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Weak turbulence of gravity waves.
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For the first time weak turbulent theory was demonstrated for the surface gravity waves. Direct numerical

simulation of the dynamical equations shows Kolmogorov turbulent spectra as predicted by analytical analysis

[1] from kinetic equation.

PACS: 47.11.+j, 47.27.-i, 47.27.Eq, 92.10.Hm

In this Letter we study numerically the steady

Kolmogorov spectra for spatially homogeneous gravity

waves. According to the theory of weak turbulence

the main physical process here is the stationary en-

ergy flow to the small scales, where the energy dissi-

pates [1, 2]. This flow is described by kinetic equation

which has power-like solutions – Kolmogorov spectra.

This straightforward picture takes place experimentally

and numerically for different physical situations. For

capillary waves it was observed on the surface of liq-

uid hydrogen [3], [4]. The numerical simulation of this

process was performed in [5]. In nonlinear fiber optics

these spectra were demonstrated in numerical simula-

tion [6].There are many other results [7, 8, 9, 10, 11].

One of the most interesting applications of the weak

turbulence theory is the surface gravity waves. From

the pioneering article by Toba [12] to the most recent

observations [13] many experimentalists get the spectra

predicted by the weak turbulence theory. But these ex-

periments cannot be treated as a complete confirmation

because the Zakharov-Filonenko spectrum is isotropic,

while observed spectra are essentially anisotropic. It is

worth to say that the wave kinetic equation, which is

the keystone of this theory, was derived under several

assumptions. Namely, it was assumed, that the phases

of all interacting waves are random and are in state of

chaotic motion. The validity of this proposition is not

clear a priori. The direct numerical simulation of non-

linear dynamical equations can give us a confirmation

is this assumption valid or not. But for particular case

of gravity surface waves the numerical confirmation was

absent in spite of significant efforts were applied. The

only successful attempt in this direction was the sim-

ulation of freely decaying waves [14]. The reason for

that for our opinion was concerned with a choice of

numerical scheme parameters. Namely, the numerical
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simulation is very sensitive to the width of resonance

of four-waves interaction. It must be wide enough to

provide resonance on the discrete grid, as it was studied

in [15] for decay of the monochromatic capillary wave.

From the other hand it has to be not too wide (due to

nonlinear frequency shift) when the weak turbulent con-

ditions fail. We have spent significant efforts to secure

the right choice of numerical parameters. As a result we

have obtained the first evidence of the weak turbulent

Kolmogorov spectrum for energy flow for surface grav-

ity waves. The numerical simulation was surprisingly

time consuming (in comparison to capillary waves tur-

bulence), but finally we clearly get spectrum for surface

elevation

|ηk|2 ∼ 1

k7/2
, (1)

which is in the agreement with real experiments [12, 13].

Theoretical background. — Let us consider the po-

tential flow of an ideal incompressible fluid of infinite

depth and with a free surface. We use standard nota-

tions for velocity potential φ(r, z, t), r = (x, y); v = ∇φ
and surface elevation η(r, t). Fluid flow is irrotational

△φ = 0. The total energy of the system can be repre-

sented in the following form

H = T + U,

T =
1

2

∫

d2r

η
∫

−∞

(∇φ)2dz, (2)

U =
1

2
g

∫

η2d2r, (3)

where g – is the gravity acceleration. It was shown [16]

that under these assumptions the fluid is a Hamiltonian

system
∂η

∂t
=
δH

δψ
,

∂ψ

∂t
= −δH

δη
, (4)
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where ψ = φ(r, η(r, t), t) is a velocity potential on the

surface of the fluid. In order to calculate the value of

ψ we have to solve the Laplas equation in the domain

with varying surface η. This problem is difficult. One

can simplify the situation, using the expansion of the

Hamiltonian in powers of ”steepness”

H =
1

2

∫

(

gη2 + ψk̂ψ
)

d2r+

+
1

2

∫

η
[

|∇ψ|2 − (k̂ψ)2
]

d2r+

+
1

2

∫

η(k̂ψ)
[

k̂(η(k̂ψ)) + η△ψ
]

d2r.

(5)

For gravity waves it is enough to take into account terms

up to the fourth order. Here k̂ is the linear operator

corresponding to multiplying of Fourier harmonics by

modulus of the wavenumber k. In this case dynamical

equations (4) acquire the following form

η̇ = k̂ψ − (∇(η∇ψ)) − k̂[ηk̂ψ]+

+k̂(ηk̂[ηk̂ψ]) + 1
2△[η2k̂ψ] + 1

2 k̂[η
2△ψ],

ψ̇ = −gη − 1
2

[

(∇ψ)2 − (k̂ψ)2
]

−
−[k̂ψ]k̂[ηk̂ψ] − [ηk̂ψ]△ψ +Dr + Fr.

(6)

Here Dr is some artificial damping term used to provide

dissipation at small scales; Fr is a pumping term corre-

sponding to external force (having in mind wind blow,

for example). Let us introduce Fourier transform

ψk =
1

2π

∫

ψre
ikrd2r, ηk =

1

2π

∫

ηre
ikrd2r.

With these variables the Hamiltonian (5) acquires the

following form

H = H0 +H1 +H2 + ...,

H0 =
1

2

∫

(|k||ψk|2 + g|ηk|2)dk,

H1 = − 1

4π

∫

Lk1k2
ψk1

ψk2
ηk3

×

×δ(k1 + k2 + k3)dk1dk2dk3,

H2 =
1

16π2

∫

Mk1k2k3k4
ψk1

ψk2
ηk3

ηk4
×

×δ(k1 + k2 + k3 + k4)dk1dk2dk3dk4,

(7)

Here

Lk1k2
= (k1k2) + |k1||k2|,

Mk1k2k3k4
= |k1||k2|

[

1

2
(|k1 + k3| + |k1 + k4|+

+|k2 + k3| + |k2 + k4|) − |k1| − |k2|] .

(8)

It is convenient to introduce the canonical variables ak
as shown below

ak =

√

ωk

2k
ηk + i

√

k

2ωk
ψk, (9)

where

ωk =
√

gk, (10)

this is the dispersion relation for the case of infinite

depth. The similar formulas can be derived in the case

of finite depth [17]. With these variables the equations

(4) take the following form

ȧk = −i δH
δa∗

k

. (11)

The dispersion relation (10) is of the ”non-decay type”

and the equations

ωk1
= ωk2

+ ωk3
, k1 = k2 + k3 (12)

have no real solution. It means that in the limit of

small nonlinearity, the cubic terms in the Hamiltonian

can be excluded by a proper canonical transformation

a(k, t) −→ b(k, t) [18]. The formula of this transforma-

tion is rather bulky and well known [17, 18], so let us

omit the details here.

For statistical description of a stochastic wave field

one can use a pair correlation function

< aka
∗

k′ >= nkδ(k − k
′). (13)

The nk is measurable quantity, connected directly with

observable correlation functions. For instance, from (9)

one can get

Ik =< |ηk|2 >=
1

2

ωk

g
(nk + n−k). (14)

In the case of gravity waves it is convenient to use an-

other correlation function

< bkb
∗

k′ >= Nkδ(k − k
′). (15)

The function Nk cannot be measured directly. The rela-

tion connecting nk and Nk is rather complex in the case

of fluid of finite depth. But in the case of deep water it

becomes very simple [17]

nk −Nk

nk
≃ µ, (16)

where µ = (ka)2, here a is a characteristic elevation

of the free surface. In the case of the weak turbulence

µ << 1. The correlation function Nk obey the kinetic

equation [1]

∂Nk

∂t
= st(N,N,N) + fp(k) − fd(k), (17)

Here

st(N,N,N) = 4π

∫

|Tk,k1,k2,k3
|2 ×

×(Nk1
Nk2

Nk3
+NkNk2

Nk3
−NkNk1

Nk2
−

−NkNk1
Nk3

)δ(k + k1 − k2 − k3)dk1dk2dk3.

(18)
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The complete form of matrix element Tk,k1,k2,k3
can be

found in many sources [1, 2, 17]. Function fp(k) in (17)

corresponds to wave pumping due to wind blow for ex-

ample. Usually it is located on long scales. Function

fd(k) represents the absorption of waves due to viscos-

ity and wave-breaking. None of this functions are known

to a sufficient degree.

Let us consider stationary solutions of the equation

(17) assuming that

• The medium is isotropic with respect to rotations;

• Dispersion relation is a power-like function ω =

akα;

• Tk,k1,k2,k3
is a homogeneous function:

Tǫk,ǫk1,ǫk2,ǫk3
= ǫβTk,k1,k2,k3

.

Under this assumptions one can get Kolmogorov solu-

tions [18]

n
(1)
k = C1P

1/3k−
2β

3
−d,

n
(2)
k = C2Q

1/3k−
2β−α

3
−d.

(19)

Here d is a spatial dimension (d = 2 in our case).

The first one is a Kolmogorov spectrum, correspond-

ing to a constant flux of energy P to the region of small

scales (direct cascade of energy). The second one is Kol-

mogorov spectrum, describing inverse cascade of wave

action to large scales, and Q is a flux of action. In both

cases C1 and C2 are dimensionless ”Kolmogorov’s con-

stants”.

In the case of deep water ω =
√
gk and, apparently,

β = 3. It is known since [1] that on deep water

n
(1)
k = C1P

1/3k−4. (20)

In the same way [19] for second spectrum

n
(2)
k = C2Q

1/3k−23/6. (21)

In this Letter we will explore the first spectrum (en-

ergy cascade). Using (14) one can get

Ik =
C1g

1/2P 1/3

k7/2
. (22)

Numerical Simulation — Dynamical equations (6)

are very hard for analytical analysis. One of the main

obstacles is the k̂-operator which is nonlocal. However,

using Fourier technique practically makes no difference

between derivative and k̂. The numerical simulation of

the system is based upon consequent application of fast

Fourier transform algorithm. The details of this numer-

ical scheme will be published separately.

For numerical integration of (6) we used the func-

tions F and D defined in Fourier space

Fk = fke
iRk(t),

fk = 4F0
(k − kp1)(kp2 − k)

(kp2 − kp1)2
;

Dk = γkψk,

γk = −γ1, k ≤ kp1,

γk = −γ2(k − kd)
2, k > kd.

(23)

Here Rk(t) is the uniformly distributed random num-

ber in the interval (0, 2π). We have solved system of

equations (6) in the periodic domain 2π×2π (the wave-

numbers kx and ky are integers in this case). The size

of the grid was chosen 256 × 256 points. Gravity accel-

eration g = 1. Parameters of the damping and pumping

were the following: kp1 = 5, kp2 = 10, kd = 64. Thus

the inertial interval is about half of decade.

During the simulations we paid special attention

to the problems which could ”damage” the calcula-

tions. First of all, the ”bottle neck” phenomenon at the

boundary between inertial interval and dissipation re-

gion. This effect is very fast, but can be effectively sup-

pressed by proper choice of damping value γ2 in the case

of moderate pumping values F0. The second problem is

the accumulation of ”condensate” in low wave numbers.

This mechanism for the case of capillary waves was ex-

amined in details in [15]. This obstacle can be over-

come by simple adaptive damping scheme in the small

wave numbers. After some time system reaches the sta-

tionary state, where the equilibrium between pumping

and damping takes place. Important parameter in this

state is the ratio of nonlinear energy to the linear one

(H1 +H2)/H0.

For example, in the case of F0 = 2 × 10−4, γ1 =

1 × 10−3, γ2 = 400 the level of nonlinearity was equal

to (H1 + H2)/H0 ≃ 2 × 10−3. The Hamiltonian as a

function of time is shown in Fig. 1.

The surface elevation correlator function appears to

be power-like in the essential part of inertial interval,

where the influence of pumping and damping was small.

The correlator is shown in Fig. 2.

One can try to estimate the exponent of the spec-

trum. It is worth to say that an alternative spectrum

was proposed earlier by Phillips [20]. That power-like

spectrum is due to wave breaking mechanism and gives

us a surface elevation correlator as Ik ∼ k−4. Compen-

sated spectra are shown in the Fig. 3. It seems to be

an evidence, that the Kolmogorov spectrum predicted

by weak turbulence theory better fit the results of the

numerical experiment.
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Fig.1. Hamiltonian as a function of time.
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Fig.2. The logarithm of the correlator function of sur-

face elevation as a function of logarithm of the wave

number.

The inertial interval was rather narrow (half a

decade). But the obtained results allow us to conclude,

that accuracy of experiment was good enough under the

time constraints of simulation (we get the steady state

after 20-30 h using available hardware, and we need sev-

eral days to average |ηk|2 function). The simulation on

larger grid (512 × 512, for example) can make the ac-

curacy better. But even these results give us a clear

qualitative picture.
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