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The purpose of this paper is to investigate amplitude
modulation of surface capillary-gravity waves on a
slowly varying current. In a recent paper Gerber (1987)
has considered gravity waves on slow currents and dis-
cussed the modification to the Benjamin-Feir instability
criterion due to the presence of the current. The present
paper discusses the modulational aspects of waves on
a current when surface tension forces are to be taken
into account.

Consider surface capillary-gravity waves of initial
wavenumber ko and phase speed ¢, propagating on a
current U(x, t)i. Assuming deep water, the wavenum-
ber and speed are related by

e’ = gho + ko (1)

where g is the acceleration of gravity and 7 is the surface
tension coefficient per unit density. The wavenumber,
k(x, t), and the phase speed, c(x, t), are related to the
initial values, kp and ¢y, by the Doppler relation

k(c+ U) = koo (2)

For surface grévity waves Longuet-Higgins and Stewart
(1962) have shown that ‘

k 4U\V2 P
_k;=4/[l+(l+—c;) ]

where ¢y? = g/ko, c? = g/k, in the absence of surface
tension. A simple relation like (3) between kp and ¢,
is not possible for capillary-gravity waves since the dis-
persion relation (1) leads to a cubic in k,

7k — (Uk)? + k(g + 2kocoU) ~ (koco)? = 0. (4)

Thus for a given downstream point, (x, ¢), and current,
U(x, t), the wavenumber, k, has to be determined, in
general, using a numerical scheme.

The use of averaged variational principles to derive
dispersion relations for surface waves is well known.
The averaged variational principle could also be applied

(3)
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to nonuniform media, provided the inhomogeneities
are slowly varying in space and time (see Whitham
1974). We will give a Lagrangian for capillary-gravity
waves on a slowly varying current from which an av-
eraged Lagrangian, depending on x and ¢, could be
derived. This averaged Lagrangian leads to the deter-
mination of a dispersion relation, which in turn, has a
bearing on the modulational properties of the waves.

It has been shown earlier (Easwaran, 1986) that for
capillary-gravity waves on still water of depth s a La-
grangian is given by

L= fh(¢,+%(q>x2+ <I>y2)+gy)dy
—r(V(1+n2) = 1), (5)

where 7 is the surface profile and & is the velocity po-
tential. For weak currents the effect of vorticity will be
reflected in the higher order dispersive terms, which
would have a small influence on the cubic Schrodinger
equation that describes modulational effects. Thus to
the second order in small amplitude, a, we can assume
that the current is irrotational so that it can be expressed
in terms of a potential:

T(x, 1) = V¥(x, 1). (6)

Then the Lagrangian for waves on a current may be
written as

[ 1 2
L—‘J:k((<1>+\ll),+2(tl>+\ll)x

+(®+ V)2 + gy)dy — 1(V(1 + n,2) — 1). (7)

Our aim is to derive the averaged Lagrangian from (7)
and examine the cubic Schrodinger equation governing
the modulation of waves by sideband disturbances.
This will lead to expressions giving bounds on the pos-
sible sideband frequencies that causes unbounded
growth in amplitude, resulting in the instability of the
principal waves. Since the method is now classical we
will only give the main results. In the following we
consider, for the sake of brevity, a one dimensional
current of the form U(x)i.
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By introducing wave profiles of the form

o

n = acosb + 2, a, cosnf (8)
1
X An
= 7 cosh(nky) sinnd
1
(6 = kx — wt) (9)

where a, a,, A, are small and along with the frequency,
w, and wavenumber, k, are slowly varying functions
of x and ¢, and averaging over a cycle, one obtains the

averaged Lagrangian
T o, w’d 47213, ,
= - +——+ |l -= =
L="a%  a [1 ]16 Tk
kT 1 T T?
+ ==+ ... (1
4 [ 4”27, 4T12]“ (10)

with w; = 0w — kU, T = gk + k3, Ty = gk — 27K°.
The averaged variational principle .L, = 0 then gives
the dispersion relation

5 2
w = ﬁ[1—3”‘ (1~£)a2

16T T?

k? 2T T2
i+ - )e?| ar
+4( T, le)a]()
up to O(a?) terms.

Equation (10) contains a nonlinear correction term
to the dispersion proportional to a® but does not in-
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clude higher order dispersive effects. These effects are,
however, easily taken into account (see Whitham 1974,
page 526). The eventual expression obtained for the
dispersion is

=ﬁ+aa2+ﬁa7"" (12)
where
a = a(x)
37k’ 47\  K? 2T 717
-3 (T ) e (R )]
(13)
1dVT 1 (g+37k%)? 3 7k
B =08(x)= 2 dic? g T3/2 - 5 T2 (14)

The x dependence of o and S reflects the dependence
of the wavenumber & on x.

As usual the sideband modulation analysis proceeds
by introducing small amplitude perturbations around
the central wavenumber and frequency and following
the time development of the perturbations (see Gerber
1987; Easwaran 1987, for details). It can be shown
that the complex amplitude of the modulation envelope
A is governed by the cubic Schrodinger equation

Y 94 (1dC 3dU
—5;+(C+U)—+(2d 4dx),4
2
+iﬁ(x)‘;—’§+ia(x)|A|2A=o (15)
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FIG. 1. Modification of p = 7k?*/g with distance k,x for vafious values of v = U/
(kocox). Shaded areas indicate regions where the waves are stable to all sideband fre-

quency perturbations.
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where C is the group velocity dw/dk, which is also a
function of x. A detailed analysis of Eq. (15) shows
that the slowly varying modulation amplitude becomes
unbounded in time if the small perturbation frequency,

k, satisfies
2 20(x) , _[*f(4c 34U
T B O [ fo [(dx+2 dx)/

(C+ U)]dx] <0 (16)

where gy is the initial value of the amplitude a. From
(16) it follows that if

a(x)

Bx) ~

the criterion (16) for instability is never satisfied for
any value of «.
Introducing the dimensionless number

0 (17)

rk?

p=—

4

and using the expressions (13) and (14) for « and 8
the condition ( 17) may be written as

3 2
<{ 16(1+p)(1 4f(p)*)

1
+7 (1 +21(p) —f(p)z)} (1+ p)2>/

(1 —6p—3pH) <0 (19)
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where

1+p

1—2p

A sign analysis of the expression on the left of (19)

shows that the range of values of p for which stability
is guaranteed for all sideband perturbations is given by

flp) =

2 1
ﬁ —1<p< 3"
In Fig. 1 we have plotted the dimensionless number
p against the dimensionless downstream distance kyx
for various values of ¥ = U/ kycox (Note that a constant
v as x varies indicates a current linearly varying with
downstream distance). Positive values of v indicate
currents in the direction of the waves and negative val-
ues indicate currents against the wave direction. Only
those wavenumbers whose initial value of p lies within
the limit (20) will go through a stable regime. The figure
shows that for more rapid currents there is a faster
“condensation” of waves and the stable regions are
shorter in length.

(20)
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