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ABSTRACT

The Operational Consensus Forecast scheme uses past performance to bias-correct and combine nu-
merical forecasts to produce an improved forecast at locations where recent observations are available.
This technique was applied to forecasts of Significant Wave Height (Hs), peak period and 10 m wind
speed from 10 numerical wave models, at 14 buoy sites located around North America. Results show
the best forecast is achieved with a performance-weighted consensus of bias-corrected components for
both Hs and peak period, while a performance weighted composite of linear corrected components
gives the best results for wind speed. For 24 hour forecasts, these composites produce improvements of
36%, 47% and 31% in RMSE values over the mean raw model components respectively, or 14%, 22%
and 18% over the best individual model. Similar gains in forecast skill are retained out to five days. By
reducing the number of models used in the construction of consensus forecasts, it was found that little
forecast skill is gained beyond five or six model components, with independence of these components,
as well as individual component quality being important considerations.

1. Introduction

The Operational Consensus Forecast (OCF) scheme of
Woodcock and Engel (2005), combines forecasts derived
from a multimodel ensemble to produce an improved
real-time forecast at locations where recent observations
are available. Component model biases and weighting
factors are derived from a training period of the previous
30 days of model forecasts and verifying observations.
The next real-time OCF forecast is a weighted average
of the set of latest-available, bias-corrected, component
forecasts. Each component forecast is weighted by the
inverse of the mean-absolute-error (MAE) of that fore-
cast over the training period. In operational daily weather
prediction at the the Australian Bureau of Meteorology
(the Bureau), OCF combines both operationally avail-
able model output statistics forecasts (MOS; Glahn and
Lowry 1972) and bilinearly interpolated direct model out-
put forecasts at over 700 sites twice daily from 0 to 7 days
ahead. OCF superseded MOS as the official objective
forecast guidance in March 2005.

Recently, Woodcock and Greenslade (2007) investi-
gated the application of OCF techniques to wave fore-
casts. They employed OCF to generate 24 hour predic-
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tions of Significant Wave Height (Hs) at 18 observation
locations around Australia. Broad conclusions were that
in deep water, a 20% - 30% improvement over model
forecasts of Hs can be achieved using the OCF strate-
gies and in shallow water, the strategy of compositing
model forecasts after linear correction can yield a 60%
- 70% improvement over raw model forecasts. However,
this work was hampered by a lack of quality independent
models for compositing, with only five models available,
two of which were high resolution nested models within
a third, resulting in a lack of independence between these
three.

This is addressed in this work with ten independent
models from the major forecasting centres used for com-
positing. Direct Model Output (DMO) forecasts, inter-
polated from these models to 14 moored buoy sites sur-
rounding North America provide the underlying compo-
nent forecasts in the OCF composite. In addition to Hs,
the application of OCF techniques to both wind speed and
peak period at these same sites is also investigated, with
the analysis extended to cover increased forecast periods
out to five days. The question of the dependence of the
performance of OCF schemes on the number of compo-
nent models used is also addressed more directly by look-
ing at the effects of reducing the number of component
models.

Both model and observational data are examined in
section 2, a general description of the OCF techniques
and the specific application used here are described in
section 3, results are presented in section 4 and finally
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section 5 contains a summary of the work.

2. Data

For the past six years, a monthly exchange of
ocean wave model data has been taking place between
the major forecasting centres around the world (Bid-
lot et al. 2002). What started as a cooperation be-
tween the European Centre for Medium-Range Weather
Forecasts (ECMWF), the The U.K. Met Office (UKMO),
Fleet Numerical Meteorology and Oceanography Center
(FNMOC), the Meteorological Service of Canada (MSC)
and the National Centers for Environmental Prediction
(NCEP) has now grown to include in chronological or-
der of participation, Deutscher Wetherdienst (DWD),
the Bureau, Meteo-France (METFR), the French Hydro-
graphic and Oceanographic Service (SHOM), the Japan
Meteorological Agency (JMA), the Korean Meteorologi-
cal Administration (KMA) and the Puertos del Estados
(PRTOS). On a monthly basis, each centre provides
files of model analysis and forecast data to the ECMWF
at an agreed list of moored buoy sites at which instru-
mented observations of Hs, wave period and wind speed
are available, with results then sent out to participating
centres. It is this data set that provides the basis for this
work.

a. Observational Data

Observational data comes from moored buoys. Buoy
data are generally assumed to be of high quality, and have
been used in numerous studies for validation of model (eg
Janssen et al. 1997; Caires and Sterl 2003; Caires et al.
2004) and altimeter (eg Tolman 2002; Queffeulou 2004;
Faugere et al. 2006) data. As part of the collating pro-
cess performed at ECMWF, these data undergo a qual-
ity control process to remove suspect observations. Wind
speeds are adjusted to 10m height, and spatial and tempo-
ral scales are made comparable by averaging the hourly
observations in time windows of four hours centered on
the synoptic times. Full details of this process can be
found in Bidlot and Holt (2006).

Over the course of the project, the number of model
outputs available at each buoy has increased, as have the
number of validation sites as new participants contribute
additional buoy data from their respective institutions.
The full list of buoys now includes some 245 locations.
However many of these buoys are recent additions, and
contain short time series of historical data. Others have
only a subset of model data available at the site.

In order to achieve a clean data set with the maxi-
mum number of models, a subset of buoys was cho-
sen here for which all participating models were present.
KMA and PRTOS joined the intercomparison only re-
cently (July 2007) and were not used in this work. SHOM
and JMA joined in October 2006, and the desire to in-
clude these models determined the period examined from
October 2006 through July 2007. These buoys are shown
in Figure 1, with detail of each buoy presented in Table

Table 2. Wave model characteristics including the domain over which
the model is run, the grid resolution, the classification of the model
and whether or not the model includes data assimilation. A mixed
domain refers to the case where regional models are nested within a
global model in which case the grid resolution refers to that of the global
model.

Model Domain Grid. Res Classification DA
ECMWF Mixed 0.36◦ WAM Yes
UKMO Mixed 5

6 ×
5
9
◦ Second Gen Yes

FNMOC Global 0.5◦ WW3 No
MSC Regional 1.0 ◦ WAM Yes
DWD Mixed 0.75◦ WAM No
NCEP Mixed 1.25× 1◦ WW3 Yes
AUSBM Global 1.0◦ WAM Yes
METFR Global 1.0◦ Second Gen Yes
SHOM Mixed 1.0◦ WW3 No
JMA Mixed 1.25◦ MRI-III No

1. All these buoys are classified as deep water buoys,
well exceeding the depth limitations of operational global
wave models, which typically provide wave forecasts that
are skillful only in water depths greater than about 25m
(Booij et al. 1999).

The buoys used here are operated by either the Na-
tional Data Buoy Center (NDBC) or the Marine Envi-
ronmental Data Service (MEDS). Recent work (Durrant
et al. Submitted) suggests that systematic differences may
exist between these two networks, with MEDS reported
Hs values being 10% low relative to those reported by
NDBC buoys. This is of limited relevance here, as each
site is treated independently. It is worth noting however,
that OCF techniques are limited by the accuracy of the
observations available.

b. Model Data

Some details of the models used in this work are pro-
vided in Table 2. The provision of full details of all
these models is impractical here, further references can
be found in Bidlot et al. (2007). Two models domi-
nate this list, namely the third generation WAve Model
(WAM; WAMDI-Group 1988; Komen 1994) and WAVE-
WATCH III (WW3) (Tolman 1991). Operational versions
of these models have, however, undergone many indepen-
dent changes and tunings. All models also have different
wind forcing, spatial resolutions, data assimilation sys-
tems etc. These differences result in errors that vary be-
tween the models, thereby enhancing the potential gain
from a consensus forecast.

3. OCF Methodology

a. Description

The OCF methodology of Woodcock and Engel (2005)
is a simple statistical scheme, which takes a weighted av-
erage of bias - corrected component model forecasts on
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FIG. 1. Location of buoys used in this study (see table 1).

Table 1. Details of buoys used in this study. DMO refers to the number assigned by the World Meteorology Organization

WMO Name Owner Latitude Longitude Depth (m)
41001 E Hatteras NDBC 34.68 -72.66 4427
41002 S Hatteras NDBC 32.32 -75.36 3316
41010 Cape Canaveral East NDBC 28.95 -78.47 873
44004 Hotel NDBC 38.50 -70.47 3182
44008 Nantucket NDBC 40.50 -69.43 62
44011 Georges Bank NDBC 41.11 -66.58 88
46001 Gulf of Alaska NDBC 56.30 -148.17 4206
46002 Oregon NDBC 42.58 -130.36 3525
46004 Middle Nomad MEDS 50.93 -136.10 3737
46005 W Astoria MEDS 46.05 -131.02 2780
46006 SW Astoria NDBC 40.84 -137.49 4023
46035 Bering Sea NDBC 57.05 -177.59 3658
46036 South Nomad MEDS 48.35 -133.94 3676
46184 North Nomad MEDS 53.91 -138.85 3406

a site-by-site and day-by-day basis. The scheme is based
upon the premise that each model derived forecast (fi)
has three components: the true value (o), a systematic er-
ror component or bias (bi) that can be approximated and
removed, and a random error component (ei) that can be
minimised through compositing (i indicating each sepa-
rate model). The success of the OCF scheme is based
upon the estimation of bias and weighting parameters.

Bias and weighting parameters are based on a moving
window of historical data. Model biases (bi) are approx-
imated using the best easy systematic estimator (BES;
Wonnacott and Wonnacott 1972, section 7.3) over the er-
rors in the sample:

b̂i = BES =
(Q1 + 2Q2 + Q3)

4
(1)

where Q1, Q2 and Q3 are the error sample first, sec-

ond, and third quartiles, respectively. This is more robust
than a simple arithmetic mean. Normalised weighting pa-
rameters (ŵi) are calculated by using the inverse MAE
from the bias-corrected error samples of the n contribut-
ing model forecasts over the training period, with

ŵi = (MAE)−1
i

(
n∑

i=1

(MAE)−1
i

)
(2)

Using these parameters, OCF based on n model forecasts
(fi) is given by:

OCF =
n∑

i=1

(
ŵi

[
fi − b̂i

])
(3)

Breaking the forecasts (fi) into the aforementioned com-
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ponents,

OCF =
n∑

i=1

(
ŵi

[
(o + bi + ei)− b̂i

])
(4)

Gathering terms this becomes:

OCF = o +
n∑

i=1

(
ŵi

[
bi − b̂i

])
+

n∑
i=1

(ŵiei) (5)

The final two terms in equation 5 highlight the impor-
tance of the bias removal and weighting schemes. Char-
acterisation of the random nature of the error distribu-
tions, as part of the weighting scheme, aids minimisation
of the random errors via compositing with highly variable
models penalised for their reduced reliability.

b. Application

As in Woodcock and Greenslade (2007) a number of
corrected forecasting techniques based around this tech-
nique are explored. Internal methods are those in which
the model forecast is corrected according to a training set
based on that particular model. Two internal methods
were used to modify the direct model output forecasts.
The first was a simple bias correction using BES. The
second was a least squares linear-regression correction
whereby a linear-regression equation between the predic-
tands (observations) and predicators (direct model out-
puts) was generated and then applied to the next forecast.

Several forms of compositing were investigated. The
simplest is the average of all components, referred to
here as equal weighting since the components are equally
weighted. Performance weighting combines the fore-
casts according to their performance over a training set,
as described above. Both equal weighted and perfor-
mance weighted forecasts were produced from both bias
corrected and linearly corrected model components (re-
ferred to as equal weighted bias correction (EWBC),
equal weighted linear correction (EWLC), performance
weighted bias correction (PWBC), and performance
weighted linear correction (PWLC))

Finally, we generated forecasts by using the linear-
regression coefficient and intercept derived from the best-
performing linear-regression-corrected component in the
training period at a site and applying them to the corre-
sponding next independent component forecast for that
site (i.e., the coefficient, intercept values and component
model change for every forecast). This is referred to
as the best linear corrected (BLC) forecast. All bias-
correction, linear-regression-correction and BLC com-
parisons are undertaken over corresponding, matching
events (i.e., identical verifying sets and training win-
dows).

The effect of varying the training period was investi-
gated by Woodcock and Greenslade (2007) by increasing
the training window in steps of four from 1 to 59 events.
They found that bias corrected methods stabilised by 9
events, and linearly corrected methods by 13 events. In
order to maintain consistency with the bulk of this work,
a fixed training window of 29 events was used here.

4. Results

We begin by examining results for 24 hour Hs fore-
casts. The same correction techniques are then extended
to 24 hour forecasts of wind speed and peak period.
The performance of composite forecasts is then examined
over longer forecast periods and finally, variations in the
number of component models included in the consensus
forecasts are explored.

It is not the intention here to examine in any depth the
performance of individual models, but rather to focus on
the performance of the various composite schemes. Anal-
ysis of model performance based on this data set can be
found in Bidlot et al. (2002) and more recently Bidlot
et al. (2007). While these studies consider results in var-
ious regions, all buoys are considered together here. For
the purpose of intercomparison and model diagnostics,
the separation serves the valuable purpose of providing
further insight into sources of error by comparing areas
of wind sea or swell dominated areas for example, or ar-
eas where various sheltering and sub grid scale processes
are of differing importance. However for this work, while
the performance of the statistical scheme will differ with
the quality of the input models, due to its non-physical
nature, little is gained by examining regions separately.
The same is also true for examining seasonal variation in
error.

Verification statistics include bias, MAE, root-mean-
square-error (RMSE), maximum absolute error (XAE),
scatter index (SI = standard deviation normalised by the
observation mean) and the percentage of explained vari-
ance (V% = 100× the square of the correlation between
forecast and observation). Statistics are calculated for
each buoy, and overall statistics are calculated by aver-
aging these results, weighted according to the number of
observations at each buoy.

a. 24 hour forecast results

Figure 2 shows scatter plots for buoy and model colo-
cations for each raw model, as well as BLC and PWBC
results. Corresponding statistics for these plots are pre-
sented in Table 3 . ECMWF significantly outperformed
the other models over this time period and set of buoys,
yielding the lowest MAE, RMSE, XAE, SI, and the high-
est %V. This model also achieved a negligible overall
bias, suggesting that little will be gained by bias correc-
tion. The superior performance of this model extends to
individual buoys, being the best performer at 8 of the 13
buoys used here. All results for raw models, bias cor-
rected and linearly corrected models, as well as the vari-
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FIG. 2. Scatter plots of 24 hour forecast Hs for all raw models and BLC and PWBC (OCF) correction schemes

Table 4. Percentage improvement in RMSE for each model (see table
3) due to learned bias and linear correction schemes.

Model Bias Correction Linear Correction
UKMO 12 15
FNMOC 12 13
ECMWF 5 5
MSC 7 5
NCEP 14 16
METFR 10 10
DWD 12 8
AUSBM 7 5
SHOM 7 7
JMA 8 7

ous composite schemes can be found in Appendix 1.
Table 4 shows the improvement for individual models

from both bias correction and linear correction schemes.
While some models show significant improvements such
as FNMOC, NCEP, METFR, and DWD, overall, gains
are modest. The best correction scheme varies amongst
the models, with no method clearly better than other.

Table 5 shows the improvements of various correction
schemes over the average raw model error. As evident

from table 4, on average, bias correction and linear cor-
rection show similar impacts of around 10% improve-
ment. The “best” model (defined here as that with the
lowest RMSE) shows significant improvement over the
average. In this case, ECMWF is the best raw model,
as well as the best bias and linearly corrected model.
As seen in table 4, little improvement is made on this
model by applying these corrections, resulting in little
difference between the numbers seen here. Of the com-
posite schemes, bias corrected schemes are outperform-
ing linearly corrected schemes, and likewise performance
weighted schemes come out better than equal weighted
schemes. The best performer by all measures is the
PWBC, producing a substantial improvement of 36% in
RMSE over the average raw model error.

This is an encouraging result, indicating that despite
the dominance of a single model, a performance weighted
composite is able to beat it. This addresses one of the
questions raised by Woodcock and Greenslade (2007),
which found that the best performing model in that case
was hard to beat with a consensus forecast. The results
here suggest that this was due to a lack of models in-
cluded in the composite.

Similar to table 3 for Hs, table 6 shows raw model
statistics for wind speed. Full wind speed results for
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Table 3. Hs statistics for all raw models used in this study.

MODEL N BIAS MAE RMSE XAE SI V%
UKMO 4600 0.21 0.40 0.52 2.07 0.18 88.50
FNMOC 4600 0.09 0.39 0.52 2.29 0.19 88.36
ECMWF 4600 -0.01 0.27 0.38 1.70 0.15 92.18
MSC 4600 -0.09 0.32 0.44 2.31 0.17 89.85
NCEP 4600 0.16 0.38 0.51 2.07 0.18 88.94
METFR 4600 0.23 0.46 0.60 2.45 0.22 83.66
DWD 4600 -0.07 0.38 0.51 2.22 0.19 87.41
AUSBM 4600 -0.11 0.42 0.57 2.53 0.23 82.89
SHOM 4600 -0.01 0.33 0.44 2.09 0.17 90.19
JMA 4600 -0.15 0.44 0.59 2.50 0.23 82.21

Table 5. Percentage improvements over average of raw model error. Average BC and LC refer to the average corrected model error for each
scheme, best BC and best LC refer to the best hindsight model after correction (based on RMSE).

Model MAE (m) RMSE (m) XAE SI V%
Ave. raw 0.38 0.51 2.22 0.19 87.42

Improvement over average of raw models (%)
Ave. BC 11 9 4 1 -0
Ave. LC 12 9 -2 -0 -1
Best raw 29 26 24 21 5
Best BC 31 29 24 21 5
Best LC 31 28 22 20 5
PWBC 38 36 35 29 7
EWBC 35 34 32 27 7
PWLC 35 33 30 25 6
EWLC 32 30 25 22 6
BLC 28 25 12 17 4

each raw, bias corrected, linearly corrected, and com-
posite schemes can be found in Appendix B. It should
be noted that SHOM uses ECMWF winds though at
0.5◦spatial and 6 hourly temporal resolution rather than
the 40 km, 15 minute resolutions used operationally at
ECMWF (Ardhuin, Personal Communication, 2006). For
this reason, statistics for these winds are very similar,
however, surprisingly, MAE and RMSE for SHOM winds
are in fact lower for these buoys than that for ECMWF.
This, it seems, is due to an increased positive bias in the
ECMWF winds, with SI being the same for both centres.
Bias corrected results yield little difference between the
two in terms of MAE and RMSE, while ECMWF comes
out marginally ahead under linear correction.

All models show a positive bias. Examining each buoy
individually shows that this positive bias is present on the
east coast only, however it is beyond the scope of this
work to suggest why this bias exists. Of more relevance
here, is that the presence of this bias suggest that a learned
bias correction may have a positive impact on model per-
formance.

Percentage improvements of the various correction
schemes relative to the average raw model error are
shown in Table 7. Unlike Hs which showed similar im-
provements for bias and linear correction schemes, wind

speed performs better under a linear correction with more
than double the improvement in the average linear cor-
rected model RMSE (16%) relative to the average bias
corrected model RMSE (6%). As with Hs, performance
weighted composites outperform equal weighted com-
posites, and as might be expected from the corrected
models results, the PWLC composite slightly outper-
forms the PWBC composite.

Raw model statistics for peak period are shown in Ta-
ble 8, again with full results for each raw, bias corrected,
linearly corrected, and composite schemes to be found in
Appendix C. Once again, the ECMWF model is the best
model here, with the best MAE, RMSE, SI and %V val-
ues. The %V values are typically far lower than those
seen for Hs and wind speed. This reflects the difficul-
ties associated with the verification of this variable. Peak
period refers to the period corresponding to the peak of
the wave spectrum. As such, slight errors in the spectral
shape can lead to large errors in peak period values. For
example, in the case of a bimodal spectrum with two near
equal peaks corresponding to wind sea and swell com-
ponents, small errors in the energy associated with either
part of the spectrum can lead to a large jump in the peak
period as it moves from one peak to the other.

Percentage improvements coming from the same cor-
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Table 6. Same as Table 3 for wind speed

MODEL N BIAS MAE RMSE XAE SI V%
UKMO 4291 0.81 1.52 1.98 9.42 0.23 80.36
FNMOC 4291 0.55 1.64 2.14 9.79 0.26 73.12
ECMWF 4291 0.46 1.29 1.71 8.67 0.21 81.24
MSC 4291 0.49 1.52 2.02 8.68 0.25 74.41
NCEP 4291 0.71 1.65 2.15 8.62 0.26 74.52
METFR 4291 0.16 1.44 1.91 9.16 0.24 75.90
DWD 4291 0.18 1.46 1.92 8.56 0.24 73.91
AUSBM 4291 0.71 1.86 2.40 10.30 0.29 66.78
SHOM 4291 0.38 1.28 1.69 8.73 0.21 81.04
JMA 4291 0.68 1.63 2.12 9.31 0.25 75.79

Table 7. Same as table 5 for wind speed.

Model MAE (m) RMSE (m) XAE SI V%
Ave. raw 1.53 2.00 9.12 0.25 75.71

Improvement over average of raw models (%)
Ave. BC 8 6 -0 -1 -1
Ave. LC 16 16 13 10 -1
Best raw 16 16 4 14 7
Best BC 22 20 5 13 7
Best LC 27 25 16 19 6
PWBC 29 29 26 23 11
EWBC 28 28 28 22 11
PWLC 31 31 31 26 10
EWLC 29 29 32 24 9
BLC 25 23 16 18 5

Table 8. Same as table 3 for peak period.

MODEL N BIAS MAE RMSE XAE SI V%
UKMO 4259 0.98 2.10 2.91 10.74 0.28 17.57
FNMOC 4259 -0.79 1.47 2.10 10.72 0.20 41.38
ECMWF 4259 0.34 0.97 1.64 10.21 0.17 56.66
MSC 4259 -0.01 1.05 1.73 9.66 0.19 48.53
NCEP 4259 -0.92 1.31 1.90 9.21 0.18 49.07
METFR 4259 -0.72 1.46 1.94 7.57 0.19 38.50
DWD 4259 -3.66 3.81 4.64 12.69 0.30 4.12
AUSBM 4259 -0.21 1.79 2.68 13.15 0.28 17.45
SHOM 4259 0.61 1.31 2.26 11.97 0.23 35.48
JMA 4259 -1.54 2.00 2.58 9.51 0.22 23.78

rection schemes for peak period are shown in Table 9.
Individual models seem to respond well to learned cor-
rection schemes, with bias correction and linear correc-
tion resulting in an average 18% and 27% improvement
in RMSE over the average raw model error respectively.
Once again, performance weighted composites outper-
form equal weighted composites, and bias corrected com-
posites outperform linearly corrected composites. BLC
also performs well, giving a 37% improvement over the
average raw model RMSE. This is, however, likely due to
the high quality of the best model compared to the aver-

age raw model, which would be expected to feature heav-
ily in the BLC forecast.

In the case of each variable (Hs, wind speed and peak
period), results have been presented here in terms of im-
provement over the average raw model errors. While this
gives an indication of what can be done with composit-
ing techniques, and the improvements that can be gained
over a set of input models, this kind of relative error gives
a limited picture of the actual gains being achieved. In the
case of peak period for example, PWBC achieves an im-
pressive 47% improvement over the average raw model
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Table 9. Same as Table 5 for wind speed

Model MAE (m) RMSE (m) XAE SI V%
Ave. raw 1.73 2.44 10.54 0.22 33.25

Improvement over average of raw models (%)
Ave. BC 22 18 6 4 9
Ave. LC 27 27 19 14 11
Best raw 44 33 3 23 70
Best BC 44 34 5 23 70
Best LC 42 38 16 27 65
PWBC 49 47 34 38 101
EWBC 44 44 39 34 91
PWLC 42 42 31 31 83
EWLC 37 38 33 27 72
BLC 43 37 12 25 61

RMSE. However, the best raw model is 33% better than
the average indicating a large spread in the quality of the
models with respect to this parameter. Hence, it is impor-
tant to consider not only gains over the average compo-
nent models, but also gains over the best individual com-
ponent.

Table 10 shows for each variable, the best performing
corrections scheme, the improvement over the average er-
ror of the raw components and the improvement over the
best raw model with respect to RMSE. Hs and peak pe-
riod see far greater gains relative to the average error than
those relative to the best model, while this is less so for
wind speed. These results reflect the relative spread in
the quality of the modelled variable, with more consis-
tency seen in the modelled wind fields across the various
institutions than the wave model variables.

Table 10. Gives the best performing correction scheme for each vari-
able, and the RMSE percentage improvement it achieves over the aver-
age raw model error, and the best raw model error.

Variable Best Scheme Imp. Ave Imp. Best
Hs PWBC 36 14
Wind Speed PWLC 31 18
Peak Period PWBC 47 22

From the results for all variables, PWBC is gener-
ally performing better than PWLC as a compositing tech-
nique. despite individual models performing better with
a learned linear correction than with a learned bias cor-
rection. Only in the case of wind speed, where linear cor-
rected components show more twice the improvements of
bias corrected components, do linear - corrected compos-
ites outperform bias - corrected composites.

For peak period for example, linear correction shows
RMSE improvements of 27% over raw models, whilst
bias correction shows only 18% improvement. Figure 3
shows the peak period bias as a function of peak period
over three second bins. It can be seen from this figure that
most individual model errors indicate a linear dependence
on peak period, consistent with the positive response to

this method of correction.
Despite this, PWBC proves a better compositing tech-

nique than PWLC (showing 47% and 42 % improvement
respectively). A possible explanation for this lies in the
fact that the compositing removes errors that are out of
phase. Using bias - corrected components, opposing er-
rors seen at high and low peak period for individual mod-
els cancel each other out, thus reducing the advantage
gained from linear correction.

FIG. 3. Peak period bias as a function of period for individual models
and PWBC

b. Varying Consensus Component Models

As discussed in section 3a the success of consensus
forecasting techniques relies on the ability to remove sys-
tematic bias through learned bias or linear correction, as
well as minimize random error through compositing. In
the case of the latter, the effectiveness of this minimisa-
tion will bear a dependence on the number of component
models making up the consensus. The intercomparison
data set used in this work consists of ten models, however,
in an operational setting, the number of models available
in real time is likely far less than this. The following
assesses the impact of the number of models on the per-
formance of the consensus scheme.

Previous forecast experiments (e.g. Winkler et al.
1977) and theoretical studies (Clemen and Winkler 1985)
studies have shown consensus forecasts usually improve
rapidly from one to two components but the rate of
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improvement drops asymptotically with further addi-
tions. Previous work using OCF techniques have had
only a limited number of independent model compo-
nents available for inclusion in consensus forecasts (3
for both Woodcock and Engel (2005) and Woodcock and
Greenslade (2007)).

The large number of independent models available
here provide an opportunity to address this question. A
number of simulations were performed using subsets of
the available models. Models were ranked according to
their raw RMSE (see table 3). Consensus forecasts for
the whole period were then constructed by consecutively
dropping out models in increasing and decreasing order
of quality.

Figure 4 shows the Hs RMSE of the PWBC as a func-
tion of the number of components models used to pro-
duce the consensus. For the “best n models” case, the
worst models have been dropped out first, vice-versa for
the “worst n models” case. The RMSE of the best and
worst individual models have been included for refer-
ence.

FIG. 4. 24 hour forecast Hs RMSE for PWBC as a function of the
number of component models in the consensus. The best and worst n
models are defined according the their RMSE. The RMSE of the best
and worst individual models are included for reference.

For the “best models” case, increasing the number of
models results in improvements in the consensus forecast
only up to the inclusion of six models. Beyond this, the
addition of more models, in this case the poorer perform-
ing models, does not add value to the forecast. However,
a consensus forecast including the best model always
does better than the best model on its own. For the case of
the “worst models”, a consensus of the two worst models
does significantly better than the worst model raw fore-
cast. Adding models to the consensus rapidly decreases
error for the first five models, beyond which point, gains
continue, though at a lesser rate. It is worth noting a con-
sensus forecast using the worst four models is able to beat
the best individual model.

Figure 5 shows the same plot for wind speed. As men-
tioned in section 4a, SHOM and ECMWF use the same
winds, hence SHOM has been omitted from this analysis.
For the most part, this plot shows a similar story to Fig-
ure 4. If anything, the benifits of increasing the number
of consensus components beyond a minimum number is
even less for wind speed than for Hs, with improvement

in the “best models” case ceasing at five models. For the
“worst models” case, the worst three model consensus
beats the best individual model.

FIG. 5. As for figure 4 for wind speed.

This suggests that for the construction of a consen-
sus forecast, ten models is unnecessary, and for practical
purposes, little forecast skill is gained by adding further
models beyond five or six. Although continuing to add
better models does produce improvements, as seen in the
“worst models” case in figures 4 and 5, in general, five or
six seems optimal. This is of relevance in an operational
environment where the cost of data retrieval and archiv-
ing must be weighed against potential gains in forecast
ability.

When considering models to use for construction of a
consensus forecast, not only must the quality of individ-
ual models be considered, but also model independence
(Clemen and Winkler 1985). Compositing will most ef-
fectively remove component error in the case where indi-
vidual components to have errors that are out of phase.

To illustrate this point, we consider here the sim-
ple case of constructing a consensus forecast from the
ECMWF model and one other. We chose the model
with the highest and lowest error correlations with the
ECMWF model, namely SHOM (R = 0.85) and UKMO
(R = 0.43) (error correlation coefficients between all raw
models are given in Appendix D). Statistics for each of
these raw models, as well as the PWBC consensus fore-
casts are given in table 11. From the raw model statis-
tics, it is apparent that SHOM is a better performing
model than the UKMO in this case. However, due to the
low error correlation between ECMWF and UKMO, the
consensus forecast using these models does better than
that using the higher quality SHOM model. This is due
to the fact that SHOM errors are highly correlated with
ECMWF errors, reducing the impact of error minimisa-
tion due to compositing.

c. Extended Forecast Periods

Up until this point, only 24 hour forecasts have been
considered. The following examines how these correc-
tions perform for extended forecast periods out to five
days. Of the ten models used in the previous section, only
five produce forecasts out to five days, namely FNMOC,
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Table 11. 48 hour Hs forecast statistics for ECMWF, UKMO and SHOM raw models, as well as PWBC results for different combinations of these
models. R refers to the error correlation between the models used in the PWBC consensus.

Model MAE RMSE XAE SI V%
ECMWF 0.31 0.45 2.28 0.18 87.77
UKMO 0.40 0.55 2.70 0.22 83.77
SHOM 0.34 0.47 2.59 0.19 86.81

PWBC using specified components
Components R MAE RMSE XAE SI V%
ECMWF and UKMO 0.43 0.29 0.41 2.25 0.17 89.66
ECMWF and SHOM 0.85 0.31 0.44 2.33 0.18 88.21

ECMWF, NCEP, SHOM and UKMO. In an operational
environment, consensus forecasts would ideally be made
with the maximum number of available models for each
forecast period. However, it is the intention here to ex-
amine the relative performance of these schemes with in-
creasing forecast period, and as such, a consistent model
set across all forecast periods is desirable. To this end,
the following results use only these five models for all
forecast periods.

Figure 6 shows the RMSE growth with forecast period
for each of these models as well as the BLC, PWBC and
PWLC learned correction schemes for Hs, wind speed
and peak period. Across all models, wind speed shows
a rapid increase in forecast error from analysis to 24
hour forecast, steadily increasing throughout the remain-
ing forecast period. For Hs, error increases only slightly
between the analysis and the 24 hour forecast. This re-
flects the impact of data assimilation and the differing
retention periods of the advantages gained. Assimilated
information is retained longer in a wave model than an
atmospheric model due to the longer temporal scales of
variability. Also, the wave field consists of both wind
sea and swell components. As the swell components are
generated by winds earlier in the forecast period, a delay
could be expected between when increasing errors in the
winds are translated to corresponding errors in the wave
forecast. Peak period error growth is slower than that of
Hs and wind speed. This is likely due in part to the diffi-
culties in accurately modelling peak period discussed in
section 4a.

Learned correction schemes appear to retain their ad-
vantage throughout the forecast period, with results vary-
ing very little from 24 hour results.

5. Summary

The OCF scheme has been applied to forecasts of Hs,
wind speed and peak period. Forecasts have been com-
piled using ten wave models at 14 buoy sites located
around North America. A number of different correc-
tion techniques have been explored, including bias and
linear correction of individual models, as well as compos-
ite forecasts constructed from equal weighted and perfor-
mance weighted combinations of these bias and linearly
corrected components.

Performance weighted composite schemes were found

FIG. 6. RMSE growth with forecast period for model for which five day
forecasts are available (FNMOC, ECMWF, NCEP, SHOM and UKMO)
as well as PWBC, PWLC and BLC forecasts produced using these mod-
els.

to be the best performers, with Hs and peak period
achieving best results using bias corrected components,
and wind speed using linearly corrected components.
These composites resulted in improvements of 36%, 47%
and 31% in RMSE values over the mean raw model com-
ponents respectively. These improvements are in general,
found to persist throughout the forecast period out to five
days.

The large number of component models available has
allowed the impact of the number of models used in the
consensus forecast to be examined. It is found that lit-
tle forecast skill is gained beyond five or six models. It
is also noted that due to the nature of error minimisa-
tion during compositing, the degree of error correlation
between models chosen for the composite must also be
considered as well as the quality of the model with the
aim being to maximise the degree to which component
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errors are out of phase.

a. Further Work

In the work of Woodcock and Greenslade (2007), of
the five models used for compositing, two were regional
models nested within a third global model, resulting in
highly correlated errors between there models. It was
found that the best correction scheme was a so called
composite of compostes, whereby these three models
were first averaged, then OCF applied to this average and
the remaining two models. One avenue that could be ex-
plored here would be an objective application of this idea,
whereby models with highly correlated errors within the
training period are first combined before inclusion in the
consensus.

The potential also exist for OCF forecasts to be ex-
tended to grid based forecasts using altimeter observa-
tions.
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APPENDIX A Hs Statistics

Table A1. 24 hour Hs statistics for all raw, bias corrected and linearly corrected models, as well as EWBC, PWBC, EWLC, PWLC and BLC
forecasts.

MODEL SCHEME N BIAS MAE RMSE XAE SI V%
UKMO RAW 4600 0.21 0.40 0.52 2.07 0.18 88.50
FNMOC RAW 4600 0.09 0.39 0.52 2.29 0.19 88.36
ECMWF RAW 4600 -0.01 0.27 0.38 1.70 0.15 92.18
MSC RAW 4600 -0.09 0.32 0.44 2.31 0.17 89.85
NCEP RAW 4600 0.16 0.38 0.51 2.07 0.18 88.94
METFR RAW 4600 0.23 0.46 0.60 2.45 0.22 83.66
DWD RAW 4600 -0.07 0.38 0.51 2.22 0.19 87.41
AUSBM RAW 4600 -0.11 0.42 0.57 2.53 0.23 82.89
SHOM RAW 4600 -0.01 0.33 0.44 2.09 0.17 90.19
JMA RAW 4600 -0.15 0.44 0.59 2.50 0.23 82.21
UKMO BC 4600 0.01 0.34 0.46 1.92 0.18 88.65
FNMOC BC 4600 -0.01 0.33 0.46 2.22 0.19 88.37
ECMWF BC 4600 -0.01 0.26 0.36 1.69 0.15 91.82
MSC BC 4600 0.01 0.30 0.41 2.20 0.17 89.77
NCEP BC 4600 0.00 0.32 0.44 2.00 0.18 88.58
METFR BC 4600 0.01 0.39 0.54 2.39 0.22 83.43
DWD BC 4600 -0.01 0.34 0.45 1.98 0.18 87.87
AUSBM BC 4600 -0.01 0.39 0.53 2.50 0.22 83.16
SHOM BC 4600 0.01 0.30 0.41 2.12 0.17 90.24
JMA BC 4600 -0.02 0.40 0.54 2.40 0.22 82.28
UKMO LC 4600 -0.00 0.33 0.44 2.15 0.18 88.20
FNMOC LC 4600 0.01 0.32 0.45 2.15 0.18 87.90
ECMWF LC 4600 -0.00 0.26 0.36 1.74 0.15 91.53
MSC LC 4600 0.00 0.30 0.42 2.05 0.17 89.24
NCEP LC 4600 0.00 0.31 0.43 2.11 0.18 88.04
METFR LC 4600 0.00 0.39 0.54 2.53 0.22 82.42
DWD LC 4600 -0.00 0.34 0.47 2.48 0.19 86.86
AUSBM LC 4600 0.01 0.39 0.54 2.79 0.22 81.99
SHOM LC 4600 0.00 0.30 0.41 2.22 0.17 89.55
JMA LC 4600 -0.01 0.40 0.55 2.48 0.23 81.72
BLC na 4600 0.00 0.27 0.38 1.96 0.16 91.08
EWBC Composite 4600 -0.00 0.25 0.34 1.52 0.14 93.14
PWBC Composite 4600 -0.00 0.24 0.32 1.46 0.14 93.57
EWLC Composite 4600 0.00 0.26 0.35 1.67 0.15 92.32
PWLC Composite 4600 0.00 0.25 0.34 1.56 0.14 92.89
PERSIST na 4600 0.00 0.87 1.23 5.74 0.51 59.77
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APPENDIX B Wind Speed Statistics

Table B1. 24 hour wind speed statistics for all raw, bias corrected and linearly corrected models, as well as EWBC, PWBC, EWLC, PWLC and
BLC forecasts.

MODEL SCHEME N BIAS MAE RMSE XAE SI V%
UKMO RAW 4291 0.81 1.52 1.98 9.42 0.23 80.36
FNMOC RAW 4291 0.55 1.64 2.14 9.79 0.26 73.12
ECMWF RAW 4291 0.46 1.29 1.71 8.67 0.21 81.24
MSC RAW 4291 0.49 1.52 2.02 8.68 0.25 74.41
NCEP RAW 4291 0.71 1.65 2.15 8.62 0.26 74.52
METFR RAW 4291 0.16 1.44 1.91 9.16 0.24 75.90
DWD RAW 4291 0.18 1.46 1.92 8.56 0.24 73.91
AUSBM RAW 4291 0.71 1.86 2.40 10.30 0.29 66.78
SHOM RAW 4291 0.38 1.28 1.69 8.73 0.21 81.04
JMA RAW 4291 0.68 1.63 2.12 9.31 0.25 75.79
UKMO BC 4291 0.00 1.31 1.78 9.29 0.23 79.79
FNMOC BC 4291 -0.01 1.54 2.04 9.46 0.27 72.22
ECMWF BC 4291 -0.01 1.19 1.61 8.66 0.21 80.97
MSC BC 4291 0.00 1.42 1.91 9.07 0.25 74.25
NCEP BC 4291 0.02 1.47 1.96 8.47 0.26 74.48
METFR BC 4291 -0.04 1.40 1.86 8.85 0.24 75.35
DWD BC 4291 0.01 1.41 1.88 8.63 0.25 74.02
AUSBM BC 4291 -0.07 1.70 2.26 10.69 0.30 65.35
SHOM BC 4291 -0.01 1.19 1.61 8.84 0.21 80.82
JMA BC 4291 -0.00 1.47 1.96 9.33 0.26 75.84
UKMO LC 4291 0.01 1.15 1.53 7.88 0.20 79.52
FNMOC LC 4291 0.01 1.38 1.80 8.31 0.24 71.72
ECMWF LC 4291 0.01 1.12 1.50 7.63 0.20 80.28
MSC LC 4291 0.02 1.30 1.71 8.03 0.22 73.97
NCEP LC 4291 0.01 1.32 1.72 7.09 0.23 74.16
METFR LC 4291 -0.00 1.29 1.70 7.87 0.22 74.79
DWD LC 4291 0.02 1.32 1.73 7.57 0.23 73.87
AUSBM LC 4291 0.01 1.53 2.01 9.20 0.26 64.86
SHOM LC 4291 0.02 1.13 1.51 7.80 0.20 80.02
JMA LC 4291 0.01 1.27 1.68 7.95 0.22 75.69
BLC na 4291 0.04 1.14 1.53 7.66 0.20 79.79
PWBC Composite 4291 -0.01 1.08 1.43 6.71 0.19 84.26
EWBC Composite 4291 -0.02 1.10 1.45 6.59 0.19 83.82
EWLC Composite 4291 0.01 1.08 1.42 6.23 0.19 82.81
PWLC Composite 4291 0.01 1.05 1.39 6.28 0.18 83.42
PERSIST na 4291 0.01 3.16 4.04 13.14 0.53 29.68
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APPENDIX C Peak Period Statistics

Table C1. 24 hour peak period statistics for all raw, bias corrected and linearly corrected models, as well as EWBC, PWBC, EWLC, PWLC and
BLC forecasts.

MODEL SCHEME N BIAS MAE RMSE XAE SI V%
UKMO RAW 4259 0.98 2.10 2.91 10.74 0.28 17.57
FNMOC RAW 4259 -0.79 1.47 2.10 10.72 0.20 41.38
ECMWF RAW 4259 0.34 0.97 1.64 10.21 0.17 56.66
MSC RAW 4259 -0.01 1.05 1.73 9.66 0.19 48.53
NCEP RAW 4259 -0.92 1.31 1.90 9.21 0.18 49.07
METFR RAW 4259 -0.72 1.46 1.94 7.57 0.19 38.50
DWD RAW 4259 -3.66 3.81 4.64 12.69 0.30 4.12
AUSBM RAW 4259 -0.21 1.79 2.68 13.15 0.28 17.45
SHOM RAW 4259 0.61 1.31 2.26 11.97 0.23 35.48
JMA RAW 4259 -1.54 2.00 2.58 9.51 0.22 23.78
UKMO BC 4259 0.02 1.84 2.51 10.10 0.27 23.16
FNMOC BC 4259 0.03 1.14 1.84 10.18 0.20 43.17
ECMWF BC 4259 0.15 0.97 1.60 10.01 0.17 56.39
MSC BC 4259 -0.01 1.03 1.67 9.49 0.18 48.85
NCEP BC 4259 -0.10 1.03 1.66 8.79 0.18 49.17
METFR BC 4259 -0.05 1.30 1.74 7.42 0.19 39.38
DWD BC 4259 -0.05 1.93 2.50 8.91 0.27 8.32
AUSBM BC 4259 0.21 1.64 2.56 13.53 0.28 21.49
SHOM BC 4259 0.30 1.30 2.13 11.59 0.23 37.53
JMA BC 4259 -0.08 1.27 1.83 8.56 0.20 34.25
UKMO LC 4259 0.01 1.45 1.96 7.96 0.21 25.54
FNMOC LC 4259 0.03 1.14 1.69 8.65 0.18 43.10
ECMWF LC 4259 0.02 0.99 1.50 8.87 0.16 54.74
MSC LC 4259 -0.04 1.10 1.63 8.53 0.18 45.17
NCEP LC 4259 0.00 1.07 1.60 8.33 0.18 47.00
METFR LC 4259 -0.00 1.32 1.75 7.16 0.19 38.72
DWD LC 4259 -0.02 1.56 2.04 7.71 0.22 17.34
AUSBM LC 4259 0.07 1.40 2.01 10.42 0.22 23.58
SHOM LC 4259 0.03 1.22 1.78 9.74 0.19 38.07
JMA LC 4259 0.07 1.29 1.80 8.45 0.20 35.17
BLC na 4259 0.04 0.98 1.53 9.30 0.17 53.62
PWBC Composite 4259 0.04 0.87 1.29 6.99 0.14 66.74
EWBC Composite 4259 0.06 0.96 1.37 6.46 0.15 63.65
EWLC Composite 4259 0.02 1.09 1.51 7.04 0.16 57.20
PWLC Composite 4259 0.01 1.00 1.42 7.26 0.15 60.85
PERSIST na 4259 0.00 1.87 2.50 9.58 0.27 35.42
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APPENDIX D Raw model error correlations

Table D1. Error correlations between each model

UKMO FNMOC ECMWF MSC NCEP METFR DWD AUSBM SHOM JMA
UKMO 1.00 0.41 0.43 0.40 0.38 0.51 0.51 0.40 0.49 0.23

FNMOC 1.00 0.54 0.42 0.78 0.22 0.46 0.47 0.59 0.21
ECMWF 1.00 0.66 0.56 0.57 0.62 0.57 0.85 0.45

MSC 1.00 0.43 0.54 0.56 0.49 0.61 0.37
NCEP 1.00 0.24 0.41 0.42 0.58 0.23

METFR 1.00 0.58 0.57 0.48 0.45
DWD 1.00 0.75 0.66 0.43

AUSBM 1.00 0.57 0.46
SHOM 1.00 0.30

JMA 1.00
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