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The effect of assimilating ERS-1 fast delivery wave data 
into the North Atlantic WAM model 

E. M. Dunlap, • R. B. Olsen, 2 L. Wilson, 3 S. De Margerie, • and R. Lalbeharry 3 

Abstract. The launch of the European ERS satellites has provided a new source of wave 
information that is particularly suitable for use in improving wave forecasts in the open 
ocean. We have implemented and tested a simple system for assimilating corrections to 
model wave fields produced by the WAM model, where the corrections are derived from 
inverted synthetic aperture radar (SAR) image spectra from ERS-1. Corrections are 
applied to significant wave height, mean period and direction for wave modes that are 
detectable in both the model and the SAR data. The system has been tested in a storm 
situation and in moderate conditions using buoy data and altimeter data, as well as SAR 
observations for verification. Overall, it is demonstrated that the net effect of assimilating 
SAR data is beneficial but very small. The small impact is due at least partly to relatively 
small spatial and temporal coverage of the SAR wave mode data. Locally larger impacts 
were found in the storm situation in individual cases where SAR observations were 

collocated with independent buoy observations. 

1. Introduction 

Up until a few years ago, ocean wave models were run 
without the use of any wave observations. Model simulations of 
wave growth, propagation, and decay were obtained using ma- 
rine winds as input, either as a series of analyses ("hindcast 
mode") or as forecast winds from an atmospheric model 
("forecast mode"). Wave observations were not used for two 
reasons. First, wave models have been shown to simulate the 
wave field quite well if they are driven by a consistent high- 
quality wind field [Graber et al., 1994]. Second, so few wave 
observations were available that they could not be expected to 
have a significant impact on regional or ocean basin scale wave 
simulations. With the launch of ERS-1 in July 1991 the spatial 
and temporal coverage of wave observations increased dramat- 
ically, making their use to initialize wave models operationally 
practical. ERS-1 (and recently ERS-2) wave observations are 
available in two forms, wave heights from the radar altimeter, 
and estimates of the two-dimensional (2-D) wave spectrum 
from the active microwave instrument (AMI) operating in syn- 
thetic aperture radar (SAR) mode. The latter offers the op- 
portunity of obtaining real-time wave observations that are the 
most complete and consistent with the output of a wave model, 
an estimate of the two-dimensional spectral wave energy. 

The general purpose of data assimilation is to change a 
model's estimate of the state of its geophysical variables to- 
ward their true state, using information obtained from obser- 
vations. Both model and data are assumed to contain errors, 
which must be accounted for in the assimilation procedure. 
With remotely sensed observations it is often the case that the 
geophysical variable is not directly observed; its values must be 
inferred or estimated. The raw SAR mode data from ERS-1 
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are in the form of radar backscatter measurements. The 2-D 

SAR image spectra estimated from analysis of spatial patterns 
in the SAR image intensities are known to be a representation 
of the corresponding ocean wave spectra, subject to certain 
limitations. Hasselmann and Hasselmann [1991] (hereinafter 
referred to as HH) were the first to propose a practical and 
robust scheme for translating SAR spectra into ocean wave 
spectra. The HH algorithm accounts for the limitations of the 
SAR spectrum and produces a SAR enhanced estimate of the 
ocean spectrum by systematically combining the SAR informa- 
tion with estimates of the ocean spectrum from a wave model. 
The wave model can be expected to provide a full spectrum 
that is spatially consistent and consistent with the physics of 
wave growth, propagation, and decay, while the SAR spectrum 
can be used to correct for errors in the model simulation due, 
for example, to inaccuracies in the input wind field. The HH 
algorithm has been run through many thousands of ERS-1 
SAR images and has been shown to function reliably [Briining 
et al., 1994a]. 

The HH algorithm provides an estimate of the ocean spec- 
trum from SAR data at the SAR observation location. The 

process of data assimilation also must include a systematic 
means of correcting the model wave spectra at all locations 
within a reasonable range of influence of the observation site. 
Two-dimensional interpolation methods have been in use in 
meteorological applications for many years. For example, 
Cressman-type methods [Cressman, 1959] are the simplest and 
involve simple interpolation of the differences between model 
estimates ("first guess") and the observations to nearby grid 
points using a weighting function that is inversely related to the 
distance of the observation site from the grid point. If the 
weights are determined using the error statistics of the model 
and their spatial correlation, the method is known as optimum 
interpolation [Gandin, 1963]. Collectively, these methods are 
referred to as sequential insertion methods, since the strategy 
is to run the model forward in time, stopping at regular inter- 
vals to assimilate data that are available and all valid at about 

the same time, then continuing the model run with the cor- 
rected model state. 
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Data assimilation methods used so far in wave modeling are 
of the sequential insertion type and have been applied mostly 
to altimeter data. Examples are the assimilation of Seasat 
altimeter wave heights into the U.K. Meteorological Office 
global wave model [Francis and Stratton, 1990] and the assim- 
ilation of altimeter wave heights into the wave model WAM 
[Lionello et al., 1992]. Ideally, one would like to combine the 
algorithm that matches the first guess and observation at the 
observation point with the assimilation step, which spreads the 
corrections spatially. In meteorological applications this is now 
being accomplished by 3-D variational methods [e.g., Tala- 
grand and Courtier, 1987]. The variational approach is being 
pursued actively in operational meteorological data assimila- 
tion applications in many national weather centers, but its 
application in wave data assimilation is so far limited to tests 
with idealized data (see for example, de las Heras and Janssen 
[1992]). Variational assimilation will probably be the optimal 
methodology in wave assimilation as well, but it is more com- 
putationally demanding than the older methods. We have thus 
opted for this first wave data assimilation system to adopt a 
step-by-step approach, to use methods which had already been 
tested in wave applications before embarking on experiments 
with new methods applied to a new data source. 

Our goal was to develop a data assimilation system that 
would be sophisticated enough to give an initial assessment of 
the impact of SAR wave data on analyses and forecasts from 
the WAM model. To accomplish this, we put together a full 
assimilation system by adapting simple assimilation methods 
and tested it on a variety of North Atlantic cases, including 
both specific extreme storms and nonstorm situations. The 
results of these tests are described in this paper. First, the 
design and construction of the assimilation procedure is de- 
scribed; then results are shown for one storm case, the "Storm 
of the Century," and for a 1-month period of regular wave 
forecasts. 

2. Assimilation System 
Our assimilation system consists of three main components: 

the wave model WAM, the SAR data preprocessor, and the 
assimilation module. The assimilation module consists of two 

main subcomponents: SAR inversion at observation points and 
interpolation of SAR-induced corrections within the model 
grid domain. The following sections describe all these compo- 
nents. 

2.1. WAM 

In this study we have used the wave model WAM, described 
by the WAMDI Group [1988] with a coupling to the atmo- 
spheric boundary layer following Janssen [1991]. This version 
of WAM, referred to as Cycle-4, was implemented on a 1.0 ø x 
1.0 ø latitude-longitude grid that covers the northwest Atlantic 
extending from 25øN to 70øN and from 80øW to 15øW and 
includes 2318 water points. The model simulates the 2-D spec- 
trum of wave energy discretised into 24 directional bands, 15 ø 
wide, and 25 frequency bands logarithmically spaced from 
0.042 Hz to 0.41 Hz with an increment-to-frequency ratio equal 
to 0.1. 

2.2. SAR Data Processing 

The ERS-1 and 2 satellites carry the active microwave in- 
strument package as their main payload. In the SAR wave 
mode the AMI acquires signal data to produce a SAR image 

(imagette) every 200 km along track. Each imagette is nomi- 
nally 5 km x 5 km. The across-track position of the imagette is 
programmed by the European Space Agency (ESA) within the 
100-km SAR image mode swath. The imagettes are subse- 
quently transformed into image spectra using a fast Fourier 
transform (FFT)-based approach. The spectral calculations 
are performed on intensity images (amplitude squared) where 
the mean value has been subtracted. For a more detailed 

description, see Brooker [1994]. A Hamming window is applied 
to the data prior to the FFT, and the data are subsequently 
zero-padded to a sample size of 512 x 512 values before 
applying the Fourier transform. The resulting spectrum in Car- 
tesian coordinates is converted to polar coordinates on a scale 
that is logarithmic in wave length, sampled at 12 wavelengths, 
and specified in 12 directions between 0 ø and 180 ø, rescaled to 
eight bits on a linear scale. The sampling is designed to match 
the typical spectral representation used in global wave forecast 
models such as WAM. The spectra are also filtered to wave- 
length limits of 100 m to 1000 m. The data are subsequently 
transmitted to ESA/European Space Research Institute 
(ESRIN) for compilation of global data sets and redistributed 
to national users. In Canada the data are received at the 

Atmospheric Environment Service (AES), where they are de- 
coded and converted into a format suitable for ingestion into 
the Assimilating WAM model, AWAM. During the conversion 
process, the data are sorted and divided into files, each con- 
taining 3 hours worth of data, centered on each WAM model 
time step. This procedure also filters out data from outside the 
model domain. 

2.3. Inversion 

In order to extract ocean wave information from SAR wave 

data, the mechanisms by which SAR images ocean surface 
waves must be known. These mechanisms have been discussed 

extensively in the literature [e.g., Jain, 1981; Alpers, 1983; Has- 
selmann et al., 1985; Alpers and Brtiining, 1986; Hasselmann and 
Alpers, 1986; Briining et al., 1990, 1994b; Jacobsen and HOgda, 
1994]. The predominant backscattering mechanism at inci- 
dence angles encountered with a spaceborne SAR is attributed 
to Bragg resonant scattering from short surface ripples [Has- 
selmann et al., 1985]. This backscattering is modulated by three 
major processes, which contribute to long wave imaging: tilt 
modulation, hydrodynamic modulation and velocity bunching. 
The first two are related to the occurrence and local imaging 
geometry of scattering elements on the ocean surface which 
vary across the larger ocean waves. Wave orbital motion results 
in a shift of the backscattering elements, "bunching" them in 
the SAR image to form wave patterns. This is an effect that is 
specific to coherent imaging systems such as SAR. The relative 
importance of the modulation mechanisms is dependent on the 
propagation direction of the ocean surface gravity waves rela- 
tive to the radar look direction, the sea state, the viewing 
geometry, and the satellite height and velocity. The velocity- 
bunching effect is proportional to the gradient of the radial 
orbital wave velocity in the azimuth direction. 

One of the main limitations of SAR wave data results from 

the fact that the velocity-bunching effect is nonlinear [Hassel- 
mann et al., 1985], which causes rotation of the spectra toward 
the range direction and stretching [B•ning et al., 1990]. An- 
other limitation is the incompleteness of the ocean wave in- 
formation contained in SAR image data. Loss of scene coher- 
ence due to orbital motion and the limited lifetime of the 

scattering elements leads to a loss of resolution in the azimuth 
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direction [Vachon et al., 1989, 1993], resulting in a scene- 
dependent loss of SAR imaging capability in the higher- 
azimuth wave numbers. SAR spectra therefore typically exhibit 
a cutoff in energy along the azimuth wave number axis that is 
dependent on sea state and wind speed. Furthermore, the 
ERS-1 SAR wave mode spectra are generated from single 
frames of imagery, producing a 180 ø ambiguity in the wave 
direction. 

In the present approach we use the pure nondispersive ve- 
locity-bunching theory. The extension to a dispersive case is 
rather straightforward [Krogstad et al., 1994]; however, it would 
introduce an additional azimuth spectral cutoff factor and is 
neglected for simplicity of calculation. The scanning distortion 
due to the motion of the surface during the scanning, which 
may be significant for airborne SAR [Krogstad et al., 1994; 
Krogstad, 1992; Raney and Lowry, 1978] is negligible for satel- 
lite-borne SAR and is therefore neglected. 

The HH SAR spectral inversion technique, which takes into 
account the limitations inherent in SAR wave data, is now a 
well-established procedure [HH; Krogstad, 1992; Bao et al., 
1994; Bn;ining and Hasselmann, 1993; Briining et al., 1994b; 
Engen et al., 1994; Hasselmann et al., 1996] and will not be 
described in detail here. In summary, the inverted SAR spec- 
trum is obtained by a process of optimization based on the 
nonlinear transform from the ocean wave spectrum to the SAR 
image spectrum. This transform expresses the nonlinear effects 
of velocity bunching as a closed form integral. The a priori 
estimate of the wave spectrum (which is necessary to provide 
the information missing in SAR data) is supplied by a wave 
model, in our case WAM. 

The nonlinear relationship between the image spectrum 
S SA R and the ocean surface wave spectrum S .... may be 
expressed generically as 

S SAlt = Mnl(Xwave) (1) 

Because of the limitations described above, this is not a one- 
to-one mapping. 

The inversion scheme is based on the cost function and 

weighting functions defined as follows: 

J = • Ik (S,(k) - Sø,)2W•(k) dk o• = SAR,wave 

(2) 

with the relative weights defined following HH. The shape of the 
data weight function Ws•m(k) = Ssø•(k) was selected to sup- 
press the noise part of the observed SAP, spectrum S O while SAP., 

the main role of the weight Wwav½(k) = •(B + min(Swav½(k), 
Søwave(k))) -• is to remove the 180 ø ambiguity in the SAR image 
spectrum. The term in the cost function measuring the distance 
between the simulated and observed SAR spectrum gives iden- 
tical values for the spectral components at the locations k and 
-k. However, the term measuring the distance between the 
fitted wave spectrum and first-guess spectrum will give very 
large values to low energy spectral components and will favor 
the wave component at the peak location. The role of a small 
constant B is to avoid numerical infinity when the spectrum 
vanishes. The constant • = 10 -3 max ((Sg^R) 3) gives a low 
relative weight to the first-guess term in the cost function J, 
and also assures the dimensionless form of J. Other choices 

of weight functions used to control relative weighting of terms 
in the cost function are also possible [Engen et al., 1994; Krogs- 
tad et al., 1994; Lasnier et al., 1994]. 

The SAR inversion algorithm described above results in a 
spectrum that combines information from the SAR, within the 
wave number band it is capable of sensing, and information 
from the first-guess wave spectrum. The end result of the 
inversion procedure in some cases leads to nonphysical discon- 
tinuities in the transition zone between the SAR capable wave 
number band and high wave numbers. The proposed remedy 
for this problem [Hasselmann et al., 1996] implies additional 
adjustments of the first-guess wave systems at each inversion 
step, which requires additional computer time and was not 
implemented here. 

2.4. Assimilation 

The assimilation is carried out using a simple two-step 
scheme [Hasselmann et al., 1994; Komen et al., 1994] in which 
the corrections introduced by SAR wave data are first com- 
puted at the observation location and then spread over the 
model grid domain within a prescribed range of influence for 
the data. All SAR wave data available in a time window of 3 

hours are assimilated simultaneously. 
In order to reduce the dimensionality of the assimilation 

problem, and to make it practically feasible in an operational 
system, the corrections of only a small number of spectral 
parameters characterizing the main wave systems in each spec- 
trum were assimilated. To accomplish this, spectral modes 
were identified in the SAR-derived wave spectra, and in WAM 
spectra at the grid points within the range of influence of each 
SAR spectrum location. For each mode the mean energy (E), 
mean frequency if), and mean direction (0) were calculated. 
The mode separation algorithm used here was first proposed 
by Gerling [1992] and was described in detail by Bauer et al. 
[1995], Hasselmann et al. [1994], Komen et al. [1994, chapter 
V.4.3], and Briining et al. [1994a]. 

Secondary partitions resulting from less significant peaks in 
the spectrum, characterized for example by relatively close 
peak locations or insufficiently deep valleys between partitions, 
were merged together. Also, all wind-sea partitions were com- 
bined into a single wind-sea mode, associated with the local 
wind forcing. Corresponding wave systems were subsequently 
identified for each SAR-extracted spectrum and the WAM 
spectra in its range of influence, using the approach of Hassel- 
mann et al. [1994, 1996]. Modeled wave systems that could be 
correlated with SAR-derived wave systems were corrected, 
while SAR-derived wave systems that did not correspond to 
any of the modeled wave systems were simply added to the 
first-guess spectrum. Once the three spectral parameters were 
computed and matched for each distinct wave system, differ- 
ences between the SAR-based estimates and model estimates 

were spread to neighboring grid points of the model. 
The observed and corresponding modeled parameters were 

spread over a region of neighboring model grid points using a 
weighting function and a single-pass version of Cressman's 
approach [see Cressman, 1959; Francis and Stratton, 1990]. We 
define the spreading function as 

Nabs 

- 0(?obs(0 -- 
k=l 

?nw(r) = + 
Nabs 

• e2w(rj- rk)+ 1 
k=l 

(3) 
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Table 1. Dates for Case Studies 

Case Study Data Set Period 

1 Storm of the Century March 11-21, 1993 
2 Near real time March 16 to April 16, 1996 

where the weights w(lr j - rkl ) are a function only of the 
relative distance between the model and observation locations 

and where e 2 2 2 = (eWAM)/(eobs) is the expected model error 
variance, normalized by the expected observation error vari- 
ance. The observation errors are assumed to be uncorrelated. 

At present, we assume e 2 = 1 and use a simple functional form 
for the weights w(lr - rl): 

w( r;- r•) = exp (-R;•) = 1 - R;• 

w(]r;- r•l) = exp (-R;O = 0 

R_<i 

R>i 
(4) 

where R is a dimensionless distance, computed in a spherical 
coordinate system as follows: 

The distances in the latitude and longitude direction ((I)jk and 
©•, respectively) between observation and model grid points 
are normalized by the corresponding scales of the region of 
influence, Llat and Llong. A linear weighting function is used 
here mainly for efficiency. It may be argued that a single 
correction pass, as compared with the optimal interpolation 
scheme [Lionello et al., 1995], results in cases where areas with 
a high density of observations are given too much weight rel- 
ative to observations in areas of low data density. This is not 
likely to be important in our case, however, as the SAR spectra 
are spaced evenly along the track and are spaced quite sparsely 
across the satellite tracks. We also note that this interpolation 
method is not strictly optimal, as we do not have available 
statistics for model and observation errors. The resulting esti- 
mate of the ocean surface wave field is therefore not opti- 
mized. 

In principle, at least two distinct correlation length scales for 
wind sea and swell should be used. The wind sea correlation 

length scales correspond roughly to the storm generation area 
where the winds are strong, and would be of the order of 200 
km. Correlation length scales of the order of 1000 km were 
used in assimilating altimeter data [Lionello et al., 1992, 1995; 
Bauer et al., 1992] in order to spread corrections to all grid 
points lying between satellite orbits. Here a moderate correla- 
tion length scale corresponding to five model grid points 
(about 500 km) was used. This represents not only a compro- 
mise of the two length scales above, but also a typical propa- 

Table 2. Summary of Experimental Data Sets 

Model Input Data Verification Data 

CMC ERS-1 ERS-1 

Case Forecast SAR Wave ERS-1 SAR Wave 

Study Winds Mode Buoys Altimeter Mode 

i yes FDC yes FDC FDC 
2 yes FDP no FDP FDP 

CMC, Canadian Meteorological Center; FDP, fast delivery product; 
FDC, fast delivery copy. 
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Figure 1. (a) Buoy locations used in verification, and cover- 
age of the input ERS-1 SAR wave data: (b) during one syn- 
optic period of 12 hours, (c) for case 1 (March 11-20, 1993), 
and (d) for case 2 (March 16 to April 16, 1996). 

gation distance for wave energy in a 3-hour time step at wave- 
lengths dominated by swell. Analyzed wave spectra were 
constructed by topologically adjusting (scaling, stretching and 
rotating) each of the partitioned WAM wave systems to match 
its spectral parameters with the interpolated ones. 

Unlike other SAR data assimilation systems under develop- 
ment [Hasselmann et al., 1996], we make no attempt to correct 
the wind fields locally near the SAR observation points. This is 
mainly because the temporal and spatial distribution of ERS 
wave mode data is too sparse to maintain wind corrections in 
the region associated with the storm track, and the impact of 
locally correcting the wind is expected to be minimal. One 
might expect that this will limit the lifetime of the corrections 
to the wave field, since the (possibly) inconsistent wind field 
would damp them out. However, even though SAR can detect 
some wind-field-driven wave components, particularly if they 
are range traveling, it primarily picks up low-frequency swell 
components, which are decoupled from the wind field. Even- 
tually, it should be possible to use the swell corrections to 
adjust the wind at an earlier time in the simulation, but it will 
be necessary to use continuous (time-dependent) insertion 
methods to accomplish this. Owing to the scarcity of SAR wave 
data the corrections to the wind field will be most effective 

after being assimilated into an atmospheric model. We there- 
fore believe that local wind corrections would have little or no 

effect on the demonstration of the utility of SAR data. 

3. Data and Test Method 

The system has been tested on two cases, representative of 
both a storm situation and a case of moderate sea state and 

wind conditions. The data available for the study consist of 
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Figure 2. Track of the Storm of the Century, March 11-20, 1993. 

model input data (wind fields for driving the model, and ERS 
SAR wave mode data for assimilation into the model) and 
verification data (ERS altimeter data (significant wave height), 
nondirectional wave buoy data, and inverted ERS SAR data 
not used in the assimilation. 

The cases we have considered are listed in Table 1, details of 
the different data sets are shown in Table 2, and buoy locations 
and coverage of the satellite data for a typical 12-hour synoptic 
period are shown in Figure 1 along with the total coverage for 
the two cases. Case 1 is a particularly intense storm, referred to 
as the "Storm of the Century," which produced measured 
significant wave heights of 16.3 m south of Nova Scotia. The 
track of the storm is shown in Figure 2. Although the center of 
the storm remained inland, it was sufficiently close to the coast 
that very intense winds were maintained in the eastern half of 
the storm over the Atlantic. By 1800 UTC on March 13 a 
southeasterly flow of 45 knots (22.5 m s -•) had developed over 
a large area south of 37øN. Six hours later, winds east of the 
storm center were reported as high as 60 knots (30 m s-•), and 
50-knot (25 m s -•) southwesterly winds were reported behind 
the cold front south of the storm. As the storm moved north- 

eastward, an intense southerly low level jet (60 knots reported) 
developed south of Nova Scotia and persisted for at least 12 
hours. The wind sea developed in response to this jet later was 
supported by seas developed by an equally strong west- 
southwesterly flow, which followed the cold front as it swept 
eastward across the ocean south of Nova Scotia. It is the 

interaction of these wave systems that likely led to the reported 
maximum significant wave height at 0000 UTC on March 15. In 
general, the maximum significant wave heights were in the cold 
air closer to the coast, located generally well south of the storm 
center but following its track northeastward. The maxima were 
in excess of 14 m from 0000 UTC on March 14 until 1200 UTC 

on March 15. By March 16 the low had reached Iceland, 
producing an elongated area of westerly (eastward moving) 
high seas south of the storm from east of Newfoundland to 
south of Iceland. Seas had subsided over the western Atlantic 

by this time as a high-pressure area moved offshore. 
In order to compare and contrast our results from a storm 

situation, we chose a contiguous month of data to use as a 
second case for assessing the assimilation method. This period, 
a late winter-early spring case, does not contain any major 
storms but represents sea sate conditions closer to normal for 
this time of year. The highest significant wave heights in this 
period were in the 8-m range. 

3.1. Independent (Control) Data Sets 

In this study, we have used altimeter, buoy, and SAR data 
for verification. The altimeter data, while offering only a bulk 
measurement of the sea state in the form of a significant wave 
height, offer the advantage of large spatial coverage and pro- 
vide enough data to perform comparisons with model results in 
a significant sense. The altimeter data used in this study are 
summarized in Table 2. For case 1 we obtained 1106 observa- 
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Table 3. Buoy Station Information 

Depth, Latitude, Longitude, 
Station Name m øN øE 

1 44005 Gulf of Maine 202 42.60 -68.60 

2 44025 Long Island ... 40.30 - 73.20 
3 44004 Hotel 3231 38.50 -70.70 
4 44141 Laurentian Fan 4500 42.07 -56.15 

5 44139 Banquereau 1100 44.32 -57.35 
6 44138 SW Grand Banks 1500 44.23 -53.35 
7 44137 Scotian Shelf 4500 41.20 -61.13 

Numbers in left column correspond to labels in Figure la. 

tions that match a model counterpart value, and for case 2 we 
obtained 1289 observations. The altimeter data were processed 
as follows. 

3.1.1. Averaging. The original altimeter data are sampled 
at approximately 0.06 ø , while the modeled data are represented 
on a 1 ø x 1 ø grid. For analyses involving comparisons of wave 
heights from the altimeter and the model, we computed an 
average wave height for every 1 ø of the orbit latitude along the 
track. Groups with fewer than 7 points were rejected before 
averaging, which removed most outliers. 

3.1.2. Ice point removal. The altimeter data were pro- 
vided with standard deviation estimates for wave height. Data 
with a standard deviation larger than 2 m were rejected before 
further use, as this is commonly used as an indicator for pres- 
ence of ice [Breivik and Reistad, 1992]. 

Significant wave height data collected by seven nondirec- 
tional, 6-m NOMAD buoys were available only for case 1 
(March 1993). The buoy locations are shown in Figure la, with 
details in Table 3. 

3.2. Model Runs 

In the present study, the WAM was driven in both hindcast 
and forecast modes by 10-m level winds obtained from the 

regional finite element (RFE) weather prediction model of the 
Canadian Meteorological Center (CMC) [Mailhot et al., 1995]. 
The RFE model grid is a variable resolution grid with a central 
window of uniform resolution covering the region including 
the continental United States, Canada, and the Canadian At- 
lantic. The RFE model was run twice daily at 0000 UTC and 
1200 UTC and generated forecast winds at 3-hourly intervals 
valid up to 48 hours, which were then interpolated onto the 
WAM grid. 

In the hindcast mode, WAM was run using the first 12 hours 
(fields at 0, 3, 6, and 9 hours, referred to as Oh, 3h, 6h and 9h) 
of winds from each wind file. The Oh fields are analysis winds, 
while the 3h to 9h fields are forecasts. Two types of runs were 
done: baseline runs, with no assimilation, and assimilation 
runs, where for each 3-hour time step, SAR data were in- 
gested, inverted, and assimilated. In order to perform compar- 
isons between the model and the observations and to analyze 
the results for determining the impact of assimilating the SAR 
data, the model fields of wave height, period, and direction 
were stored for each time step. The inverted SAR spectra were 
also stored, along with the corresponding wave parameters 
calculated from these spectra. 

In forecast mode the model was set up to run in a similar 
fashion. However, after each 12-hour assimilation period, fore- 
cast winds for the following 48 hours, again at 3-hour intervals, 
were used to produce a wave forecast. Thus forecast runs use 
forecast wind time series to drive the wave model. A new series 

was initiated every 12 hours through the period of each case. 
Again, these runs were conducted as baseline and assimilation 
runs. For the baseline runs there was no assimilation at all. For 

the assimilation runs, assimilation was done up to the Oh time 
of the forecast, as would be the case in operational forecasting. 

For the detailed comparison of model results and observa- 
tions from the satellite and wave buoys, the model data from 
grid points surrounding each observation location were ex- 
tracted, and a bilinear interpolation was used to obtain a model 
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Figure 3. Example of inversion results for a single wave system. First guess and best fit frequency spectra 
(Figure 3a) are marked with the continuous and dot-dashed lines, respectively. Significant wave heights are 
8.82 m for the modeled spectrum (Figure 3b) and 10.50 m for the inverted spectrum (Figure 3c). SAR image 
spectra are shown for the observed (Figure 3d), first-guess (Figure 3e), and best fit (Figure 3f) spectra. The 
radii of the outer and inner circles represent wave numbers corresponding to 100 m and 200 m wavelength, 
respectively. 
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Figure 4. Stone as Figure 3, but for two wave systems. Significant wave heights are 4.97 m for the modeled 
spectrum and 7.05 m for the inverted spectrum. 

counterpart for each observation. This was done for the model 
time steps immediately before and after each observation. The 
model counterparts were then interpolated in time to match 
the time of the observation. 

4. Results 

The data sets and test methods described above were de- 

signed to allow us to determine the impact of the SAR data on 
wave analyses and forecasts from WAM. To assess the impact, 
we have compared the summary wave parameters from the 
different runs in different combinations. The statistics used in 

the comparison are defined in the appendix. The results of the 
comparisons are presented and discussed in this section, be- 
ginning with a discussion of the performance of the inversion 
algorithm and followed by an assessment of impacts on both 
hindcast and forecast runs compared to independent data. The 
verification was limited to comparisons of summary parame- 
ters because no directional spectral observations were avail- 
able and because it is the summary wave parameters that were 
assimilated. Throughout this section, the run without assimi- 
lation is referred to as the "baseline run" and the runs with 

assimilation are called "assimilation runs." 

4.1. Inversion 

Examples of the inversion, for one and two wave systems are 
shown in Figures 3 and 4, respectively. Spectra are given in the 
azimuth and range coordinate system. True north and the 
corresponding wind velocity are also indicated. Wind direction 
is shown using the oceanographic convention, (i.e., "going to"). 
The first-guess and best fit SAR spectra are created by map- 
ping the first-guess WAM and best fit wave spectra, respec- 
tively. Figure 3 shows that the inversion procedure leads to a 
spectral estimate with a slight directional change. The inver- 
sion also results in a larger significant wave height and a slight 
increase in the peak period. The result is seen to be closer to 
the corresponding wind direction. This case represents an al- 
most range-traveling wave system. Thus nonlinear effects are 
small. However, the relatively broad wave spectrum with a 

single peak traveling in the range direction is often mapped 
into a double-peak SAR image spectrum on account of too 
small values of the RAR transfer function relative to the ve- 

locity bunching component [e.g., Braning et al., 1990]. The 
velocity-bunching mechanism vanishes in the range directions 
and rapidly resumes its large value on both sides of this direc- 
tion. This leads to a deep, nonphysical trough in the spectrum. 
The calculated SAR spectrum was significantly modified in this 
case, compared with the first-guess SAR spectrum, changing 
from a split peak spectrum to a spectrum in which the peaks 
around the range wave number axis are joined together. After 
the inversion the simulated and observed SAR spectra are in 
much better agreement, with a pattern correlation coefficient 
increasing from 82.4% for the first guess to 99.4% for the best fit. 

Figure 4 exhibits a case with two dominant wave modes. The 
inverted SAR spectrum shows a very large difference in wave 
energy (it actually doubles the wave height). Also, we observe 
that the relative peak strength changes. Here the pattern cor- 
relation coefficient increased from 89.6% to 95.7%. 

Table 4 documents the overall inversion success rate, which 
is about 10% higher for the storm case than for case 2. This 
result is expected in the sense that the average wave height, 
and therefore the average signal strength in the SAR data is 
higher for the storm case. This in turn means that fewer spectra 
are likely to fail to invert because of low signal-to-noise ratio. 

In general, we have found that the mean values of the sig- 
nificant wave height extracted from ERS-1 SAR wave mode 
spectra tend to exceed wave heights calculated by WAM by 

Table 4. Number and Percent of Inverted SAR Image 
Spectra 

Number Percent Percent 

Case Total Inverted Inverted Rejected 

1 714 548 76.8 23.2 
2 3504 2423 69.15 30.85 
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Table 5. Comparison of WAM Model Versus SAR-Based Estimates of Wave Height, 
Period and Direction for Case 1 (548 Samples) and Case 2 (2423 Samples) 

Hs, rn (T), s (k), m -• (dir), deg 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

Mean (WAM) 4.09 2.88 9.24 8.27 0.05 0.06 140.86 152.13 
Bias 0.43 0.38 0.28 0.31 -0.004 -0.005 -2.38 -4.59 
Std 1.00 0.73 0.87 0.77 0.01 0.01 46.23 47.82 

Sir), % 25.36 6.70 9.27 9.84 18.59 19.67 33.12 31.24 
Slope 1.10 1.13 1.03 1.02 0.93 0.92 0.98 1.001 
Correlation, % 97.66 98.15 99.58 99.61 98.49 98.56 95.86 96.25 

Notation is defined in the appendix. Cor, correlation. 
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Figure 5. Scatter diagrams of the ERS-1 SAR based wave parameter estimates versus WAM based wave 
parameter estimates for case 1' (a) Hs, (b) average period, and (c) vector mean direction. 
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Figure 6. Same as Figure 5 but for case 2: (a) H s, (b) average period, and (c) vector mean direction. 
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Figure 7. Coverage of assimilated SAR data in relation to buoys for case 1: (a) March 11, (b) March 14, and 
(c) March 16. Each panel shows 24-hour coverage. 
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approximately 10-12% (Table 5, Figure 5, and Figure 6). The 
bias is positive and larger for higher wave energies. This may 
be caused by a deficiency in the wind field driving WAM or by 
too small a value of the real aperture radar transfer function. 
A similar but negative bias, about 8%, was observed for the 
mean wave number. These results agree well with monthly 
statistics published by Briining and Hasselmann [1993]. Figures 
5 and 6 also show a comparison of wave directions. We observe 
that the predominant wave direction is within 50ø-100 ø . 

4.2. Hindcast Comparison With Buoy and Altimeter Data 

In order to assess the impact of SAR data assimilation 
throughout the Storm of the Century, we compared model 
output with buoy observations. The results, however, are de- 
pendent on the buoy locations. The available buoy data loca- 
tions are along the western fringe of the North Atlantic and are 
windward of most of the satellite observations. Therefore most 

of the wave systems and associated corrections arising from 
data assimilation propagate away from the buoy locations. The 
measurable impact is directly related to the region of influence 
and the spreading function applied. It is also very closely re- 
lated to the spatial and temporal coverage of the SAR obser- 
vations. In Figure 7 we show three examples of the 24-hour 
satellite coverage for March 11, 14, and 16, 1993. In Figures 8 
and 9 we show time series comparing wave parameters from 
the model with buoy observations in the Gulf of Maine and off 
Long Island. The results are typical of all the buoy results and 
show that there is little difference in the two model runs, 
baseline and assimilation, early in the period but greater im- 
pact later on, coinciding with satellite passes closer to the buoy 
locations. We also see that the assimilation of SAR data results 

in a reduced overall difference between the model and the 

buoy observations. The improvement is most pronounced dur- 
ing periods of decaying waves. Table 6 shows a summary of the 
impact of the assimilation for each of the buoys, in terms of the 
changes in scatter index and correlation between buoy signif- 
icant wave height and period and model significant wave height 
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Figure 8. Comparison of hindcast series of (a) wave height 
and (b) mean period for buoy 44005 in the Gulf of Maine (case 
1). Modeled wave parameters with and without assimilation 
are indicated by dashed and solid lines, respectively. Dots 
represent buoy observations. 
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Figure 9. Same as Figure 8, but for buoy 44025 (Long Is- 
land). 

and period. Results are averaged over the 9-day period of case 
1 and are based on about 183 observations for each buoy. Both 
the sample sizes and the observed changes are small. The 
overall scatter index is reduced by 0.3% and 1.55%, and the 
correlation is increased by 0.2% and 0.26% for the significant 
wave height and for the mean period, respectively. The impact 
on wave period is slightly greater than the impact on H s. A 
typical example comparing wave height and period for one of 
the buoys on the Scotian Shelf is shown in Figure 10. The small 
effect of the assimilation is consistent with the fact that the 

buoys were very seldom within the influence region of ERS-1 
data. 

In order to further understand the effect of assimilating 
SAR data in the case of the Storm of the Century, we mea- 
sured the impact against observations from the ERS altimeter. 
The comparisons were made both in terms of summary statis- 
tics for all the data and in terms of individual satellite passes. 
In Figure 1 la we show a selected satellite pass, which coincides 
with the storm area. The effect of assimilating the SAR obser- 
vations for this pass, presented in Figure 11b (dashed line), 

Table 6. Change in Scatter Index and Correlation Coefficient 
Between Buoy Significant Wave Height and Period 
and WAM/AWAM Model Significant Wave Height 
and Period, Due to SAR Data Assimilation 

H s, m (T), s 

ASIr,, ACorr,, Sir,, ACorr,, 
Station N % % % % 

44005 187 -2.46 0.23 -3.13 0.28 

44025 185 3.53 0.72 -2.83 0.52 
44004 182 -2.18 1.08 - 1.91 0.64 
44141 180 0.82 -0.24 -0.29 -0.05 

44139 185 1.59 -0.22 -3.36 0.34 

44138 179 -4.00 2.21 -3.02 0.83 
44137 184 2.95 -0.18 - 1.40 0.03 

All buoys 1282 -0.30 0.21 - 1.55 0.26 

N is number of observations. 



'7910 DUNLAP ET AL.: EFFECT OF ERS-1 DATA ON WAM MODEL 

15 ß '/ 

5 10 15 

hs (m), WAM 

15 .•,• 

>, /;/," l,• ø10 : 

0(• [i ,• 1'0 15 
hs (m), AWAM 

20 

0 10 20 

<T> (s), WAM <T> (s), AWAM 

Figure 10. Comparison of buoy and model hindcast (top) 
wave heights and (bottom) mean periods for Scotian Shelf 
(buoy 44137), including (left) baseline run results and (right) 
assimilation run results. The dashed line is a least squares 
regression fit to the data points. 

shows an improvement over the baseline case (solid line). In 
this case, the scatter index is decreased from 21.33% for the 
baseline run to 16.03% for the assimilation run, while the 
correlation coefficient is increased from 98.42% (baseline) to 
99.02% (assimilation). The altimeter data show a dip in wave 
height between 38 ø and 40 ø along the track, which apparently 
was not resolved in the model. This feature is actually seen on 
several passes in the vicinity and is therefore not simply an 
artifact in the data. A glance at the analysis maps for the time 
of these altimeter measurements suggests that the dip in the 
significant wave height is related to a trough and associated 
wind shift from west to NW. The gradient in this area was also 
slackening with time. The feature was apparently not resolved 
in the modeled wave field. Even though the dip at the northern 
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Figure 11. Comparison of altimeter and WAM significant 
wave heights along a specific satellite track for March 15, 0300 
UTC. (a) Map showing contours of significant wave height and 
vector wave direction. Dots indicate location of averaged al- 
timeter observations. (b) Significant wave height as a function 
of the latitude along the satellite track, for baseline run (solid 
line) and assimilation run (dashed line). Altimeter data aver- 
aged over a distance of 1 ø are indicated by squares. Maximum 
model H s = 12.7 m. 
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Figure 12. Scatter plots of WAM H s versus ERS-1 altimeter 
wave heights for (a) the baseline run and (b) the assimilation 
run, for case 1. All hindcast series data are included. The 
dashed line is a least squares regression fit to the plotted data. 

end of the track is not reproduced, the overall fit is better than 
that for the run without assimilation. 

Our summary comparison of model results and altimeter 
data is shown in Figures 12 and 13 for the hindcast runs. The 
accompanying collocation statistics are given in Table 7. In 
both case 1 and case 2 we observe a clear tendency for the 
model to produce higher wave heights than the ERS-1 altim- 
eter observes. In the storm case (see Table 7, case 1) the scatter 
index and correlation are slightly improved as a result of as- 
similation. An opposite tendency is observed for case 2. How- 
ever, both cases have slopes that are farther from the ideal 
slope of 1 than the baseline run WAM result. Thus the overall 
trend of the assimilation has been to decrease the level of 

agreement between the altimeter and the model. This is in 
agreement with recently published results for the ERS-1 altim- 
eter [e.g., Breivik and Reistad, 1992; P. A. E. M. Janssen, per- 
sonal communication, 1996] which show that the ERS-1 altim- 
eter systematically underestimates significant wave heights as 
compared with wave model results. Assimilation of SAR data 
augments this effect, as the SAR-enhanced wave spectra tend 
to overestimate the wave energy as compared with the model 
[Braning and Hasselmann, 1993]. 

4.3. Forecast Comparisons 

In the forecast assimilation runs, data were assimilated for a 
12-hour period, and then a forecast was run for 48 hours. This 
was repeated for each 12-hour period for case 1 and case 2. In 
Figure 14 we show the root-mean-square of the difference and 
the bias between the baseline and assimilation runs for wave 

height, period, and direction. As we expected, the impact of 
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Figure 13. Same as Figure 12, but for case 2. 
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assimilating the SAR based corrections decays over time. This 
decay is more rapid for the storm situation in case 1 than in the 
more moderate conditions of case 2. In both cases the impact 
lasts for more than 36 hours into the forecast. 

4.3.1. Comparison with altimeter. The results of inter- 
comparison of significant wave heights measured by the ERS-1 
altimeter and predicted by the wave model with and without 
SAR wave data assimilation are shown in Figure 15 for case 1 
(1103 samples) and case 2 (3313 samples). The results include 
the scatter index and the correlation for both the analysis and 
the forecast. The results illustrate a slight but persistent im- 
provement of the forecast result. The effect is stronger for the 
storm case, where the scatter is reduced by 1.6% and the 
correlation is increased by 0.2%, for the first 12 hours of 
forecast. 

4.3.2. Comparison with SAR. To strengthen our verifica- 
tion of the assimilation results, we have also compared forecast 
model output with SAR observations not used in the assimi- 
lation up to that point in time. The results of this comparison 
show that the assimilation of SAR data improves the agree- 
ment between the data sets. In order to perform the compar- 
isons, a model counterpart to each SAR observation was de- 
rived by bilinear interpolation of model data to the observation 
time and locations. The statistics of model results against the 
inverted but not yet assimilated wave data were averaged over 
three separate forecast ranges, 3-12 hours, 15-24 hours, and 
27-36 hours. The comparison was made between the model 
with and without SAR data assimilation. The results are sum- 

marized in Table 8 and as a function of forecast time in Figure 
16. We obtain a reduction in the scatter index of over 3% in 

wave height at the start of the forecast, which diminishes to less 
than 1% after 36 hours. The same trend is seen in wave period 
and mean direction, although with a little more variation in the 
case of wave direction. Figure 16 also shows that wave period 
is affected more in the storm case than in the moderate case. 

The opposite is seen to be the case for wave direction. 
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Figure 14. Plots of (left) root-mean-square difference and 
(right) mean difference between forecast wave parameters run 
from initial conditions with and without assimilation, as a func- 
tion of projection time, for cases 1 (triangles) and 2 (circles). 
Results are given for (a, b) significant wave height, (c, d) 
average period, and (e, f) vector mean direction. 

system can function reliably by running it on a storm event, and 
through 1 month of wave analyses and forecasts. 

In addition to evaluating the assimilation performance in 
terms of the rate of successful inversion and assimilation, we 
have also compared both hindcasts and forecasts from the 
wave model with independent wave observations to determine 
the impact of the assimilation. In the verification, we used 
independent control data from the ERS-1 altimeter and non- 

5. Discussion and Conclusions 

We have built and tested an assimilation system for SAR 
wave data from ERS-1. The methodology, which treats both 
the inversion and the assimilation components separately, has 
been adapted from existing techniques. The system was em- 
bedded in a copy of the Canadian operational version of the 
WAM model, which runs over a regional domain covering 
most of the North Atlantic. We have demonstrated that the 

Table 7. Comparison of Significant Wave Heights With 
and Without Assimilation, Between Altimeter Measurements 
and Model Hindcast Results, for Case 1 and Case 2 

Case 1 Case 2 

(1103 Samples) (3313 Samples) 

WAM AWAM WAM AWAM 

Mean (WAM) 4.32 4.45 2.68 2.94 
Bias -0.49 -0.62 -0.15 -0.41 
Std 0.95 0.89 0.71 0.76 

SIz), % 23.26 21.52 27.40 27.95 
Slope 0.89 0.88 0.94 0.87 
Cor, % 97.74 97.90 96.87 96.79 
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Figure 15. (a) Scatter index and (b) correlation with respect 
to altimeter Hs, as a function of projection time for case 1 
(triangles, 1106 samples) and case 2 (circles, 1289 samples). 
Each data point represents results based on 12 hours of anal- 
ysis or forecast. Results of the forecast following the baseline 
and assimilation runs are represented by solid and dashed 
lines, respectively. 
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Table 8. Statistical Comparison of First 12 Hour Forecast 
Results, Run From the Initial State With and Without 
Assimilation, Against Inverted but Not Yet Assimilated SAR 
Observations for Case 1 and Case 2 

Case 1 Case 2 

(376 Samples) (1717 Samples) 

WAM AWAM WAM AWAM 

Hs• m 
Mean (WAM) 4.49 4.64 2.88 3.11 
Bias 0.44 0.39 0.63 0.39 
Std 1.35 1.21 0.87 0.80 

Sir>, % 28.95 25.77 27.39 24.21 
Slope 1.05 1.03 1.23 1.15 
Cor, % 96.35 97.12 97.26 97.82 

(T), s 
Mean (WAM) 10.51 10.77 8.99 9.52 
Bias -0.76 - 1.02 -0.24 -0.77 

Std 1.25 0.96 1.03 0.99 

Sir>, % 12.32 9.33 11.58 10.81 
Slope 0.92 0.90 0.97 0.99 
Cor, % 99.29 99.59 99.35 99.46 

(diD, deg 
Mean (WAM) 141.59 137.60 153.3 137.60 
Bias -3.75 0.24 -8.63 -1.68 

Std 42.91 40.28 55.98 42.97 

SIo, % 30.72 29.25 37.58 29.53 
Slope 0.97 1.00 0.96 1.00 
Cor, % 96.41 96.71 94.48 96.61 

directional wave buoys. Owing partly to the lack of available 
independent two dimensional spectral wave observations, and 
also to the fact that the assimilation focuses on three summary 
parameters of the wave spectrum, the evaluation concentrated 
on the same parameters: significant wave height, average pe- 
riod, and wave direction. Since we could not obtain indepen- 
dent wave direction information, we also used not-yet- 
assimilated SAR data as another source of validation data, 
taking into consideration that the use of SAR data in the 
assimilation makes this a less independent data source. 

Our comparison of the SAR wave data with the model wave 
parameters revealed that the SAR tends to give higher wave 
heights and longer periods than WAM and that the difference 
in wave height increases with higher sea states. This is in 
agreement with other published results. 

When averaged over all the available data for a period of 
several days or more, the impact of the assimilation of SAR 
wave data was always small in magnitude. However, our com- 
parisons with independent observations indicate that the im- 
pact was usually positive, that is, the average difference, the 
standard difference and the scatter index between the model 

and observed wave parameters usually were reduced slightly by 
the assimilation, while the correlation with independent obser- 
vations increased slightly. There was one notable instance 
where a small negative impact was indicated, for the hindcast 
comparison with altimeter data for case 2, where both the bias 
and standard difference were increased by the assimilation. 
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Figure 16. Scatter index and correlation with respect to wave parameters estimated from not-yet-assimilated 
SAR data, as a function of projection time for case 1 (triangles, 376 samples) and case 2 (circles, 749 samples). 
Results of the forecast following the baseline and assimilation runs are represented by solid line and dashed 
lines, respectively. Results are given for (a, b) significant wave height, (c, d) average period, and (e, f) vector 
mean direction. 
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The increase in negative bias in the altimeter comparisons, 
which also occurred for case 1, is attributed to the effect of 
systematic underestimating of wave heights by the ERS-1 al- 
timeter, combined with the tendency of the SAR observations 
to overestimate the wave heights. We also note that the neg- 
ative impact for the case 2 hindcast was reversed to a small 
positive impact for the forecast. 

We attribute the small overall impact partly to the relative 
scarcity of the SAR data points compared with the number of 
model grid points. For the buoy data we also attribute the small 
overall impact to the scarcity of collocations of SAR data with 
the buoy observations and to the fact that the buoy observation 
locations tended to be upstream of the main wave propagation 
direction. Evaluation of the results of a single satellite pass 
indicated a locally larger positive impact with respect to buoy 
data when a near collocation occurred. The impact was most 
noticeable for the decaying stage of the waves and for wave 
period. 

Our assessment of the persistence of the corrections indi- 
cated that the impact of assimilation decays with time but lasts 
for at least 36 hours into the forecast. This was also noted from 

comparisons of model results with the independent data. The 
corrections are relatively long lasting despite the fact that no 
attempt was made to adjust the wind field to agree with the 
modified wave field. This is consistent with the fact that cor- 

rections induced by SAR wave data mostly alter the low- 
frequency swell, for which the wind has little effect. 

While the amount of wave data has increased dramatically to 
the point where routine wave data assimilation can now be 
considered worthwhile, data are still relatively scarce com- 
pared with what would be needed to have a really large impact 
on the model. The model estimates the spectrum at 2318 
points over the North Atlantic, while in a 3-hour assimilation 
period, as many as 50 data points might be available. On 
average, the influence cannot be very large with that coverage 
rate. In fact, where there is particular interest, for example, in 
a storm situation, one has to be lucky to have a satellite over- 
pass at the location and time of the storm. 

Therefore, on the basis of the present results, we do not have 
enough evidence to conclude categorically that SAR data as- 
similation leads to improvement of wave analysis and forecast 
from WAM. Further study is needed on larger sample of col- 
located data. In particular, unbiased altimeter data would be 
helpful as an independent data source, especially if from the 
same satellite as SAR data. Directional buoy data will be useful 
for evaluation of the full spectrum. While additional validation 
data are needed, the inversion and assimilation methodology 
could also be improved in many ways. First, improvements can 
be made to the data quality control to lower the number of 
unsuccessful inversions and to help filter out non-wave field 
signals in the data. Second, the method of spreading correc- 
tions is very simple. The knowledge that the wave field is more 
highly correlated in the wave propagation direction can be 
built into the system through an anisotropic spreading weight 
function. However, it should also be feasible to move to a full 
optimum interpolation method, by obtaining the necessary er- 
ror statistics for model and data. With the availability of in- 
creasingly large archives of higher quality wave observations, 
the necessary data are now becoming available. In the long run, 
the methodology can be optimized by using a full three- 
dimensional variational approach, but this will require dedica- 
tion of greater amounts of computer power than is currently 
possible in operations. 

Ultimately, the use of continuous insertion methods such as 
four-dimensional variational techniques will allow data from 
all sources to be blended with wave and atmospheric models to 
provide an optimal and consistent analysis of both waves and 
marine surface winds. For the future, we can hope that the 
availability of additional satellites (ERS-2, RADARSAT, and 
ENVISAT, for example) will result in an increase in data 
available to wave-modeling operations. Such an increase, along 
with a concurrent increase in the optimal use of the data in 
wave analysis and forecasting, will result in steady increases in 
accuracy of wave analyses and forecasts in the future. 

Appendix: Statistical Parameters 
Using S, f, O, and x to refer to a spectrum, wave frequency, 

wave direction, and observed or modeled parameter, statistical 
parameters used in this paper are defined as follows. 

1 N 
Mean {x} =• • xn (A1) 

n=l 

Spectral mean 

x(fi, 
i,j 

(X)s = (E)s (A2) 
Mean energy 

(E)s = •] sWAM(fi, Oj)Af, AOj (A3) 
i,j 

Significant wave height 

Hs = 4 (x/• x (A4) 

Mean period (T}s--(1/f)s (A5) 

Vector mean direction 

(sin(0))s 

(dir)s = tan-• (cos(0))s (A6) 

Mean wavelength 

(A7) 

Standard deviation 

std = x/((x - (x)) 2) (A8) 

Bias = (x - XWAM) (A9) 

Root mean square of the difference 

rms = x/<(x - XWAM)2> 
Standard deviation of the difference 

(A10) 

Scatter index 

stdo = x/((x - Xw^M - bias) 2) (All) 

std 

= 00% (A12) 
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Scatter index of the difference 

SiD = 
stdD 

½(X) (XwAM) 
100% (A13) 

Symmetric regression (slope) coefficient 

(•) : •(X2wAM) : rmsw---•M 
Symmetric correlation coefficient 

Cor = 
(X XWAM) 

•(X2) (X•VAM) 
Pattern correlation coefficient 

(A14) 

(A15) 

,obs •,sim \ 
o SAR o WAM/ 

K= •/((sobs h2)/•,sim '•2\ (hi6) SAR] ( x,•, WAM] / 
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