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The skill of modern wave models is such that the quality of their forecasts is, to a large degree, deter-
mined by errors in the forcing wind field. This work explores the extent to which large-scale systematic
biases in modelled waves from a third generation wave model can be attributed to the forcing winds.
Three different sets of winds with known global bias characteristics are used to force the WAVEWATCH
III model. These winds are based on the Australian Bureau of Meteorology’s ACCESS model output, with
different statistical corrections applied. Wave forecasts are verified using satellite altimeter data. It is
found that a negative bias in modelled Significant Wave Height (Hs) has its origins primarily in the forc-
ing, however, the reduction of systematic wind biases does not result in universal improvement in mod-
elled Hs. A positive bias is present in the Southern Hemisphere due primarily to an overestimation of high
Hs values in the Southern Ocean storm tracks. A positive bias is also present in the east Pacific and East
Indian Ocean. This is due both to the over-prediction of waves in the Southern Ocean and lack of swell
attenuation in the wave model source terms used. Smaller scale features are apparent, such as a positive
bias off the Cape of Good Hope, and a negative bias off Cape Horn. In some situations, internal wave
model error has been compensated for by error in the forcing winds.
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1. Introduction

The ability to forecast wind waves relies largely on numerical
models. Current third generation wave models such as WAM
(Wamdig et al., 1988) and WAVEWATCH III� (WW3, Tolman,
1991; 2009) have been found by many studies to produce accurate
forecasts several days in advance. The skill of these models is such
that the quality of the wave forecast is, to a large extent, deter-
mined by errors in the forcing wind field (e.g. Cardone et al.,
1996; Rogers and Wittmann, 2002).

The Australian Bureau of Meteorology (Bureau) has recently re-
placed all the existing operational Numerical Weather Prediction
(NWP) systems (e.g. GASP (Seaman et al., 1995)) with the Austra-
lian Community Climate and Earth System Simulator (ACCESS) sys-
tem (NMOC, 2010), which is based on the UK Met Office Unified
Model/Variational Assimilation (UM/VAR) system (Rawlins et al.,
2007). Durrant and Greenslade (2012) performed an assessment
of the marine surface winds from ACCESS. Comparisons against
QuikSCAT scatterometer data identified a negative bias, with sur-
face winds speeds (U10) underestimated by approximately 8%.
Within this overall negative bias, significant regional variation
was also apparent.
012 Published by Elsevier Ltd. All r
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During testing of WW3 for operational implementation at the
Bureau, Durrant and Greenslade (2011) identified a negative bias
in the modelled Hs. Based on the findings of Durrant and Greenslade
(2012), this was attributed largely to the negatively biased forcing. A
number of means of removing these wind biases through statistical
corrections were proposed by Durrant (2011) and Durrant et al.
(Submitted to Weather and Forecasting). The present work analyses
the effect of these statistical wind corrections on global wave biases,
further exploring the extent to which large-scale systematic biases
in the modelled waves can be attributed to the forcing winds.

The paper is arranged as follows. Some background is given in
Section 2. Details of the data sources used are provided in Section 3
and the overall approach is described in Section 4. The results are
presented and discussed in Section 5 and Section 6 contains some
further discussion. Sections 7 and 8 present the conclusions and
some closing remarks.
2. Background

Spectral wave modeling is based on the decomposition of the
surface elevation variance across wave numbers k and directions
h. The development of the spectral density F in space and time is
governed by the wave transport or energy balance equation:

DF
Dt
¼ Sin þ Snl þ Sds ð1Þ
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Non-conservative sources and sinks of wave energy on the right
consist, in deep water, of the input of wave energy by wind (Sin),
nonlinear interactions between waves (Snl) and dissipation due to
wave breaking or ‘whitecapping’ (Sds).

The non-linear interactions term represents a process that shifts
energy between spectral components, but does not change the to-
tal wave energy. In modern operational third generation wave
models, these are modelled using the discrete interaction approx-
imation (DIA) of Hasselmann et al. (1985). The most commonly
used source terms are the combination of the wind input term of
Janssen (1991) and the dissipation term tuned according to Bidlot
et al. (2007) (hereafter referred to as BJA1 terms) and the default
WW3 terms of Tolman and Chalikov (1996) (hereafter referred to
as TC96 terms). A detailed description of these source terms is not
given here: In addition to the referred papers, the relevant descrip-
tions of the physics of wave generation and dissipation, and their
representation in modern source terms, can be found in the reviews
of Wamdig et al. (1988) and Komen et al. (1994) with more up to
date details of recent advances summarized in WISE Group (2007).

The source terms applied to the evolution of the wave spec-
trum, though physically based, contain a number of tunable
parameters. In general, the determination of tuning parameters is
first performed based on their ability to reproduce simple idealized
cases, such as known duration and fetch limited growth curves
(e.g. Komen et al., 1984; SWAMP Group, 1985; Tolman and Chali-
kov, 1996). These tunings are then refined according to their ability
to reproduce realistic wave fields in variable wind conditions. This
is done through their application in large-scale wave models used
to simulate case studies for which observations exist (e.g. Tolman,
2002; Tolman et al., 2002; Bidlot et al., 2002,2007; Ardhuin et al.,
2008, 2010).

This process relies on the availability of high quality wave
observations. Historically, data coverage over the ocean has been
poor. For research applications, many studies have benefited from
intensive measurement campaigns such as the JOint North Sea
WAve Project (JONSWAP; Hasselmann et al., 1973) and the Surface
Wave Dynamics Experiment (SWADE; Weller et al., 1991). In oper-
ational applications, throughout the formative years of the WAM
model, available wave data was primarily obtained from moored
buoys. By nature, these observations are few, located in selected
areas, generally along coastlines, and can only provide local error
estimates. Additionally, these data have historically come from
the major North American and European buoy networks,
potentially biasing the tuning of these models to conditions in
the Northern Hemisphere.

The advent of satellite altimetry provided a boon for wave mod-
el verification and tuning, and for the first time, the open ocean
could be reliably observed. The TC96 source terms in WW3 relied
heavily on altimeter data during developmental tuning (Tolman,
2002; Tolman et al., 2002). Significant adjustments were required
to the idealized tunings in order to achieve realistic wave fields
on a global scale. It was found, for example, that swell dissipation
due to opposing or weak winds was overestimated, requiring
significant retuning. Additionally the model tuned in the classical
way to fetch-limited growth for stable conditions was found to
underestimate deep-ocean wave growth requiring a subsequent
retuning for effects of atmospheric stability (Tolman, 2002).

As demonstrated by Tolman (2002), the use of altimeter data to
assess the spatial variation in the modelled Hs error provides a
powerful means of identifying sources of systematic model error.
This approach has been used by a number of subsequent studies.
Tolman (2003), for example, showed that an overestimation of
1 Note that the BJA terms are incorrectly referred in several papers as the ‘‘BAJ’
terms (e.g. Ardhuin et al., 2007; Ardhuin et al., 2010, Durrant and Greenslade, 2011)
’
.

wave heights in the tropics could be easily traced to missing wave
blocking from island chains that were too small to be explicitly
resolved by the grid. Greenslade and Young (2004) identified a
distinct negative bias in the Bureau’s previous operational model
AUSWAM in the region of the Southern Ocean storm tracks. The
global validations and tuning of the recent parameterizations of
Ardhuin et al. (2008, 2010) have relied heavily on the minimization
of spatial bias over the globe as a tuning diagnostic.

While knowledge of the spatial wave field error is valuable
information, corresponding biases in the forcing winds are neces-
sary to confidently attribute this error to wave model deficiencies.
The translation of error in the forcing winds into the wave model is
not straightforward. Locally, wind errors will produce errors in
newly generated wind sea. These errors will also present as errors
in the swell propagating away from the generation region. Hence,
the wave error at any given point associated with incorrect wind
forcing is a result of the integration of wind error over a window
of time and space. The addition of error due to an imperfect wave
model makes the attribution of error a non-trivial exercise.

There have been several studies dealing with the accuracy of
atmospheric predictions from the perspective of the wave model-
ler (e.g. Komen et al., 1994; Cardone et al., 1995, 1996; Khandekar
and Lalbeharry, 1996; Janssen et al., 1997; Tolman, 1998b). In gen-
eral, these studies have employed two methods: (1) compare both
wind and wave model data with all the available measurements
and/or (2) cross-compare results obtained using several combina-
tions of atmospheric and wave models. The efficiency of the first
method alone has historically been limited by the sparseness and
intermittency of the measured data, complicated by the difficulty
in making inferences based on local conditions alone. By compar-
ing a number of different models containing different error charac-
teristics, sources of error can be further isolated.

The inability to make simple, local inferences regarding wind/
wave error attribution is reduced somewhat by examining single,
intense storm events (e.g. Cardone et al., 1996). Under such
conditions, where high frequency energy dominates the wave
spectrum, error attribution can essentially be done locally.
Similarly, by examining enclosed basins, the influence of propa-
gating error is reduced (e.g. Bertotti and Cavaleri, 2004; Ardhuin
et al., 2007).

In a more general sense, there have been a number of studies
examining the contribution of systematic bias in the forcing winds
to that of the modelled waves in the open ocean. Rogers and
Wittmann (2002) compared surface winds from the (US) Navy’s
Operational Global Atmospheric Prediction System (NOGAPS),
run at Fleet Numerical Meteorology and Oceanography Center
(FNMOC), and the National Centers for Environmental Prediction
(NCEP) Global Forecasting System (GFS) analyses to QuikSCAT
scatterometer data. They found that both analyses tend to be
biased low at high wind speeds, this tendency being relatively
slight with the GFS analyses, and stronger in the NOGAPS analyses,
particularly in the north-east Pacific. Rogers (2002) made similar
direct wind evaluations, and similarly suggested that strong sur-
face wind events in the NOGAPS analyses were biased low. They
were led to conclude that the dominant source of error in predic-
tions of low-frequency wave energy in FNMOC’s global models
was inaccuracies in the wind forcing. Bias associated with the wave
model itself was believed to be only secondary.

This work was repeated following upgrades to the atmospheric
model NOGAPS in the second half of 2002 (Rogers et al., 2005). This
led to improvement in the operational global wave model. Follow-
ing these changes, the authors conclude that wind error was no
longer the primary cause of total wave model error. These studies,
however, focused on comparisons with a number of buoys around
the United States (US) coast, and interpretation on global scales
remains difficult using these point-based measurements.
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In recent years, scatterometer data has become a valuable
source of data for the study of marine surface winds (e.g. Kelly,
2004). These data have been extensively used for verification of
NWP winds (e.g. Rogers and Wittmann, 2002; Yuan, 2004; Isaksen
and Janssen, 2004; Schulz et al., 2007). Research examining the
spatial variability of the operational European Centre for
Medium-Range Weather Forecasts (ECMWF) and NCEP analyses
(Chelton and Freilich, 2005) has shown that these two products con-
tain significant spatial structure in the overall bias. As discussed
above, knowledge of the spatial Hs bias has greatly enhanced the abil-
ity to diagnose and address sources of systematic error in modern
wave model source terms. However, while the contribution of bias
in the forcing winds is often considered in a general sense, the extent
to which a spatial variation in systematic wind speed error contrib-
utes to that of the waves has not received a lot of attention.

Where systematic errors in the wind field are known a priori,
they can be removed with statistical corrections (e.g. Tolman,
1998b; Greenslade et al., 2005). While such adjustments provide
a useful means of removing known biases in the forcing winds,
these simple corrections come with a number of limitations. The
first is the inability to account for spatial variation in the wind
error; winds corrected in this way can be expected to retain signif-
icant regional biases. The second limitation is the need to continu-
ally monitor changes in systematic wind biases in atmospheric
models, which themselves are frequently undergoing upgrades.
The reality of changed forcing is an issue for any ‘downstream’
model. Part of the motivation for performing such wind corrections
is an acknowledgement that these wind error characteristics are
likely to change. Adjustment of statistical wind corrections with
these changes is less burdensome than the retuning of the wave
model itself. However, maintaining such wind corrections still
requires considerable effort.

Despite the acknowledged impact of wind error on the quality
of wave forecasts it is an oft-ignored facet of current operational
wave model tuning. Where the provision of accurate wave esti-
mates is paramount, such as in the context of operational wave
forecasting systems, the model is set up, verified and tuned. This
tuning is often done based on the forcing as it is, not as it should
be. A knowledge of the role of the forcing wind on the accuracy
of the wave forecast, while an important research question, is sec-
ondary to the provision of accurate wave forecasts under whatever
forcing is available. However, where systematic errors in the forc-
ing winds exist, tuning the wave model in isolation in this way is
likely to result in the wave model tuning compensating for these
errors.

This raises an interesting question regarding the tuning of wave
models in general. While modern wave model parameterizations
are the result of a great many contributors, the source terms pri-
marily in use today are BJA and TC96. Global tuning of these terms
has been performed with ECMWF (Bidlot et al., 2007) and NCEP
(Tolman, 2002) wind products respectively. The previously men-
tioned work of Chelton and Freilich (2005) examined and com-
pared the operational winds from these two institutions,
demonstrating not only significant spatial structure in the overall
bias, but also significantly different bias characteristics between
them. The question then arises, for the purposes of producing accu-
rate wave forecasts using a given set of source terms, are winds
that closely match reality the desired forcing product, or those that
most closely resemble the winds under which the source terms
were developed?

In applications such as operational forecasting, it could be
argued that wind errors that compensate for wave model deficien-
cies are a good thing. However, for the purposes of wave model
development, such compensation serves to hinder the identifica-
tion of sources of systematic wave model error, and delays
addressing the causal issue. Knowledge of the wind error, and an
understanding of how this manifests in the wave model, is hence
an important aspect of the further refinement of the source terms.

This study aims to assess the contribution of systematic error in
the forcing surface winds to that of the global modelled wave field.
Specifically, the following questions are addressed

� To what extent can large-scale systematic biases in the waves
be attributed to biases in the forcing winds?
� Can statistical adjustments which remove these wind biases

lead to better wave forecasts?
� What are the residual wave biases when forced with unbiased

winds?

3. Model and data

3.1. Wave model

The model used in this work is the most recent release of the
WW3 model, version 3.14 (Tolman, 2009). The set up and verifica-
tion of WW3 under ACCESS forcing is documented in Durrant and
Greenslade (2011). Evaluation of a number of hindcasts was con-
ducted, examining the impact of the choice of source terms and
numerics. Care was taken to minimize sources of external error.
Third order numerics were used, minimizing numerical error. All
global runs were performed with 1� spatial resolution; sufficient
for evaluation of the large-scale error that is the focus here.
Bathymetry data was supplemented with a coastal polygon data
set in the construction of the grids, sub-grid-scale blocking was
employed to minimize the error associated with unresolved island
blocking (e.g. Tolman, 2003) and an observation-based, daily up-
dated, explicit sea ice edge was included.

In all the hindcasts performed in Durrant and Greenslade
(2011), a negative Hs bias was present. Within this overall negative
Hs bias, TC96 was found to over-predict in the long fetches of the
Southern Ocean, resulting in over-predicted Hs values on the
Australian west coast. BJA terms were found to produce a more
consistent negative bias over the globe, with the exception of the
eastern tropical Pacific, due to a lack swell attenuation within
these terms (discussed below). Based on these results, the BJA
terms were chosen for operational implementation at the Bureau,
and are the focus of this study. Sections 5.1–5.3 present results
with BJA source terms, with some comparative results for TC96
terms given in Section 5.4.
3.2. Surface winds

As noted above, the forcing winds are obtained from a test con-
figuration of the Bureau’s recently implemented ACCESS system.
These ACCESS surface winds have been examined in Durrant and
Greenslade (2012). Verifications against QuikSCAT data were con-
ducted, including an analysis of the spatial structure of the error
over the globe. During the 4 month time period examined here,
the uncorrected ACCESS winds were found to have an overall neg-
ative bias of �0.52 ms�1 and root-mean-square error (RMSE) of
1.57 ms�1 in comparison to QuikSCAT observations.

Building upon the above verifications, Durrant et al. (Submitted
to Weather and Forecasting) explored a number of techniques for
correcting these winds, based on comparisons against scatterome-
ter observations. In the present work, the effect of two of these cor-
rections on the wave field are assessed, and we refer to these as
‘static homogenous corrections’, and ‘spatially and temporally
varying learned corrections’. These are briefly described below:

Static homogeneous corrections – These consisted of a single cor-
rection, applied uniformly over the entire global domain. Based on
comparisons with scatterometer data an approximate 6% increase
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in U10 was found to be appropriate. This reduced the overall sur-
face wind speed bias to �0.068 ms�1 and RMSE to 1.49 ms�1.

While such corrections produced overall improvements in the
wind speed statistics, they were unable to adequately account for
regional and/or temporal variation in the error characteristics. To
address this, Durrant et al. (Submitted to Weather and Forecasting)
further considered corrections that varied in space and time.

Spatially and temporally varying learned corrections – This meth-
od involved the application of independent corrections at each
model grid point that varied in time with the recent historical bias
of the model at that grid point. Extending the point based, learned
corrections of Durrant et al. (2009), these automatically-evolving
gridded corrections were calculated from a moving window of
historical comparisons between scatterometer observations and
preceding forecasts. A number of spatial and temporal learning
windows were explored, with a 30 day learning window found to
give the best results. This effectively targeted the removal of syn-
optic scale systematic biases, while applying independent correc-
tions at each model grid point enabled the removal of persistent
biases on fine spatial scales, such as those present along coastlines
and in the lee of islands. Correcting winds in this way eliminates
the need to monitor and manually adjust these corrections with
time. The corrected winds had an overall small positive bias of
0.049 m/s and RMSE of 1.44 m/s. Importantly for this work, regio-
nal biases were almost eliminated over the entire global domain.

In summary, three different sets of forcing winds over a
4 month time period are used: uncorrected ACCESS winds; ACCESS
winds corrected with static homogeneous corrections; and those
corrected using spatially and temporally varying learned correc-
tions, as described above. Further details on the specifics and
development of these corrections can be found in Durrant et al.
(Submitted to Weather and Forecasting).
3.3. Observations

The wave model verification carried out in this work relies
heavily on altimeter data. The two altimeters used here are the
Poseidon-2 altimeter onboard Jason-1 (Menard et al., 2003; Cara-
yon et al., 2003) and the RA-2 altimeter of Envisat (Resti et al.,
1999). The real time data streams were used here, taken from
the Bureau’s operational archive. Hs from these two data sources
was corrected according to Durrant and Greenslade (2011). Quality
control consists of a first check based on the standard deviation of
the 20 Hz and 10 Hz Hs values following Mackay et al. (2008), and
nearest neighbor comparisons are performed to remove any
remaining obvious errors. In order to match the spatial scales of
variability between model and observations, ‘‘super-obs’’ are then
calculated by performing 1� along-track averages, consisting of 15–
20 individual observations (e.g. Tolman et al., 2002; Janssen, 2008).
Model data is then interpolated to match the time and location of
the altimeter to make up a set of co-locations, from which statistics
are calculated. Over the July–October 2008 period examined here,
this analysis resulted in more than 580,000 co-locations. Calculat-
ing statistics based on these co-locations gives an overall descrip-
tion of the error.

To determine the spatial variation in error, co-locations are dis-
tributed into latitude–longitude bins, and statistics are calculated
for each bin separately. When choosing an appropriate latitude/
longitude box size, a balance must be struck between resolution
and the robustness of the resulting statistics for each box due to
increased number of observations. 3� was found to be a good com-
promise here. It is worth noting that the physical size of a 3� box
reduces at higher latitudes. However, due to the orbital character-
istics of the satellite, the density of the observations also increases
at higher latitudes, maintaining sufficient observations in these
smaller boxes. Over most of the globe there are around 150 co-
locations for each 3� � 3� bin.

Satellite scatterometer observations are used to a small extent
in the present work. The reader is referred to Durrant (Submitted
to Weather and Forecasting) for details on the treatment of the
QuikSCAT scatterometer data.
4. Approach

In evaluating error sources in modelled Hs, Rogers et al. (2005)
employ three condition-interpretation pairs. These are given in the
first column of Table 1. The context in which these tests are applied
by Rogers et al. (2005) differ somewhat from that here. In that
study, conclusions are drawn from comparisons at a number of
point locations, namely buoys, around the US coast. The authors
reason that by looking at the Northern Hemisphere winter, they
remain focused primarily on wind-sea and young swell in these
conditions, and hence are able to draw conclusions based on local
wind/wave conditions. Here, the distribution of wind and wave
bias is considered spatially over the whole globe, and while this
approach adds to the breadth of conclusions that can be drawn,
it also complicates the issue of error separation, and attribution
of error becomes a non-local exercise.

This point is well illustrated by the numerical simulations con-
ducted by Alves (2006). He broke the global domain into 13 swell
generation areas, and for each region a run was performed with
wind kept active only for that region. By analyzing the swell prop-
agating away from each generation region, its relative influence on
global wave climate could be gauged. One of the major conclusions
of that study was that swells generated in extratropical areas of the
Southern Oceans spread energy throughout the entire global ocean,
and are a potentially important component of the wave climate in
most ocean basins in both hemispheres. It was also noted that
these areas generate robust swell systems that propagate west-
ward against the predominant storm advection direction. Durrant
(2011) further noted that Hs biases in the swell dominated eastern
Pacific are more sensitive to adjustments in the extratropical winds
than to adjustments to the local winds.

Some amendments are thus required to these simple tests to
meaningfully interpret the results. These are stated in the second
column of Table 1. Test 1 was not actually used by Rogers et al.
(2005) because of the difficulty in proving small bias in the wind
field, and the requirement to separately evaluate the sensitivity
of the wave model to wind field bias. In the present work, the wind
fields used have been extensively evaluated and appropriate cor-
rections to those winds have been made. Indeed, the winds that
have been corrected with spatially and temporally varying learned
corrections are now known to contain small bias over the whole
domain, allowing this test to be confidently applied here, in
amended form.

A word of caution is introduced, however, regarding Test 1. The
assertion of an unbiased wind field does not imply a wind field
without error. Random error remains, though the time scales at
which the wave model responds to these errors makes this less
of a concern here. What is of potential concern is error which
may remain in the distribution of U10 across the range of wind
speeds. This is especially relevant in the generation regions of
the extratropics. Many of the boundary-layer processes in these
parts of the world are highly non-linear and involve strong tempo-
ral (and spatial) covariances (e.g. Simmonds et al., 2005). The non-
linear response of the waves to this forcing means that the overall
wind bias gives only a first order indication of wind induced wave
bias (e.g. Chawla et al., 2009,2011). The U10 distribution for the cor-
rected wind fields was examined in Durrant et al. (Submitted to



Table 1
Condition-interpretation pairs used to evaluate error sources in this work. Column 1 shows statements employed by Rogers et al. (2005). Amendments used in this work are given
in the second column.

Rogers et al. (2005) Amendments

(1) If a model is forced with a wind field that contains small bias,
then nontrivial bias observed in energy predictions from a wave
model forced by these wind vectors implies a probable bias associated
with the wave model itself

Such inferences cannot, however, be drawn from a simple local comparison. This
test must be applied in the context of knowledge of the influence of propagating
error

(2) If a model is forced with a wind field with a bias of known sign, and
nontrivial bias of opposite sign is observed in energy predictions from
a wave model forced by this wind field, this implies a probable bias
associated with the wave model itself. (No conclusions are drawn if the
bias is of the same sign)

A bias of the same sign in both the wind and the waves is interpreted as
suggestive evidence of wind bias being a contributor to the wave bias. This
evidence is reinforced in areas where the reduction of the wind bias leads to
a reduction of the corresponding wave bias. As with Test 1, this test must be
applied in the context of a knowledge of the influence of propagating error.

(3) If hindcasts and wave model-data comparisons are chosen such that the
bias from numerics and resolution is small, then the nontrivial bias in
the wave model itself (i.e., internal bias) is probably associated with the
model source/sink term parameterizations
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Weather and Forecasting) and though improved, these remain
imperfect.

For Test 2, forcing with two alternate wind fields of opposite
sign is cited by Rogers et al. (2005) as a valuable means of assess-
ment. However, wind fields from different models can be expected
to have differing error characteristics in addition to bias alone.
Forcing the model here with winds that are almost identical,
except for their local bias characteristics, allows for more certainty
in the allocation of systematic Hs error associated with each forc-
ing. Additionally, the ability to monitor both the wind and wave
bias spatially over the globe provides a powerful diagnostic tool,
allowing more reliable interpretation than was possible by the
site-based comparisons of Rogers et al. (2005). The statement of
Test 2 has hence been somewhat strengthened.

With respect to Test 3, Rogers et al. (2005) focus on compari-
sons against North American buoy observations, in the Northern
Hemisphere winter, thus primarily considering wind sea and
young swell in these conditions, and minimizing error associated
with propagation. Here, global results are considered, and any
errors associated with propagation numerics or resolution are
not easily isolated. As noted in Section 3.1 and described in Durrant
and Greenslade (2011), care has been taken to minimize such error.
The ability to compare results from different source terms within
the same model framework is also advantageous here. Where the
origin of error is suspected to be from sources other than the phys-
ical formulation of the source terms, comparison with the same
model set-up, using different source terms, can provide corrobora-
tive evidence for this.

Poor specification or non-specification of currents and/or air-
sea temperature differences for the purposes of stability present
additional sources of external error. These are not expected to
have a significant impact overall (Rogers et al., 2005). Comment
is made in the text, however, where such omissions are locally
relevant.
5. Results

Results from three different forcing winds are analyzed; uncor-
rected ACCESS winds, those corrected with static homogeneous
corrections, and those corrected using spatially and temporally
varying learned corrections. For brevity, runs are referred to simply
by their corrected wind labels, e.g. reference to the static homoge-
neous winds refers to winds that have been corrected with this
method. Reference to static homogeneous waves refers to waves
resulting from forcing the model with these corrected winds, etc.
Section 5.1 qualitatively examines the broad scale attribution of
wind/wave error, and a more quantitative assessment of the effect
of U10 corrections on the modelled Hs results is presented in
Section 5.2. Finally, confident that the systematic error in the
forcing winds have been reduced by the spatially and temporally
varying learned corrections, the remaining bias characteristics of
the modelled Hs are discussed in Section 5.3.
5.1. Qualitative attribution of large scale systematic error

The global time averaged bias of each of the three wind fields
against scatterometer data and the resulting wave field bias is
shown in Fig. 1. Statistics are calculated using 1� latitude-longitude
boxes for U10, and 3� boxes for Hs. Gaussian smoothing has been
applied over 5 boxes in the case of the 1� U10 bias, and 2 boxes
for the 3� Hs bias. Considering first the uncorrected ACCESS winds,
Fig. 1(b) shows a negative bias over most of the globe in modelled
Hs when compared to altimeter data (Durrant and Greenslade,
2011). Fig. 1(a) reveals a similar negative bias in the forcing wind
field against scatterometer data (Durrant and Greenslade 2012).
It seems reasonable then that the bulk of the bias in the wave field
can be attributed to the forcing winds in this case. In the context of
an evaluation of WW3 under ACCESS forcing, this is a strong result
and effectively answers one of the major questions of this paper. In
a more general sense, the impracticality of assessing wave model
error in isolation is made clear.

However, when an unbiased wave model is forced with winds
that are negatively biased, a negative bias in the waves is an ex-
pected result. The sensitivity of modelled Hs to spatial variation
in wind bias is not easily assessed with this case in isolation. With
the exception of the east Pacific, the wave model is negatively
biased over the entire global domain. Further insight can be gained
here by contrasting Hs bias resulting from runs performed using
the two corrected winds.

We consider first the Southern Ocean, as the conclusions made
here have some broader relevance in the overall discussion. The
general under-prediction is well explained by the negative wind
bias in this region for uncorrected winds. In the case of static
homogeneous corrections, it could be speculated that the positive
bias in the waves in the Southern Ocean is attributable to the cor-
responding positive bias in U10. The fact that these biases remain in
the case of the spatially unbiased winds, suggests that the wave
model is inherently over-predicting Hs in this region.

Within this general over-prediction in the Southern Hemi-
sphere, a number of smaller scale features are apparent. Across
all three runs, a local Hs bias maximum can be seen in the Amund-
sen sea, along the Antarctic ice edge, between 100�W and 140�W. A
local minima is also present in the Drake Passage, south of Cape
Horn in all three cases. In the case of the spatially unbiased winds,



Fig. 1. Bias over the whole 4 month period for U10 (left column), and Hs (right column) relative to scatterometer and altimeter data respectively for uncorrected ACCESS winds
(first row), winds corrected using static homogeneous corrections (second row) and those corrected using spatially and temporally varying learned corrections (third row).
Gaussian smoothing has been applied over 5 boxes in the case of the 1� U10 bias, and 2 boxes for the 3� Hs bias.
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overestimated Hs is evident off, and downstream of the Cape of
Good Hope. This appears to be offset by regions of local, negatively
biased wind speeds in both of the other cases. Possible causes of
these features are discussed further below.

All three runs show a positive Hs bias in much of the eastern
tropical Pacific. In the case of both corrected wind runs the possi-
bility of over-predicted waves correctly propagating from the
South Pacific remains. This is supported by the fact that this area
is highly sensitive to U10 in the Southern Ocean (Alves, 2006; Dur-
rant, 2011). However, the presence of this bias, particularly in the
case of negative bias in the Southern Ocean in the case of uncor-
rected winds, strongly suggests a systemic issue with the wave
model. A similar pattern can be seen in the east Indian Ocean.
These features are clearly the result of excessive swell propagation
into these regions.

Negative Hs biases are present in the western tropical Pacific
and the Gulf of Mexico corresponding with negative U10 biases in
both the uncorrected, and static homogeneous corrected cases.
These Hs biases are reduced when forced with spatially corrected
winds, though low mean Hs and U10 in these regions (Figures not
shown) increase relative observational uncertainty, requiring some
caution here.

The situation in the Indian Ocean is less clear. In both the static
homogeneous, and spatially and temporally varying learned cases,
a positive Hs bias associated with excess swell propagation from
the Southern Ocean is present. Over-prediction around the Cape
of Good Hope exaggerates this in the case of the latter. Biases in
the static homogeneous winds show a lot of spatial variation,
and attribution of wave bias remains difficult as waves propagate
through these regions. There is, however, some suggestion of
wind-induced wave bias. Features such as the slight positive bias
in the Arabian Sea, and a slight negative bias in the Mozambique
Channel, common to both wind and waves, are reduced with the
spatially and temporally varying wind corrections. In general, trop-
ical regions which are not significantly affected by propagating er-
rors from the Southern Ocean appear to show biases that, to a large
degree, reflect those of the winds.

With the exception of the eastern Pacific, systematic Hs bias in
the Northern Hemisphere appears to be well explained by U10

biases. In the static homogeneous case, negative Hs biases in the
western tropical Pacific, northwest Pacific and North Atlantic cor-
respond to negative U10 biases in these regions. Removal of the
U10 biases in the case of spatially and temporally varying correc-
tions improves these Hs biases. Once again, regions that are not af-
fected by propagating errors from the Southern Ocean show biases
that, on the large scale, reflect those of the winds.

Considering coastal regions, a negative bias in the ACCESS U10 is
particularly noticeable on the Australian and South African east
coasts. A corresponding negative bias in the waves can be seen in
these regions. After the application of static homogeneous correc-
tions, the coastal biases remain in the winds. Corresponding nega-
tive biases remain for Hs, despite positive bias in the neighboring
regions. The removal of these coastal wind biases in the case of
the spatially and temporally varying learned corrections appears
to improve Hs bias in these areas. Though suggestive that much
of these coastal Hs biases are wind induced, the existence of strong
boundary currents in these regions could also be influential. This is
discussed further in Section 5.3.

5.2. Quantitative effect of statistical wind corrections on the modelled
wave field

Following from the qualitative discussion above, a more quanti-
tative assessment is now presented. Verification statistics both



Table 2
Regional statistics for Hs relative to altimeter data for BJA source terms when forced
with uncorrected winds as well as those corrected with a static homogeneous
correction and spatially and temporally varying learned corrections. Percentage
improvement refers to % improvement in RMSE relative to the ‘uncorrected’ case.

Run Bias (m) RMSE (m) SI % Imp. N

Global
Uncorrected �0.27 0.506 0.150 581926
Static-Hom. 0.057 0.476 0.171 4.0 581926
Learned 0.070 0.486 0.174 2.0 581926

Northern Hemisphere Extratropics
Uncorrected �0.277 0.449 0.178 103791
Static-Hom. �0.059 0.378 0.189 15.8 103791
Learned �0.033 0.371 0.186 17.4 103791

Tropics
Uncorrected �0.163 0.330 0.143 198969
Static-Hom. 0.090 0.346 0.166 �4.8 198969
Learned 0.106 0.349 0.166 �5.8 198969

Southern Hemisphere Extratropics
Uncorrected �0.235 0.462 0.134 409749
Static-Hom. 0.126 0.470 0.153 �1.7 409749
Learned 0.138 0.481 0.156 �4.1 409749
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globally and separately for the tropics (25�S–25�N) the Northern
extratropics (North of 25�N) and the Southern extratropics (South
of 25�S) are given in Table 2. Focusing initially on the static homo-
geneous corrections, recall from Section 3 that the 6% increase in
U10 reduced overall U10 bias to near zero and improved the RMSE
by about 5% in comparison to scatterometer observations. The
waves show a corresponding improvement, with the previous neg-
ative bias of 0.27 m now presenting as a slight positive bias. RMSE
has been reduced by 4%, though the Scatter Index (SI; standard
deviation of the difference between model and observations nor-
malized by the observed mean) has degraded. For spatially and
temporally varying learned corrections, improvements are surpris-
ingly less than those for the static homogeneous corrections, de-
spite the wind speeds verifying better (Durrant et al., Submitted
to Weather and Forecasting). Again, overall bias has been reduced
and SI has degraded. The improvement in RMSE over uncorrected
winds is just 2%.

Examining regions separately however, presents a more com-
plex picture. The Northern extratropics show impressive reduc-
tions in Hs RMSE, with spatially and temporally varying learned
corrections producing a 17% improvement, with negligible remain-
ing bias. These corrections also produce better results than the sta-
tic homogeneous corrections. Hs RMSE has, however, degraded in
the tropics and the Southern extratropics. Previous negative biases
are now positive, though are less severe. In both cases, the spatially
and temporally varying learned corrections degrade wave model
performance slightly more than static homogeneous corrections.
This is partly due to regions of negative U10 bias in the static homo-
geneous case compensating for inherently positively bias Hs, such
as in the eastern tropical Pacific and the Cape of Good Hope. These
features are discussed further in Section 5.4.

Focusing only on results from the spatially and temporally vary-
ing wind corrections, this spatial variation is more clearly visual-
ized in Fig. 2, showing percentage improvement in Hs RMSE for
each model grid point. Significant improvement is seen in most
of the Northern extratropics, parts of the South Atlantic and de-
spite the now positive bias, even parts of the Southern Ocean show
gains. However, in line with the discussion above, large parts of the
Southern Ocean show degradation. The overall reduction in skill in
the tropics seen in Table 2 shows large regional variation. Of most
note is the large improvement in RMSE evident in the western
tropical Pacific and dramatic degradation in the eastern tropical
Pacific. This, and the similar, though less dramatic presentation
in the tropical Indian Ocean, is consistent with the observed biases
above due to excess swell propagation.

Hs probability density functions (PDFs) constructed from mod-
el/altimeter co-locations are shown in Fig. 3. Observed and mod-
elled Hs PDFs are shown on the left hand side, on the right are
error PDFs (model - observed). Results here are mixed. Over the
whole globe, the distribution is better overall in the case of the cor-
rected winds, though the peak at around 2 m is better captured in
the uncorrected case. Higher wave heights are improved in the cor-
rected winds cases. The error PDFs are now closer to zero centered,
however the error standard deviations have been increased in all
regions (the difference PDFs have been broadened).

Fig. 4 shows box and whisker plots of the differences between
modelled and observed Hs, as a function of observed Hs (with a
minimum of 100 observations required in each bin here). A clear
overestimation in the tropics (Fig. 4(c)) is apparent in the range
of 0–4 m for corrected runs, consistent with excessive swell en-
ergy. In the Northern extratropics (Fig. 4(b)), the corrected wind
has improved the Hs distribution throughout the wave range, with
a slight over-estimation apparent in the 6–8 m range. In the South-
ern extratropics (Fig. 4(d)), wave distributions again appear to be
well captured by the corrected wind hindcast up to 6 m. Above
this, an increasing positive bias is evident, though the magnitude
of the bias is less than the negative bias in this range for the uncor-
rected winds.

Though this representation of the data well illustrates the Hs

bias characteristics as a function of Hs, some caution must be ap-
plied here. The effect of observational error is not accounted for
is this analysis, and a spurious over estimation of low Hs and
underestimation of high Hs, could be expected (see for example
Freilich (1997) and Tolman (1998a)). The observed over-estima-
tions of high waves for the corrected winds are particularly note-
worthy in this context. This suggests that the bulk of the positive
bias in the Southern Ocean, seen in Fig. 1(f), can be attributed to
these high wave heights. This tendency is explored further in Sec-
tion 5.4 below, discussing residual systematic wave error.

Improvement in the wind bias as a result of corrections is not
matched in the modelled Hs results overall. However, large regio-
nal variation is apparent, with gains in some areas offset by degra-
dation in others. Where inherent bias in the wave model is
compensated for by bias in the winds, improving the forcing de-
grades Hs verifications. This is most apparent in the east Pacific,
where the best wave model results are achieved with uncorrected
winds, due to the fact that positive bias internal to the wave model
is compensated by negatively biased forcing. Such compensation is
easily identified here by examining the spatial distribution of the
bias in both fields.

5.3. Residual systematic wave bias

The results presented above have identified a number deficien-
cies that appear independent of the forcing winds. The discussion
here focuses on features evident from the Hs results when forced
with a wind field with near zero bias, i.e. that corrected using the
spatially and temporally varying learned corrections (Fig. 1(e)
and (f)). By reducing wind biases to near zero everywhere in the
spatial domain, remaining biases in modelled Hs can be more con-
fidently attributed to deficiencies in the wave model itself. The pre-
viously discussed issues surrounding propagating errors dictate
some caution here however; systematic wave bias remains a
non-local consideration.

5.3.1. Over-prediction in the Southern Ocean
It is clear that the wave model is over-predicting Hs in the

Southern Ocean when forced with unbiased winds. This raises a
number of questions. Given the time of year, the wind speeds in



Fig. 2. Percentage improvement in modelled Hs RMSE achieved by correcting the
forcing winds with spatially and temporally varying learned corrections using BJA
source terms.
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the Southern Ocean far exceed those of the North Pacific or North
Atlantic. So is this a case of the model over-predicting Hs in strong
wind conditions, or is this over-prediction specific to the Southern
Ocean? This could be explored by performing a similar analysis for
the Northern Hemisphere winter months. There is, however, some
reason to expect that there are conditions unique to the Southern
Ocean that could cause this strong positive bias.

Both the Northern and Southern mid-latitudes winters are
dominated by low-pressure systems. However, the continuous
eastward procession of these systems in the Southern Ocean con-
trasts with that in the North Pacific, where their migration is far
more variable (e.g. Bender, 1996). Southern Hemisphere extratrop-
ical synoptic activity is particularly strong in the winter and spring
period examined here, when the semi-annual oscillation dictates
that the Antarctic circumpolar trough is at its strongest (e.g. Sim-
monds and Jones, 1998; Simmonds, 2003). The combination of
these persistent westerly winds, and the largely unbroken expanse
of sea, produces potentially enormous fetches, resulting in the
Southern Ocean experiencing higher wave heights for longer peri-
ods than any other body of water (e.g. Young, 1999).

Bender (1996) evaluated the WAM4 source terms for imple-
mentation in the Bureau’s AUSWAM model, and found these terms
to consistently over predict Hs values when compared to buoys on
the southern Australian coast. Through a series of simulations
using extremely long fetches of 20,000 km to represent the condi-
tions of the Southern Ocean, he showed a significant degree of
residual wave growth above the ‘fully developed’ Pierson and
Moskowitz (1964) (PM) values for high wind speeds (although
the relatively large uncertainty in the fully developed PM values
must also be acknowledged, e.g. Alves et al. (2003)). Under con-
stant 20 ms�1 winds, Hs growth continued for several days, well
above the PM predicted value of 9.86 m. This residual growth
was reportedly absent for 10 ms�1 U10, and increased for
30 ms�1. Recent simulations using the operational WAM model
under a constant and uniform 18.45 ms�1 wind, representing a sat-
urated PM value of slightly less than 8 m, show Hs still growing
after several days, approaching 11 m (Cavaleri, 2009). This suggests
that similar residual growth is present for the BJA formulations
used here2.

Sustained winds of this magnitude are, of course, unrealistic.
However, in the dynamically evolving Southern Ocean, persistently
large waves are present. A strong storm does not require days to
build waves of this magnitude from a calm ocean, as in these sim-
ple fetch limited experiments. Conditions of 20 ms�1 winds with
waves approaching these PM saturation limits occur with some
frequency. Fig. 5, for example, shows the percentage of time over
the four months examined here that Hs over 10 m, and U10 over
20 ms�1 occur simultaneously in the modelled values. In the
2 Note that a recently discovered error in the DIA code used in WAM by ECMWF
affecting the downshifting of spectral energy, may account for some of this residua
growth (Bidlot, personal communication, September 2012a). It is not clear whether
this may also be present in the WW3 code.
,
l

Southern Ocean, regions where these extreme conditions are pres-
ent more than 5% of the time are apparent. This strongly resembles
the baroclinic eddy rate for this time of year (Simmonds and Lim,
2009). The modelled U10 has also been shown to be under-pre-
dicted at these extremes Durrant et al. (Submitted to Weather
and Forecasting) suggesting that this is an underestimation of
the actual frequency of such occurrences.

A correlation can be seen between these areas, and the maxi-
mum biases seen in Fig. 1(f), as well as areas downstream of these
maxima. It is clear from the box plots presented in Fig. 4 that the
positive bias in the Southern extratropics occurs mainly for waves
above 6 m. This suggests that the residual wave growth from the
BJA source terms at extreme values may be responsible for much
of the overall positive bias in the Southern Ocean. Air-sea momen-
tum transfer under high wind speed conditions remains poorly
understood, with a lack of quality observations in these extreme
conditions partly to blame. The work of Powell et al. (2003) and
Donelan et al. (2004) suggests that at high wind speeds, the drag
saturates, or even decreases with wind speed. This is not currently
represented in the BJA source term formulations, and may be con-
tributing to the positive biases at high Hs values here. In any event,
the existence of positive Southern Ocean Hs biases, despite the fact
that U10 has been shown to be under-predicted at high wind
speeds, flags this as a significant internal wave model deficiency.

An additional source of error in the Southern Ocean is offered by
the recent work of Ardhuin et al. (2011), who suggest that signifi-
cant wave energy is lost due to blocking by icebergs in the South-
ern Ocean. By including this effect in the form of a temporally
varying sub-grid-scale blocking grid in WW3, they are able to re-
duce this bias. This may also be playing a part in the positive Hs

bias in the Southern Ocean in general, and the local bias maxima
seen in the Amundsen Sea in particular.

5.3.2. Under-attenuation of swell
The second obvious feature in Fig. 1(f) is the positive Hs bias in

the eastern Pacific and to a lesser extent the tropical Indian Ocean.
As discussed previously, from this case in isolation, the possibility
of swell correctly propagating from an over-predicted Southern
Ocean wave field exists. The fact that this east Pacific bias is pres-
ent even in the case of uncorrected winds (Fig. 1(b)), where Hs in
the Southern Ocean is negatively biased, strongly suggests a sys-
temic issue with the wave model. Indeed, this is a known defi-
ciency in the WAM4 variant source terms, such as BJA.
Verification studies such as Tolman (2002) and Rogers (2002) first
suggested the presence of too much swell in the east Pacific from
these terms. It is clear from several recent studies (e.g. Ardhuin
et al., 2008, 2009) that the lack of swell attenuation in the BJA
source term formulations produces unrealistic swell propagation,
leading to positive biases on the eastern sides of the major ocean
basins. Forcing the model with unbiased winds here simply further
exposes this deficiency.

Unlike WAM variant terms, swell dissipation is notably ac-
counted for in the TC96 terms, in the form of a negative wind input
for waves travelling faster than, or at large angles to the wind. The
importance of swell dissipation on global scales, originally deter-
mined heuristically in this case (Tolman, 2002), has subsequently
been more explicitly defined in the work of Ardhuin et al. (2010),
based on observed swell decay rates (Collard et al., 2009). It should
also be noted that the lack of swell attenuation in the BJA terms has
been addressed in the ECMWF operational WAM model with the
introduction of a negative wind input term (Bidlot, 2012b).

5.3.3. Ocean surface current considerations
The effects of currents on the wave field have been ignored in

the model simulations carried out in this work. Over most of the
ocean these are negligible, however, more scrutiny is required in



Fig. 3. PDFs of altimeter observed Hs and co-located modelled Hs (left) and differences (right) for simulations using both corrected and uncorrected winds. Corrected winds in
this case refer to those corrected using spatially and temporally varying learned corrections (see text for details).
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areas of strong, persistent currents. On the scales considered here,
two current related effects are of relevance: wave-current interac-
tions and the correct estimation of the true wind speed with re-
spect to the moving sea surface. The relative contribution of the
inclusion of each effect was quantified in a recent series of exper-
iments at ECMWF (Hersbach and Bidlot, 2008; Bidlot, 2010,
2012a).

Wind stress is associated with the vector difference between
the surface wind speed and the movement of the ocean surface.
The issue of relevance here is that the scatterometer is measuring



Fig. 4. Box and whisker plots of the differences between altimeter observations and co-located model Hs for BJA source terms, forcing with both uncorrected and corrected
winds, using learned spatially and temporally varying corrections. The center band of the box indicates the median, the top and bottom of the box represent the upper and
lower quartiles respectively and the whiskers show the most extreme values within 1.5 times the inner quartile range. A minimum of 100 co-locations is required in each bin.
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U10 relative to the moving surface, while the NWP model estimates
U10 relative to a fixed frame of reference. By correcting the mod-
elled wind speeds according to scatterometer data, the effects of
currents on the wind speed felt by the waves is crudely accounted
for in the mean. However, currents are dynamic. The wind correc-
tion method applied here relies on the previous 30 days data, and it
is the effect of the mean current over these preceding 30 days that
is applied at any given model time. If currents are indeed having a



Fig. 5. Percentage of time over the four months examined here that the modelled Hs

values over 10 m and U10 over 20 ms�1 occur simultaneously.

Fig. 6. Hs bias for TC96 source terms relative to altimeter data when run under (a)
uncorrected and (b) corrected winds.
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significant effect on wind corrections, and those currents show
large variation on shorter than monthly timescales, this may pres-
ent a significant shortcoming of the applied method.

Consider, for example, the Agulhas return current off the Cape
of Good Hope. In the case of the spatially and temporally varying
learned corrections, where U10 in this region now agrees well with
scatterometer observations, the waves are over-estimated
(Fig. 1(e) and (f)), both here and downstream. The neglect of
wave-current interactions could be expected to produce such a re-
sult. A significant reduction in mean Hs in this region is apparent in
the experiments of Hersbach and Bidlot (2008) and Bidlot (2010,
2012a) in which the effects of currents on wave advection are
included.

Wave steepening, leading to increased dissipation, could also be
expected to reduce mean Hs. The effect of meanders of this current
on the wind corrections method remains a significant question
however. Similar issues arise in the Drake Passage, as the Antarctic
Circumpolar Current (ACC) flows between the southern tip of
South America and the Antarctic Peninsula. Unlike the Agulhas cur-
rent, the ACC and the wind in this region are, on average, aligned.
This results in scatterometer measured wind speeds that are lower
than absolute wind speeds. This could explain the local positive
maxima visible in the U10 bias for both the uncorrected, and the
static homogeneous corrected winds (Fig. 1(a) and (c)). Where
wind is corrected according to the local scatterometer data, a low
Hs bias results (Fig. 1(e) and (f)). Again it is unclear if the wind is
being mis-corrected here, or this is simply the result of a lack of
wave-current interactions in the wave model. In general, the role
of currents, both in terms of their contribution to the modelled
Hs biases, and the potential contaminating effects on the wind
speed correction methodology appear to be significant. Further
work is needed here.
5.3.4. Atmospheric stability considerations
The issue of stability on scatterometer wind retrievals may be

relevant here. Wind retrievals are calibrated to the equivalent neu-
tral-stability wind at a reference height of 10 m above the sea sur-
face, while NWP products are estimates of the actual 10 m wind.
Not accounting for this difference, though commonplace and justi-
fiable overall, results in local bias features due to sea surface tem-
perature fronts. Further discussion can be found in Durrant and
Greenslade (2012).

It is well established that in unstable conditions, wind wave
growth is enhanced (e.g. Komen et al. (1994); Young, 1998). Both
BJA and TC96 terms have the ability to account for stability effects
on wave growth (Bidlot (2012b) and Tolman (2002) respectively),
requiring the ingestion of ocean-atmosphere temperature differ-
ence grids by the model. The effect on global scales is small (e.g.
Tolman, 2002; Rogers et al., 2005), and this has not been included
here. The exclusion of stability effects from both the wave model
and the scatterometer retrievals may have the unintended effect
of offsetting each other to some degree. By correcting the wind
to match the scatterometer measured U10, stability effects are cru-
dely accounted for in the mean. As with the currents above, daily
variation in stability is not accounted for however, potentially
introducing variable error.

Overall, Hs bias associated with atmospheric stability on the
large scale is expected to be small. However, both atmospheric sta-
bility and currents could be a factor in the Hs biases seen on mid-
latitude east coasts. Strong, warm-water, boundary currents (e.g.
Gulf Stream, Kuroshio, Agulhas and East Australian Currents) will
likely promote atmospheric instability, enhancing wind-wave
growth. As discussed previously, the existence of coastal wind
biases has been established by several studies, however, the influ-
ence of ocean currents on the assumed neutral stability scatterom-
eter winds used here may also be contributing to the negative U10

bias in these regions. Wind corrections based on scatterometer
data could then simply be resulting in overestimated U10, compen-
sating for the lack of inclusion of stability effects on the wave
growth. This is speculative however.

Overall, the BJA source terms appear to respond well to spatially
and temporally varying learned wind corrections in the Northern
extratropics. On the large scale, spatial bias in the Hs field is greatly
reduced when forced with spatially unbiased winds, and RMSE is
reduced by about 17%. However, results are degraded in the South-
ern extratropics and tropics, due primarily to an overestimation of
large waves in the Southern Ocean storm tracks, and the under-
attenuation of swell.

5.4. Comparative results for TC96 source terms

The discussion above has focused on runs performed using the
BJA source terms. Some comparison is made here with results
obtained using the TC96 source terms. The above analysis is not
repeated, rather some specific differences in error characteristics
associated with these two sets of source terms are discussed.

Fig. 6 shows Hs bias for TC96 source terms when run under both
(a) uncorrected and (b) spatially and temporally varying corrected
winds. Similar to the BJA case (see Fig. 1(b) and (f)), the negative
bias has been reduced in the North Atlantic and North Pacific.
The increase in the mean Hs in the Southern Ocean has resulted
in the previous small negative bias now presenting as a large posi-
tive bias over most of the Southern Ocean. This is consistent with
the discussions of the inherent over-prediction in the Southern



Table 3
Regional statistics for Hs relative to altimeter data for TC96 source terms when forced
with uncorrected winds as well as those corrected with spatially and temporally
varying learned corrections. Percentage improvement refers to % improvement in
RMSE.

Run Bias (m) RMSE (m) SI % Imp N

Global
Uncorrected �0.215 0.49 0.159 581926
Learned 0.122 0.533 0.187 �8.8 581926

Northern Hemisphere Extratropics
Uncorrected �0.326 0.485 0.181 103791
Learned �0.089 0.39 0.192 19.6 103791

Tropics
Uncorrected �0.188 0.335 0.138 198969
Learned 0.096 0.331 0.158 1.2 198969

Southern Hemisphere Extratropics
Uncorrected �0.147 0.433 0.137 409749
Learned 0.227 0.535 0.164 �23.6 409749

Fig. 7. As Fig. 2 for TC96 source terms.
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Ocean by the TC96 source terms in Durrant and Greenslade, (2011).
Despite a much stronger positive bias in the South Pacific, the
northeast Pacific bias is not as strong as in the BJA case. This is
due to the previously discussed better handling of swell attenua-
tion in the TC96 terms.

Verification statistics for TC96 runs with and without wind
corrections applied are presented in Table 3. Unlike the slight
improvement seen for the BJA terms, global results show signifi-
cant degradation here. The large differences seen between the
hemispheres are even greater, with the Northern extratropics
showing almost 20% improvement in RMSE and great reduction
in the negative bias, while the Southern extratropics have
degraded by almost 24%. Previous negative biases have been
replaced with even stronger positive ones. These differences are
easily visualized when comparing the spatial percentage improve-
ment in Hs RMSE for TC96 terms, shown in Fig. 7, with the corre-
sponding BJA results (Fig. 2). Gains appear spatially similar in the
Northern extratropics, with degradation appearing both more
severe and more widespread in the Southern extratropics.

Under unbiased winds, both BJA and TC96 model runs share a
tendency to overestimate Hs in the Southern Ocean, with the ten-
dency being greater for TC96. The nature of this positive bias also
differs somewhat. Box and whisker plots comparable to those for
BJA of Fig. 4 are shown in Fig. 8 for TC96. Hs appears to be well
predicted in the Northern extratropics; the corrected wind has
improved the Hs distribution throughout the wave range, with
the slight over-estimation seen in the BJA terms in the 6–8 m range
absent here. In the Southern extratropics, TC96 terms exhibit over-
estimations for waves below 10 m, with no bias in the 10–12 m
range. This is in contrast to BJA, which shows good statistical
agreement with observations below 6 m and over-estimations
above. This is likely due to the fact that the TC96 wind input term
imposes a maximum allowed drag coefficient, pragmatically
matching the qualitative behavior observed by Powell et al.
(2003) and Donelan et al. (2004), providing more realistic input
at high wind speeds (this limit is set here to 2.5 � 10�3). Unlike
BJA, where the bulk of the positive bias seen in the Southern Ocean
appeared to have its origin in large waves, it is in the middle Hs

ranges that this bias occurs for the TC96 terms.
Overall, TC96 terms appear to respond well to spatially and

temporally varying wind corrections in the Northern extratropics,
similar to the BJA results. On the large scale, spatial bias is greatly
reduced when forced with spatially corrected winds, and RMSE is
reduced by almost 20%. Again, similarly to the BJA terms, TC96 re-
sults are degraded in the Southern extratropics, even more so in
the case of the latter. Where low and moderate waves appear well
captured by the BJA results, they are overestimated by TC96 terms,
while TC96 produces better values for large waves.
6. Discussion

The use of spatially and temporally varying learned corrections,
based on comparisons between past forecasts and scatterometer
observations, provides a robust means of correcting the surface
winds (Durrant and Greenslade, 2012). However, forcing the wave
model with these winds produces mixed results in terms of mod-
elled Hs. Greater gains are seen in the Northern extratropics than
the Southern for both BJA and TC96 source terms. As discussed
above, this may be a seasonal effect. However, this may also be a
reflection of model tuning.

As discussed in section 2, modern wave model source terms,
though physically based to an extent, have undergone significant
tuning. In the context of a review of the capability of modern wave
models to properly reproduce the conditions during and at the
peak of severe and extreme storms, Cavaleri (2009) make the point
that model tuning, in general, is completed on the bulk of the data,
with error minimization during the most common conditions the
inevitable product. Historically, buoy data have been obtained
from the major North American and European buoy networks,
potentially biasing this tuning to conditions in the Northern
Hemisphere.

Similarly, consideration must be given to the fact that the tun-
ing of these terms has been done under imperfect winds. Global
tuning of the BJA source terms has been performed under ECMWF
winds, while TC96 terms have been tuned primarily under NCEP
GFS winds, and the default tunings may reflect, to some degree,
the bias characteristics of these models. Several studies have
suggested ECMWF winds have been historically negatively biased
(e.g. Chelton and Freilich, 2005; Ardhuin et al., 2007), though per-
haps not as strongly as the uncorrected ACCESS winds (and it
should be noted that this negative bias in ECMWF winds has been
greatly reduced in the latest system (Bidlot, personal communica-
tion, September 2012)). The work presented here has shown that
unbiased winds produce a positive bias in the Southern Ocean
using BJA source terms, which may reflect this tuning. NCEP GFS
winds reportedly show less negative bias than the ECMWF winds
(e.g. Bidlot et al., 2002; Chelton and Freilich, 2005). This is seem-
ingly at odds with the large positive Hs bias seen here in the South-
ern Ocean using TC96 terms. However, this high bias in the
Southern Ocean is an issue that is common to the operational NCEP
WW3 model. The existence of this bias in the NCEP WW3 model is
discussed in the recent validations of Chawla et al. (2009), in which
it is suggested that this may be due to changes in the operational
winds since the last time the model was tuned (2000–2001). Spe-
cifically, since 2005, an upward shift is noted in higher wind speeds
in the Southern Hemisphere, a trend that is absent in the Northern
Hemisphere, manifesting in a positive Hs bias in the former.



Fig. 8. As Fig. 4 for TC96 source terms.
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In general, Hs has been shown here to be highly sensitive to
changes in U10. As such, it is unrealistic to expect a wave model
to perform well under different forcing, without undertaking some
re-tuning of the model. Given that such tuning of the model is
necessary, the question could be asked, why not just tune to the
negatively biased winds in this case? Error characteristics in the
forcing winds are expected to vary with time, due to factors such
as seasonal changes, long-lived atmospheric modes of variation,
and with physical changes in the model, as illustrated in the case
of the NCEP GFS winds above. By tuning the wave model to the
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corrected winds, the problem of maintaining this tuned state is
reduced, as the automatically evolving wind corrections make
future wave model retuning somewhat redundant. The ability to
account for spatial variation in the systematic wind error is also
something that is not easily accounted for by simple wave model
tuning alone. This is demonstrated in Durrant (2011).
7. Conclusions

In this work, the spatial biases in the wave field resulting from
three different wind fields with known spatial biases have been
compared. With respect to the questions posed in Section 2, the
following answers can be provided for wave model runs performed
using BJA source terms:

� To what extent can the large-scale systematic biases in the
waves be attributed to the forcing winds?

For wave model runs forced with uncorrected ACCESS winds,
the majority of the negative bias in Hs can be attributed to a nega-
tive bias in the forcing. This result emphasizes the importance of
analyzing the two in parallel. The reduction of systematic wind
biases does not result in universal improvement in modelled Hs.
In some situations, internal wave model error is compensated for
by error in the forcing winds. In a general sense, it is clear that spa-
tial bias in the wave fields is highly sensitive to that of the forcing
wind fields. This applies not only to the overall bias, but its spatial
variation.

� Do statistical adjustments to remove these winds biases lead to
better wave forecasts?

The improvement in the wind bias as a result of corrections is
not matched in the modelled Hs results overall. Large regional var-
iation is, however, apparent. Results in the Northern extratropics
indicate strong improvements (approximately 17% in terms of
RMSE), while in general, results have been degraded in the South-
ern extratropics. The Tropics too show degradation, due primarily
to excess swell on the eastern boundaries of the major ocean ba-
sins. Small-scale features such as coastal biases show
improvement.

� What are the residual wave biases?

A positive bias is present in the Southern extratropics due
primarily to an overestimation of high Hs values in the Southern
Ocean storm tracks. A positive bias is present in the east Pacific
and east Indian Ocean. This is due both to the over-prediction of
waves in the Southern Ocean and the inherent lack of swell atten-
uation in the BJA source terms. Smaller scale features are apparent,
such as a positive bias off the Cape of Good Hope, and a negative
bias off Cape Horn. The origin of these features is unclear. Current
effects that are not included in the wave model are a possible
explanation. The effect of currents on the wind correction methods
applied may also be a factor.

For TC96 source terms, conclusions are generally similar. TC96
terms appear to respond well to spatially varying wind corrections
in the Northern extratropics, similar to the BJA results. On the large
scale, spatial bias is greatly reduced when forced with spatially
unbiased winds, and RMSE is reduced by almost 20%. Results are
degraded in the Southern extratropics, even more than the BJA
terms. Where low and moderate waves appear well captured in
the case of BJA, they are overestimated by TC96 terms, while
TC96 produces better values at high wave heights likely due to a
capping of the drag coefficient.
8. Further work and closing remarks

The work presented here has focused on large scale, time aver-
aged, systematic bias, as determined by comparison with altimeter
data for the modelled Hs. The advantages of the spatial coverage of
altimeter data have been made clear, both in this and other work,
however, in situ buoy measurements maintain a number of advan-
tages over the altimeter data; consistent, frequent (often hourly)
observations in a single location, as well as the ability to measure
the frequency and direction of waves. Further analysis using buoy
data would be a valuable addition to the results presented here.

The signature of ocean surface current effects can be seen in the
modelled wave results presented in this work. In hindsight, the
neglect of currents adds some uncertainty to the results, both in
terms of the proposed correction methodology and their contribu-
tion to wave biases on global scales. The increasing skill of opera-
tional ocean modelling and the availability of modelled ocean
current forecasts in real time (e.g. Brassington et al., 2007) provides
the opportunity for them to be explicitly accounted for. Further
examination of the effect of ocean currents on the wind methodol-
ogy, as well as the influence of currents on global scales (i.e.
extending the work of Hersbach and Bidlot (2008)), is warranted.

Finally, this study has been performed on a limited period, cov-
ering the Southern Hemisphere winter months. Conclusions drawn
have greatly differed for the Northern and Southern Hemispheres.
In general, it is unclear whether these differences are specific to
these respective hemispheres, or whether they are simply a result
of seasonal differences. This could be addressed by performing a
similar analysis for the Northern Hemisphere winter months.

A number of deficiencies in the wave model have been high-
lighted when forced with corrected winds. It is worth noting here
however, the current work occurring under the NOPP project, a
NOAA/U.S. Navy/United States Army Corps of Engineers (USACE)
collaboration funded over four years beginning in 2010 (Tolman
et al., 2011). This project has the broad aims of, among other
things, developing new spectral source terms within WW3 incor-
porating recent advances in theoretical knowledge of wind input
and in particular, wave breaking and dissipation. In this circum-
stance, the source terms of BJA and TC96 may be unlikely to receive
significant additional attention.

In the context of wave model development, the need to assess
the spatial wind bias has been made clear. In general, regions
where the wave model has degraded as a result of correcting the
winds has highlighted problems in the wave model itself, which,
in many cases, were masked by compensating systematic errors
in the forcing winds. Overall, it is clear that by performing the spa-
tially and temporally varying wind corrections applied in this
work, the contribution of the systematic wind error to the Hs bias
is significantly reduced, allowing inherent wave model error to be
more effectively isolated and addressed.
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