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Abstract: This paper reports the results of field measurements of wave breaking modulations by
dominant surface waves, taken from the Black Sea research platform at wind speeds ranging from 10
to 20 m/s. Wave breaking events were detected by video recordings of the sea surface synchronized
and collocated with the wave gauge measurements. As observed, the main contribution to the
fraction of the sea surface covered by whitecaps comes from the breaking of short gravity waves,
with phase velocities exceeding 1.25 m/s. Averaging of the wave breaking over the same phases of
the dominant long surface waves (LWs, with wavelengths in the range from 32 to 69 m) revealed
strong modulation of whitecaps. Wave breaking occurs mainly on the crests of LWs and disappears
in their troughs. Data analysis in terms of the modulation transfer function (MTF) shows that the
magnitude of the MTF is about 20, it is weakly wind-dependent, and the maximum of whitecapping
is windward-shifted from the LW-crest by 15 deg. A simple model of whitecaps modulations by
the long waves is suggested. This model is in quantitative agreement with the measurements and
correctly reproduces the modulations’ magnitude, phase, and non-sinusoidal shape.

Keywords: ocean; wind-driven waves; wave breaking; field measurements; whitecap coverage;
modulation transfer function

1. Introduction

Wave breaking plays a crucial role in various air–sea interactions and remote sensing
areas and thus has been the subject of intensive research over the past few decades (see,
e.g., [1–5]). Wave breaking of wind-driven waves contributes substantially to air-sea
gas exchange [6–8], wave energy and momentum dissipation [9–11], and generation of
turbulence in the ocean near-surface layer [12–14]. Wind-wave modeling and forecasting
need spectral parameterization for wave breaking [15,16]. Wave breaking affects radar
backscattering [17–20] and microwave emission [21,22] of the sea. Wave breaking is also
very sensitive to the energy disturbances caused by wave interactions, with sub- and
mesoscale surface current gradients being an important component of the wave energy
balance. As a consequence, various ocean phenomena, such as internal waves, eddies,
current fronts, shallow water bathymetry are displayed on the ocean surface in the form of
spatial anomalies of wave breaking parameters tracing the surface current features [23–27].
This opens a promising opportunity for monitoring the ocean dynamics using passive and
active microwave satellite remote sensing [28–30]. Due to whitecapping, video processing
is a traditional approach for the in-situ investigation of wave breaking statistics and space-
time characteristics of “individual” breaking events (see, e.g., [31–34]).

Long surface waves modulate the breaking of short wind waves [35–37], resulting in
enhancement of wave breaking around the crests and damping in the long wave throughs.
This effect, observed in both the laboratory and the field, has important applications. Mod-
ulations of wave breaking lead to variations of radar returns along the wavelength of long
waves. This, on the one hand, significantly contributes to the radar modulation transfer
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function, which is necessary to retrieve wave parameters from the radar signal [19]. On the
other hand, modulations of radar backscattering by long surface waves provide a signifi-
cant, if not dominant, contribution to the mean Doppler shift of radar backscatter from the
ocean surface. Errors of the quantitative estimates of such radar modulations predetermine
the accuracy of the ocean surface current retrieval from the Doppler shift anomalies [38–40].
In the context of the air–sea interaction, the effect of wave breaking [35,37] and short-wave
spectrum [41] modulations on the aerodynamic roughness along the dominant surface
waves profile, significantly amplify (by factor two to three) momentum and energy transfer
from the wind to waves [42]. Hence, a better understanding of the wave breaking modula-
tions mechanism can directly contribute to a better understanding of the momentum and
energy exchange between atmosphere and ocean on regional and global scales.

Modulations of a certain characteristic of the sea surface, for example, whitecaps
coverage, Q, by long/dominant surface waves, can be described in terms of the modulation
transfer function (MTF), which assumes that Q varies above the long-wave as:

Q = Q(1 + Mε sin(Φ−Φ0)) (1)

where M is the MTF magnitude, Q means mean value of Q, ε = KA is the steepness of mod-
ulating wave with elevations ζ(x, t) = A sin(Φ), A is the wave amplitude, Φ = Kx−Ωt
is the phase, K is the long-wave wavenumber, Φ0 is the phase shift between ζ and Q, a
positive value of Φ0 means a lag of Q modulations relative to ζ (shift of the modulations
towards the backward long-wave slope). MTF is the common terminology for describing
interactions of short and long surface waves [43–45], radar scattering [19,46], and wave
breaking modulations by long surface waves [35,37]. Experimental estimates of whitecaps
MTF remain very scarce, and to our knowledge, they are limited by the results reported
in [35,37]. According to these data, the magnitudes of the whitecaps MTF are surprisingly
large, about 20. This means that wave breaking variations scaled by the mean value are
20 times larger than the steepness of modulating waves, pointing to the nonlinear nature
of breaking modulations. Since experimental estimates of wave breaking modulations are
extremely limited, new measurements are in great demand to get a deeper insight into the
physics of this phenomenon.

In this paper, we report field investigations of the whitecaps modulations by long
surface waves performed from a Black Sea research platform, using video recordings of the
sea surface. A description of the field experiment, data, and method of data processing is
presented in Section 2. Results and interpretation of the data in terms of the MTF revealing
large modulations are presented in Section 3. In Section 4, we suggest a simple model
of whitecaps modulations that describe quantitatively empirical results. Discussion and
conclusion are given in Sections 5 and 6.

2. Field Experiment
2.1. General Description

The experimental studies were carried out in October 2018 from a Black Sea research
platform near the village of Katsiveli. The platform is located about 0.5 km offshore in about
30 m deep water. A more detailed description of the platform and types of wind-wave
conditions at this site were reported in [47]. This study was performed under conditions of
developing wind waves coming from the open sea without swell.

The wave breaking events were recorded using a digital video camera with a recording
rate of 50 frames per second and a resolution of 1920 × 1080 pixels. The camera was
mounted at the height of 12 m and directed at 35–40◦ to the horizontal, which provides a
resolution of 2 cm at the water surface. The camera looked opposite to the general direction
of dominant waves, which always coincided with the wind direction. Eight video records
of length from 60 to 90 min collected at steady wind conditions are used in this study.

Elevations of the sea surface were recorded by a wire wave gauge located in the field
of view of the video camera (see Figure 1) at the end of an 11 m long boom to minimize the
platform disturbances. The wind speed and direction at a height of 23 m, air temperature
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and humidity at a height of 19 m, and temperature in the upper meter of water were
measured continuously from the platform using Davis 6152EU meteorological station.
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Figure 1. Video frame with wave gauge boom and rectangle (in green) of the sea surface for studying
the wave breaking modulations. A green point in the rectangle shows the interception of the wave
gauge wire with the sea surface. The insets show (top) an enlarged fragment of the frame and
(bottom) a period of the sea surface elevation recording, where an arrow marks the instant of time
corresponding to this frame.

Frequency spectra of sea surface elevations, S( f ), spectral peak frequencies, fp, and
significant wave heights, HS = 4

√
σ2 (σ2 =

∫
S( f )d f is the elevation variance), were

calculated conventionally [48]. The wind speed at 10 m, U, was calculated according to the
algorithm of Fairall et al. [49]. Mean (over records) values of the wind speed, the spectral
peak frequencies, the significant wave heights, the measure of wave ages, α = cp/U (cp is
the phase velocity of the spectral peak waves), air and water temperatures for all the
records are listed in Table 1.

Table 1. Measurement summary.

Run # U (m/s) fp(Hz) HS(m) α ta(◦C) tw(◦C) Q(%) Number of Individual Waves ε

1 13.1 0.17 1.2 0.7 20.6 19.5 0.36 799 0.047
2 13.7 0.16 1.2 0.7 20.3 19.6 0.26 650 0.052
3 14.2 0.22 1.1 0.5 21.0 19.5 0.14 1037 0.050
4 13.1 0.17 1.2 0.7 20.5 19.5 0.11 774 0.056
5 18.1 0.18 1.5 0.5 19.7 19.3 0.38 814 0.058
6 16.0 0.15 1.9 0.6 19.5 19.3 0.22 761 0.064
7 19.0 0.15 2.0 0.5 21 19.3 0.55 467 0.071
8 13.4 0.15 1.8 0.8 21.4 19.3 0.21 1049 0.061
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2.2. Data

Video recordings were processed using the algorithm suggested by Mironov and
Dulov [32]. The pixel coordinates in video frames were transferred into horizontal coordi-
nates at a zero-height plane, using known observation geometry. Only the active breakings
belonging to “phase A” of Monahan and Wolf [50] were extracted from image sequences.
The spots of residual foam left by whitecaps were automatically filtered out based on the
distinction of their advancing velocity from the whitecaps one (see [32] for details). Areas
of all active breaking at each time instant and their mean velocities were obtained to form
the resulting datasets for each of the video recordings. Table 1 shows the whitecap coverage
percentage, Q, calculated from the data.

Figure 2 shows spectral distributions of whitecap coverage over frequencies, P( f )
(Q =

∫
P( f )d f ), together with wave spectra. The P( f ) gives the contributions to whitecap

coverage from frequency interval ( f , f + d f ). It differs from Phillips’ breaking crest distri-
bution reported in experimental studies (see, e.g., [32–34,51]). As suggested by Phillips [2],
the velocity of a breaking front cb is equal to the phase velocity c of the breaking wave
generating the whitecap. Therefore, we obtained the P( f ) by converting the measured
whitecap velocities to frequency as f = g/(2πcb), using deep water dispersion relation
for gravity waves, where g is the acceleration of gravity. On the other hand, if we suggest,
following [9,52], that whitecaps move slower than the phase velocity, e.g., cb = 0.8c, the
spectrum of whitecaps coverage P( f ) is to be modified, as shown in Figure 2.
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Figure 2. Frequency spectra, S( f ), (solid line) and distributions of whitecap coverage over frequency, P( f ), for cb = c
(red bars) and for cb = 0.8c (green bars) for all experimental runs.

As follows from Figure 2, only waves from the spectral interval approximately above
double spectral peak frequency are breaking. Correspondingly, the length of modulating
dominant waves exceeds the length of breaking waves by a factor of three to four. Thus,
these data are suitable for analyzing the modulation of wave breaking from the equilibrium
range by long waves of spectral peak.

2.3. Processing Procedure

The main goal is to compare simultaneously measured whitecap coverage and long-
wave elevations that require special synchronization of the video camera and wave gauge
data records. To that end, time-series of wave gauge and sound output of the video camera
were recorded into a united file. The cross-correlation technique (see, e.g., [53]) was used for
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syncing the same time series from wave and video-sound recordings in the data processing.
The accuracy of synchronization is 1 millisecond.

Only wave breaking events falling into the rectangular box on the sea surface (see
Figure 1) were taken into account for comparison with the wave-gauge signal. The rectangle
of 3× 1.5 m2 size was extended along the crests of long waves and centered at the wave-
gauge position. Modulations of sea surface brightness visualize the long-wave in video
recording (see, e.g., [54]). The coherence of sea brightness and the wave-gauge signal in
any point of the rectangle was not less than 0.7, which allows linking whitecaps to the
long-wave phase. An error in the determination of the phase can be estimated as:

∆ = ±180◦ · L/λ/2

where λ is wavelength and L is the rectangle width across the long-wave crest, which for
typical wave conditions gives |∆| ≤ 5◦.

Figure 3 shows the time series of wave elevations, ζ(t), and instantaneous whitecap
coverage of the rectangle, q(t). Since breaking occurs very rarely, the realization of q(t)
has the form of separate spikes against zero background, so the spectral technique for
studying the radar MTF, described by Plant [50], is not applicable in this case. Therefore,
we used the procedure of individual-wave analysis suggested by Dulov et al. [35]. After
smoothing to filter out short waves, the elevation records were split into consecutive
periods between zero up-crossings, ζi(t). Augmenting them with corresponding periods
of whitecap coverage series, qi(t), we obtained data subsets (ζi(t), qi(t)) characterizing
individual waves (for an example of an individual wave see Figure 3). For each of the
individual waves, we introduced the wave period, Ti, as the time-length of the subset, and
the wavenumber:

Ki = (2π/Ti)
2/g
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Figure 3. An example of time-series (a) of wave elevation, ζ (blue), and whitecap coverage, q, (red), and (b) zoomed
individual wave period corresponding to the grey-marked part of the recording.

To compare different individual waves, we converted the time to the phase of the
long-wave:

Φ = 2π(t− ti)/Ti

where ti is the instant of the first zero up-crossing, and considered the dimensionless
elevation profiles:

δi(Φ) = Kiζi(Φ)

Maximum values of δi(Φ) represent the wave steepness ε = AK for sinusoidal waves.
As a result, several hundred individual-wave subsets (δi(Φ), qi(Φ)) were obtained from
each of the experimental runs (see Table 1).
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3. Results

Figure 4 shows averaged individual-wave profiles for each of the runs, Q(Φ) = 〈qi(Φ)〉
and Kζ(Φ) = 〈δi(Φ)〉 exhibiting phase-resolved whitecaps distribution. The whitecap
coverage profiles were normalized with their mean values (see Table 1). Amplitudes of av-
eraged dimensionless elevation profiles, ε, are also listed in Table 1. Hereinafter, confidence
intervals correspond to a double standard error.
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Figure 4. Averaged profiles of normalized whitecap coverage Q/Q (symbols with double-standard-error bars) and
dimensionless wave elevations Kζ (black lines) along the wavelength of individual waves for all experimental runs.
According to the definition of phase Φ, the wave in Figure 4 runs from the right to the left. Red lines show model
calculations for measured characteristics ε, U, α (see Table 1) and model parameters n = 5, ν = 0.5.

In all the graphs, a strong enhancement of wave breaking takes place around the wave
crests with a discernible shift to the backward (upwind) slope. Whitecap coverage profiles
are clearly deviated from the sinusoidal shape, in contrast to wave elevation, showing a
nonlinear connection between them. We describe the wave breaking modulations as:

Q = Q0 exp(Mε sin(Φ−Φ0)) (2)

where Q0 = Q exp
(〈

log(Q/Q)
〉)

and 〈. . .〉 means averaging over a period of the long
wave. For small wave steepness, ε→ 0 , Equation (2) reduces to Equation (1), which is a
traditional linear description of modulations induced by long-waves in radar signals [46]
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or wave breaking [35,37], where M is the modulation transfer function, and positive phase
shift Φ0 corresponds to shift of Q modulations maximum on the backward slope of the
modulating wave.

Figure 5a,b, combining all the data, demonstrate better applicability of nonlinear
description (2) for data fitting using a sinusoid. Moreover, nonlinear description (2) appears
to be inherent in our data, as confirmed in Appendix A. Fitting the log(Q/Q0) with
A sin(Φ−Φ0), we obtain that an increase in ε leads to linear growth of A remaining Φ0
constant, see Figure 5c,d. Least-square estimates gives:

M = 22.9± 2.7◦ Φ0 = 14.1◦ ± 5.0◦ (3)

which are consistent with linear estimates M = 23.8± 2.6 and Φ0 = 6.8◦ ± 9.0◦ reported
in [35]. It should be noted that the observed phase shift is also in concord with the
measurements [36], where a maximum of small-scale breaking detected using IR imagery
was found on the rear slope of the modulating waves.
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Figure 5. To data analysis: collapsing all the data using (a) linear (2) and (b) nonlinear (1) representations; (c) amplitudes
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Figure 6 shows wind dependences of modulation parameters. The results of [35,37]
obtained using linear representation (1) are also shown for comparison. Though wind
dependences are weak, the same trends are evident for all the datasets. Some bias of
estimations [37] is probably caused by residual foam, which was not completely removed
in their study, and accounting for small-scale, microwave breaking.
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Figure 6. Modulation parameters M (a) and Φ0 (b) as a function of wind velocity U. Symbols show data, lines show model
calculations for mean-over-data ε = 0.057, α = 0.63 and model parameters n = 5 and ν = 0.5.
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4. Modelling
4.1. Governing Equations

Modulations of short wind wave spectrum by long-waves orbital velocities are mod-
eled using the kinetic equation [55,56]:

∂N(k)
∂t

+ (cgi + ui)
∂N(k)

∂xi
− ki

∂ui
∂xj

∂N(k)
∂k j

= Sin + Snl − Sdiss (4)

where k = (k, ϕ) is the short-wave wavenumber vector, ω is frequency linked to wavenum-
ber via the dispersion relations for deep water, ω =

√
gk; N(k) is the wave action spectrum,

related to the energy (elevation) spectrum as N(k) = E(k)/ω; cgi is a component of the
group velocity of waves, u is the horizontal component of the long-wave orbital velocity,
i and j = 1, 2. Terms in the right-hand side of (4) describe the wind input, Sin, nonlinear
wave–wave interactions, Snl , and dissipation due to wave breaking, Sdiss.

Spectral sources on the right-hand side (4) are not exactly known. Following [2,18,57],
we adopt the wind input in the form of:

Sin(k) = β(k)ωN(k) (5)

where β(k) = 0.04(u∗/c)2 cos2(φ− φ0) is the wind growth rate, u∗ is the friction velocity,
and ϕ0 is the wind direction. Although the nonlinear energy transfer Snl is important for
the development of spectral peak waves [15], its role in the equilibrium range dynamics and
its modulations is probably not important, and this term is further omitted. Following [2],
the dissipation rate can be expressed through the length of wave breaking fronts, Λ(k), as:

Sdiss(k) = bDω−1g−2c5
bΛ(k) (6)

where bD is Duncan’s [1] empirical constant, cb = µc is the breaker advancing velocity with
µ varying in the range of 0.8÷ 1 [2,9,52]. The same quantity, Λ(k), defines the fraction of
the sea surface covered by whitecaps [2,18]:

Q = 2πγ
∫

k−1Λ(k)dk (7)

where γ is the averaged ratio of the whitecap width to the length of wave generating the
whitecap, and an integration domain in (7) corresponds to the range of breaking waves
observed in an experiment. For the uniform conditions (when waves are stationary and
there is no current), the balance between wind input (5) and dissipation (6) results in the
following background relationship for Λ(k):

Λ0(k) = b−1
D k−1β(k)B0(k) (8)

where B(k) = k4E(k) is the saturation spectrum, B0(k) is its value in the absence of
currents (background spectrum). Korinenko et al. [51] tested relationship (8) against the
field measurements and found its validity. However, relation (8) is not valid in the presence
of the current. On their nature, wave breaking characteristics, e.g., Λ(k) as well as the
wave breaking dissipation, Sdiss, are strongly nonlinear functions of the spectral level.
Following [2,18,54,58], we parameterize spectral distribution of breaking fronts and wave
breaking dissipation as power functions of the wave spectrum:

Λ(k) = Λ0(k)
(

B(k)
B0(k)

)n+1

(9)

Sdiss(k) = βωN(k)µ5
(

B(k)
B0(k)

)n
(10)
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where Λ0(k) is defined by (8). These expressions correspond to the Phillips’ theory of
equilibrium range [2] if n = 2 and to the Donelan and Pierson dissipation model [58] if
n = 5. For the background conditions, when B(k) = B0(k), relation (10) is reduced to (6)
with (8). As it follows from (9) and (10), any deviations of the wave spectrum, B(k), from
the background one, B0(k), result in an amplified nonlinear response of wave breaking
intensity (9) and the energy dissipation (10).

Equation (4) with wind input (5) and dissipation (10) close the model of short-wave
spectrum modulation by long surface waves. Once spectrum modulations are found, corre-
sponding modulations of whitecaps coverage could be found from (9) and (7). However,
Equations (7) and (9) do not account for the finite lifetime of whitecaps, which is essential
when it is comparable with the long-wave period. The reason is the following: whitecap
moves with velocity cb, and during its life span τ, it lags from the long-wave profile moving
with velocity C. Since the details of whitecap time-evolution are not exactly known, we
introduce this effect phenomenologically, defining Q along LW profile as:

Q(x, t) = 2πγ
∫

k−1Λ(k, Φ)dk = 2πγ
∫

k−1Λ0[B(k, Φ− ∆Φ)/B0]
n+1dk (11)

where Φ = K(Ct− x), K, and C are long-wave phase, wavenumber, and phase velocity,
respectively, ∆Φ = K(C− cb)τ(k)/2 is the phase shift between whitecaps and dissipation,
τ = 2πν/ω is the whitecap lifetime with ν as an empirical constant that does not depend
on k.

We consider the output of the model as:

R = Q/Q (12)

which does not depend on empirical constants γ and bD as follows from model equations.
Equations (4)–(11) completely formulate the model of long-wave manifestation in whitecap-
ping. This model corresponds to the models of surface manifestation of the ocean current,
suggested in [28,53], augmented with Equation (11) for whitecaps description, which takes
into account the finite life span of the breaker.

4.2. Model Analysis

We performed model calculations specifying u(x, t) in (4) and B0 in (8)–(10) for the
case of ϕ0 = 0 as:

ux = εC sin Φ uy = 0 (13)

B0 =

{
α0 cos1/m ϕ, cos ϕ > 0

0, cos ϕ ≤ 0
(14)

where m = 2÷ 4, and α0 is a constant on which the model output (10) does not depend
as follows from an analysis of model equations. Such a form of wave spectrum reflects
observed wide directional spread of waves at frequencies exceeding twice the spectral
peak frequency (see, e.g., [59–61]). To specify the wind growth rate in (5), we calculated
the friction velocity u∗ according to [49]. Details of model calculations are described in
Appendix B. Calculation results very weakly depend on exact values of µ and m. Therefore,
further, we present them at µ = 1 and m = 2 only.

According to model calculations, the MTF-value, M, is mainly determined by parame-
ter n, while the phase shift, Φ0, is mainly determined by parameter ν. Their best matching
to data results in:

n = 5 ν = 0.5

as illustrated in Figure 5c,d. It is worthy to note that n = 5, found here as a value
providing the best fit of whitecaps modulations to the data, corresponds to the exponent
of the nonlinear dissipation originally suggested by Donelan and Pierson [58] from very
different reasoning, to provide the best fit of short-wave spectrum to wind exponent of
radar scattering from short gravity waves.
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The model reproduces observed whitecap modulations (see Figures 4 and 5) and
their wind trend quite well (see Figure 6). Moreover, the model captures finer details of
non-sinusoidal whitecap profiles, as demonstrated in Figure A1. These conclusions are
related to the conditions of our experiments when the long waves and wind directions
were aligned. However, the model simulations shown in Figure 7 suggest that similar
features (high values of MTF, weak dependence on wind speed, and the shift of wave
breaking to the rear face of the long waves) take place at any angle between the wind and
swell. Additional experimental data are needed to confirm these predictions.
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Figure 7. (a) Magnitudes M and (b) phase Φ0 of the wave breaking MTF as a function of the angle
between directions of the wind and long-wave, θ. Legends show wind velocities.

5. Discussion

Wave breaking intensity is a strongly nonlinear function of the wave saturation
spectrum [2,9]. Therefore, small variations of short-wave spectrum, due to the interaction
of waves with the surface current of an arbitrary origin, result in a significantly amplified
response of wave breaking to the non-uniform surface currents (see, e.g., [24,25] for internal
waves, and [26,28,29] for sub- and meso-scale ocean currents).

In general, as assumed, the effect of long-wave orbital velocities on the short-wave
spectrum and wave breaking results from short–long waves interaction, the effect of
bound harmonics, and the wind velocity undulations (see, e.g., [36,42,45]). The short–long
waves interaction exhibits amplification of short waves on the long-wave crest and their
suppression in the long-wave trough at any directions between the wind and the long
waves. This fundamental mechanism was studied theoretically [62,63], numerically [64],
and experimentally in both the field [43,44] and in the laboratory [45]. Physically, the
modulation of short waves caused by short-wave straining and work of the radiation stress
against orbital velocities of the long-wave [62]. In spectral representation, this effect in the
present study is described by Equation (4).

Wave breaking, namely whitecaps coverage, is a strongly nonlinear function of the
wave saturation spectrum. We modeled this effect phenomenologically, introducing a
nonlinear link of breaking front lengths with spectral saturation level (9). This nonlinear
relationship inevitably leads to a strong response of whitecaps to small wave spectrum
modulations, providing high values of the wave breaking MTF M. The wave breaking
exponent n in (9) is the main parameter defining the value of M (see Figure 5c where slopes
of calculated curves are equal to M). As whitecaps have a finite lifetime, they lag behind
the long-wave crest, providing observed phase shift Φ0.

This study shows that neither effects of bound harmonics nor air–sea interaction is
needed to understand wave breaking modulation by long waves. The short–long waves
interaction and nonlinear transfer of short-wave steepness to wave breaking intensity
provide a general explanation of wave breaking modulation by long waves, including high
values of their modulation transfer function.
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6. Conclusions

This paper reports results of investigations of modulations of wind-wave breaking
by long surface waves using the data taken from the oceanographic platform in the Black
Sea and modelling. The data are collected at moderate to high wind conditions, U10 is in
the range from 10 to 20 m/s, and thus supplement the few field measurements of wave
breaking modulation reported before [35,37] for lower wind speeds, U10 < 10 m/s.

As found, the distribution of whitecaps along the long-wave has a strong nonlinear
shape with prevailing whitecapping on the crest of modulating wave and with almost full
wave breaking suppression in the trough areas. We proposed a nonlinear representation
of the whitecaps modulations in form (2), with a modulation transfer function of about
20. A simple model of whitecaps modulations by long surface waves is suggested, which
reproduces the observations on the quantitative level. We modeled the strongly nonlinear
response of wave breaking modulations to long waves introducing the wave breaking
exponent n (see Equations (9) and (10)). As found, the best fit of modeled whitecaps
modulations to the data results in n = 5. It should be noted that Donelan and Pierson [58]
found the same value for n from another reasoning, in the best fitting of the modeled wave
spectrum to wind exponent of radar scattering from short gravity waves.

We anticipate that reported results on wave breaking modulations by long surface
waves can be further used in different research applications, in particular for the investiga-
tion of radar Doppler scattering from the ocean surface, where hydrodynamic modulations
of the radar facets by large-scale surface waves significantly contribute to the formation of
the Doppler centroid anomaly [39,40].
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Appendix A. On Analysis of the Nonlinear Shape of Whitecap Coverage Profiles

For quantifying the nonlinear connection between profiles of whitecap coverage
modulations and longwave elevations, we used truncated Fourier expansion

Q = Q + Q1 sin(Φ−Φ1) + Q2 sin(2Φ−Φ2) + . . . (A1)

and described modulations through four parameters:(
M1 =

Q1

Qε
,Φ1,M2 =

Q2

Qε2
,Φ2

)
where M2 and Φ2 distinguish the nonlinearity. Figure A1a–c shows the dependence of
normalized amplitudes and phase shifts of the harmonics on the wave steepness ε. An
increase in ε leads to linear growth of Q1/Q and quadratic growth of Q2/Q remaining the
phase shifts constant. Least-square-estimates are:

M1 = 18.3± 1.3 Φ1 = 11.6◦ ± 3.4◦ M2 = 104± 17 Φ2 = 107◦ ± 12◦ (A2)
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For small wave steepness, Equation (2) reads:

Q = Q
(

1 +
〈

log
(

Q
Q

)〉
+ Mε sin(Φ−Φ0) +

M2ε2

4
sin(2Φ− 2Φ0 +

π

2
) +

M2ε2

4
+ . . .

)
that equivalent to (A1) if: 〈

log(Q/Q)
〉
= −M2

1ε2/4 (A3)

M2 = M2
1/4 (A4)

Φ2 = 2Φ0 + π/2 (A5)

As follows from estimates (A2), Equations (A4) and (A5) are fulfilled in the limits of
confidential intervals (M2

1/4 = 84± 12 ≈ M2, 2Φ1 + 90◦ = 113◦ ± 7◦ ≈ Φ2). Figure A2d
shows the correspondence of data to Equation (A3), where the dashed line is drawn for
M2

1/4 = 84. Thus, our data support the representation (2) up to the order of O(ε2).
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Appendix B. Calculation Procedure

If the field of currents (13) switches at t = 0, then model calculations reduce to solving
an initial value problem to equations (4) with initial condition (12) for B. The steady-state
solutions of the problem at a big enough time model the whitecap response to periodical
currents. In Section 4.2, we discussed model results based on this solution.

We considered B(k, ϕ) on the grid log-spaced in k ∈ [kmin, kmax] and uniform in
ϕ ∈ [−π/2, π/2], where kmin = 4K. kmax = 6.3 rad/m that corresponds to the shortest
waves, where breaking is resolvable in our experiments. For current velocity (11), after
the transition to the frame moving with the long-wave phase speed C through changing
variables (t, x) to (t, Φ), the Equation (4) reads:

∂B
∂Φ

= F[Φ, B], F =
εD cos Φ + βκB

(
1−

(
B
B0

)n)
1− cos φ

2κ − ε sin Φ
(A6)

where κ =
√

k/K, and D = − cos ϕ
(

cos ϕ
(

k ∂B
∂k −

9
2 B
)
− sin ϕ ∂B

∂ϕ

)
. Numerically, evaluat-

ing the term D at every grid node, we considered (A6) as an ordinary differential equation
and integrated it with initial conditions at Φ = 0, using a second-order Runge-Kutta
scheme.

Figure A2a shows the process of converging to a steady-state solution for the integral
measure, fractional whitecap coverage Q normalized with its initial value Q0. After
switching on the currents, whitecap production occurs more extensively on long-wave
crests than on their troughs due to the nonlinearity of the wave dissipation. It leads to
abrupt growth of the mean-over-period value of Q, Q, which is also shown in Figure A2a.
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Further whitecap coverage adjusts to periodical disturbances, and Q decreases to be slightly
lower than its initial value. In this paper, the variable R = Q/Q is used both in experiment
and model analysis. Though the adjustment process lasts tens of long-wave periods, R
remains practically unchanged after the tenth period, see Figure A2b.
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