.
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Fig. 12. Singular wave 45° beach: error comparison for VP using the Porter and Staziker solution with and without one evanescent mode.

earlier namely that for the ‘exact solution’ k=
O(h~t/(In(h))?), which is a stronger singularity
than that provided by the solution ¢,. Somehow, the
addition of evanescent modes greatly modifies this
behaviour in small depth.

We illustrate the observations by examining
details and a computation on a steep (45°) beach of
both regular and singular components taking account
of the single evanescent wave mode. For this mode,
ky, ~m/h—1/m—h/73 so that tank,h ~
—tan(h/7) ~ —h/m, which yields a, ~ h/2.
Thus, very near the shore, the differential equation
for w= ¢, is asymptotically ailmost equivaent to:
x*wW' +xw — m?w=r.hs. (37)
giving fundamental ‘complementary function solu-
tions' {x”,x~7}. The inclusion of the first evanes-
cent mode therefore fails to remain ‘ uniform’ in the
asymptotic sense when distances from the shore x
are such that x~™ >|logx|. The computational re-
sults are shown in Figs. 11 and 12 where both types
of wave are computed and subtracted from the exact
solution. This gives the actual error of the modified
MSE both with and without a one term evanescent
wave and it is easy to see that the evanescent mode
has an improving effect only in intermediate depths

(consistent with results of earlier authors) but that in
very shallow water it provides unreliable results.
Clearly, in view of the asymptotics noted above,
taking account of further modes would only increase
the difficulties in very shallow water.

8. Conclusion

The work has studied the behaviour of the MSE
in the limit of vanishing depth. The results indicate
that, provided the beach dope is sufficiently small,
then the limit does not greatly affect the discrepan-
cies between the ‘exact’ and M SE approximations of
the same physical problem. However, for steep
beaches, there is a finite difference, which reveals
itself from terms O(X?2) onwards for the regular
wave and from terms O( X) for the singular wave.

The work described has also attempted to high-
light the possibility of a more liberal use of the MSE
than was previously assumed possible. Tests against
three versions (basic, modified and extended) of the
MSE have been carried out and in al cases the
approach suggested in this work proves to be supe-
rior particularly for very steep beaches. For the 45°
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beach, for example, the globa error generated by
MSE experiments carried out on the interval 1 < X
< 20 is typically reduced from, respectively, 20%,
19% and 20% for the three versions to just 11% for
the present application to the unbounded wave and
5% to the bounded wave. For the latter, the differ-
ence is quite staggering and is thought to revea the
activity of parasitic solutions, which themselves are
unbounded as depth approaches zero. Further testing
is required, particularly for non-uniform slopes but if
this proves successful, the MSE with a modified
wavenumber algorithm attached, should remain a
competitive option for coastal wave modellers. That
algorithm could take the form of an empirical rule
expressing the application wavenumber as a multiple
of the Airy theory value and this multiple could be
expected to depend mainly on the local bed slope in
the direction following the wave advance. Work on
this has been started by the authors in conjunction
with calculations on a non-uniform slope.
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Appendix A

We examine in detail, the very near field be-
haviour of the MSE using the proposal in the paper
whereby the wave and group velocities that govern
the propagation are determined heuristically from the
exact solution. With al terms evaluated on 6 = 0, we
have readily, from Eqg. (23) and (29) that:

bed| — b, b,
2{62+ 62)°

so that, in view of the near-field asymptotics of the
regular and singular solutions determined from Egs.
(20) and (21), we have:

K2cC, = (38)

7T26Y

K2CC,~ ——— 39

as X— 0. Note the equivalent result using Airy
theory, whereby from Eg. (18), it follows that
KZCCg~ las X—0.

We also need to examine the behaviour of CCj.
From the same source equations, we have:

CC, ~ aX (40)

as X — 0. The asymptotic form of the MSE (Eg. (2))
is therefore:

|x“xixd—¢+2—o 41
(10gX)* X | X + (41

an equation which, for arbitrary constants a,, a,, has
the general solution:

b= IogX{aosin(é) + alcos(é)} (42)

and it is therefore seen immediately that the very
near field structure of the fundamental solution pair
remains consistent with that of both the exact solu-
tion and the Airy approximation to the full MSE,
namely {1, log X}. The constants in a given applica-
tion would of course be different for the two meth-
ods and testing the reproduction of the regular stand-
ing wave, we have found that the Airy method is
more stable whereas for the singular standing wave
the new method is more stable. Both methods will,
of course, as X — 0 ultimately exhibit parasitic val-
ues, which will dominate the true values but this
cannot be expected until In|X| dominates , i.e.
X~ 0O(10™*%). We are reminded however, that both
components (regular and singular) are required in
any description of a progressing wave, so even in
this microscopically near-shore region (where the
linear solution is in any case physically invalid and
only of mathematical interest), the overall behaviour
remains superior for the model proposed in the pre-
sent work.
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