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ABSTRACT

It is shown for the first time analytically that two different approaches describing gravity wave turbulence
introduced by Hasselmann in 1962 and Zakharov in 1968 result in the same kinetic equation for the second-

order correlator.

1. Introduction

A two-dimensional potential fiow of an ideal incom-
pressible fluid with a free surface in a gravity field fluid
is described by the following set of equations:
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where n(x, y, t) is the shape of a surface, ¢(x, y, z, )
a potential function of the flow, and g a gravitational
constant.

Hasselmann (1962, 1963) derived the Boltzmann-
type equation for the rate of change of the ‘‘number
density’’ of the energy spectrum,
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and calculated the expression for T —the amElitude
for the four-wave interaction. [Here w; = (g|k|)'’?,
and « is an arbitrary constant.]
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Zakharov (1968) has shown that the variables 7n(x,
y, t) and ¥(x, y, t) = ¢(x,y, 2, t)| .-, are canonically
conjugated and that their Fourier transforms satisfy the
equations
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Here H = K + U is the total energy of the fluid with
the following kinetic and potential energy terms:
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After introducing a normal complex variable a,,
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he has also derived the Boltzmann-type equation for
the pair correlation function miéi_;- = (aiar-),
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and has calculated the transfer matrix T, (Zakharov
et al. 1968). These two expressions, Ty and T, look
very different, but both of them are defined up to an
arbitrary function that is equal to zero on the resonant
manifold:
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Although Crawford et al. (1980) already asked in

1980 if the results of Zakharov and Hasselmann were

identical, this question has remained unanswered
until now.

Wi + Wi, = Wi, + Wi,-

2. Conclusions

In this work we have checked both Ty and T on the
resonant manifold (4). At first they were checked in
the one-dimensional case where the compact analytic
form for the resonant surface can be obtained. In this
case, the resonant manifold (4) has two different so-
lutions (Dyachenko and Zakharov 1994), the triv-
ial one

ky=k,, ks=k, or kh=k, ks=k, (5)
and the nontrivial:
k=a( +0)* k =a(l+0** k=-al?
k=a(l+{+{H30<i<1. (6)

On the resonant surface (5), T, and T}, are different
only by sign, so that

TZ = _TH = iﬂ-z(kkl) mln(|k|’ |kl|)'

(Note: Sign is not important because only T% and T3
are involved in the kinetic equation.) The constant « in
(1) is equal to 1/472.

It was shown in Dyachenko and Zakharov
(1994) and Dyachenko et al. (1995) that T, is
identically equal to zero on the resonant mani-
fold (6). We have shown analytically that Ty is
also identically equal to zero on the same mani-
fold (6). To do this, we substituted the resonant
parameterization (6) into the equations for Ty in
Zakharov (1968) and used Mathematica to obtain
Zero.

For the full two-dimensional case we have also
found the general solution for the resonant surface

(4):
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and T, and Ty are calculated numerically for several
values of {, x and y. They coincide up to the roundoff
error. In (R. Lin, N. Huang, and W. Perrie 1994, per-
sonal communication) the energy transform was stud-
ied numerically using both Hasselman’s (1) and Zak-
harov’s (3) approaches. Comparison of the results
shows good agreement between these two models.
Slight deviation can be explained by numerical errors
when calculating 7y and T, on the resonant surface,
because T;; and T, coincide on the resonant surface
only, but not in the vicinity of it.
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