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INTRODUCTION

The modeling of the spectrum of gravity–capillary
wind waves with wavelengths lying in the range from
centimeters to millimeters has recently been a central
problem in the physics of the sea surface [1–6]. By
forming water-surface roughness, short wind waves
influence the ocean–atmosphere coupling, thus
becoming a necessary component of geophysical
models. Ocean monitoring from space with the aid of
radars with real and synthesized apertures, scatterom-
eters, microwave radiometers, altimeters, and optical
facilities is performed owing to electromagnetic scat-
tering and radiation by the sea surface. These phenom-
ena not only depend on the spectrum of gravity–capil-
lary waves but are also frequently determined by it.

Empirical data on the spectrum of short wind
waves was gathered from practical radar studies of the
sea surface, special-purpose radar experiments [7–9,
and others], and investigations of waves in laboratory
flumes [10–13]. These data were summarized in
empirical models of the spectrum of gravity–capillary
waves [2, 3, and others]. We will list the basic conclu-
sions of the cited studies by using the saturation func-
tion (curvature spectrum) 
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. In the gravity–capillary
range, the function 
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 has the following features.
(i) In the entire range of wavelengths, the spectral

density increases with the wind speed, and this effect
is particularly clearly defined in the range of wave-
lengths smaller than 20 cm. If the increase is
described by the formula 
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, where 

 

U

 

 is the wind
speed, then the exponent 
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, which is ~1 in the gravity
range, becomes 3 in the range of wavelengths corre-
sponding to a minimum phase velocity at 
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~ 2

 

 cm.
(ii) In the case of weak winds, the function 
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)

 

 has
a distinctive form: a dip is observed in the range of
centimeter waves, which is followed by a secondary
peak in the range of transition from centimeter to mil-
limeter waves and, further, by an abrupt decrease of
the spectral density in the millimeter range. As the
wind speed increases, the dip is filled and disappears,
whereas the level of the spectrum in the secondary
peak increases by an order of magnitude.

(iii) In the range of gravity waves, the angular
width of the spectrum increases as the wavelength
decreases, whereas the inverse dependence is
observed in the range of gravity–capillary waves: the
angular width of the spectrum decreases as the wave-
length decreases.

Physical modeling of the spectrum of gravity–cap-
illary waves was performed in [1, 4, 5, 15, and others].
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—The formation of the spectrum of short wind waves from the gravity–capillary and capillary ranges
under the effect of three-wave interactions is considered. In order to determine the spectrum, the kinetic equa-
tion for wave packets is integrated to the point where the solution is established. Three-wave interactions are
described by a collision integral without introducing any additional assumptions simplifying the problem. This
calculation procedure reproduces the Zakharov–Filonenko theoretical spectra, which correspond to the cases
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velocity of waves and the formation of a secondary peak in the capillary range. The dip is filled and disappears
as the wind speed increases. Taking into account the interaction between short and long waves increases the
spectrum in the capillary range several times, and the balance between energy input from long waves and vis-
cous dissipation is established in the capillary range. The energy sink caused by three-wave interactions, vis-
cous dissipation, and wind forcing cannot give the stability of the spectrum of short gravity waves.
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This modeling is based on the wave kinetic equation.
In a horizontally homogeneous case, this equation is
written as
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 is the spectral density
of wave action, which is related to the spectra of energy
and elevations; 
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 is the spectrum of wave energy;
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 is the water density; 
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 are the eigenfre-
quency and phase velocity of waves, respectively; and

 

Q

 

i

 

 are the sources that describe wind forcing, viscous
dissipation, nonlinear interactions of waves, and other
physical ways the spectrum forms. The proposed spec-
tral models differ both in the number of the sources 

 

Q

 

i

 

under consideration and in their specific mathematical
descriptions. The desired model of the spectrum is the
time-independent solution to Eq. (1), which corre-
sponds to the balance of sources
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In [1, 4], the sources that also model nonlinear
interactions are algebraic equations of the spectra, and
Eq. (2) is an algebraic equation for 
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. If nonlinear
interactions are included in the number of sources as
the integrals of three-wave collisions, then, in order to
determine the time-independent solution to Eq. (1), it
will be necessary to integrate this equation with
respect to time to the point where this solution is
established. However, such a problem is rather diffi-
cult and laborious for a nonlinear integro-differential
equation. Therefore, this problem was previously con-
sidered only using approximations whose adequacy
could hardly be assessed: waves were assumed to be
unidirectional in [15], whereas in [5], additional con-
ditions were imposed on integral characteristics of
nonlinear transfer and the problem was reduced to a
system of ordinary differential equations.

Although, in due time, each of the models pro-
posed in the cited works yielded a spectrum increas-
ingly approaching observational data, all of these
models contain fitting parameters and, sometimes, fit-
ting functions as well. In a number of cases, nonlinear
interactions themselves were included in the model in
such a way as to cancel the “mismatch” between dif-
ferent mechanisms of forcing and dissipation. There-
fore, the role of nonlinear interactions in forming the
spectrum of short wind waves is presently unclear.

The local spectrum of short waves is known to vary
along the profile of a long wind wave. The action of
gravity waves on the mean spectrum in the gravity–
capillary range is, to a first approximation, described
as a three-wave process [16, 17]. Although the inter-
action between capillary and gravity waves is a tradi-
tional issue in studies of sea-surface dynamics, it
seems likely that this problem has not been considered
in the context of a statistical description of three-wave
interactions.
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Energy input from the wind alone is insufficient to
maintain the balance of energy for waves of the capillary
range [18]. For this reason, the mechanism of capillary-
ripple generation by the sharpenings of the short gravity
waves that are related to capillary waves by the condition
of phase-velocity equality (phase synchronism [19]) was
phenomenologically included in the spectral model of [4].
However, three-wave interactions can also transfer energy
from short gravity waves to capillary waves. This transfer
is most intense if the phase velocity of the long wave is
equal to the group velocity of the short wave [17] (group
synchronism [17]). However, the role of this cascade
transfer in forming the spectrum of capillary waves
remains unclear.

The aim of this paper is to study the effects of
three-wave interactions on the formation of the spec-
trum of short wind waves. The three-wave interactions
are described by a collision integral without using any
additional approximations. The spectrum of short
wind waves in the form of a time-independent solution
of kinetic equation (1) was calculated by numerically
integrating the equation to the point where the solu-
tion is established.

THREE-WAVE INTERACTIONS

While energy transfer over the spectrum of gravity
waves is accomplished by four-wave interactions (see,
for example, [20, 21]), energy transfer in the gravity–
capillary range may be performed by three-wave
interactions [20, 22]. This result follows the disper-
sion relation of a general form
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where 
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 is the acceleration of gravity and 
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 is the kine-
matic coefficient of surface tension. The interaction
occurs within resonance triads of waves, and it may
include both the sum and difference processes:
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Here, indices 1 and 2 denote the dependence on the
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 and the absence of the index
implies a dependence on 
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. The collision integral that
describes the transfer of wave action over the spectrum
and presents one of the sources 
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i

 

 in kinetic equation
(1) has the form

 

(5)

 

where the first and second terms describe the sum and
difference processes, respectively, and the interaction
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coefficients VS and VD taken from [23] and transformed
using formulas (4) are written as

ba = k – k1 – k2, bb = k – k1 + k2, bc = k + k1 – k2.

Three-wave interactions may be both local in the
k-space, when the interaction of waves with wave-
lengths of the same order of magnitude occurs, and
nonlocal. An elegant physical theory of forming the
spectrum of capillary waves was proposed in [22].
This theory suggests that local three-wave interactions
are a dominant mechanism for forming the spectrum
in the entire capillary range except for its shortest
wavelength portion, where viscous dissipation
becomes important. In this case, the weakly turbulent
Kolmogorov spectrum forms in the capillary range.
This spectrum is determined by a constant (over the
spectrum) energy flux to the dissipation range and is
described correspondingly by the equation St[n] = 0.
Then, in the approximation of isotropic waviness, the
saturation function in the capillary range depends on
the wave number as

B ~ k–3/4. (6)

This form of the spectrum was obtained from numerical
calculations [24]. The authors of [22] have also found
one more isotropic solution to the equation St = 0 in the
capillary range (E(k) = const) whose physical meaning
is the equipartition of energy over wave numbers as a
result of local three-wave interactions in the absence of
energy sources and sinks. In this case, the dependence
of the saturation function on the wave number is

B ~ k2. (7)

In nonlocal interactions, wave components are sub-
stantially separated in the k-space; for example, a gravity
wave interacts resonantly with two capillary waves that
have very close wavelengths. In this case, the three-wave
interaction describes the first nonzero term of the expan-
sion in terms of slopes when a conservative interaction of
long and short waves is considered using the method of
perturbation theory [16, 17], whereas resonance condi-
tions (4) assume the form

(8)

where K and Ω are the wave vector and frequency of a
long (i.e., short gravity) wave, respectively, and k and ω
are the wave vector and frequency of a short (capillary)
wave, respectively. For unidirectional waves, condition
(8) implies that the group velocity of a short wave
equals the phase velocity of a long wave—group syn-

VS 2 7/2– b( abb cc1/c2 babc cc2/c1+=

+ bbbc c2c1/c ),

VD 2 7/2– b( abb cc1/c2 ba– bc cc2/c1+=

– bbbc c2c1/c ),

Ω K
dω
dk
-------,=

chronism [16, 20]. The wave numbers turn out to be

related to each other by the equation K = 4 /9k, where
the wave number

km = 

corresponds to a minimum phase velocity.
Both local and nonlocal interactions are described

by common relation (5); however, the contribution of
nonlocal interactions may be described by a simplified
expression in the form of a diffusion operator [27],
which is the asymptotic form of (5) when K/k  0:

(9)

where N is the spectral density of the wave action of
long waves. The ratio of the contributions of local and
nonlocal interactions was considered in [17, 25] by cal-
culating St for models of real short-wave spectra. The
contribution of local interactions in the capillary range
turned out to be substantially smaller than the diffusion
of action under the influence of long waves, which is
described by (9).

NUMERICAL MODEL

The methods and results of numerical calculations
of integral (5), as well as the survey of the related
problems, can be found in [15, 17, 24, 25, 27] : (i) inte-
gral (5) was calculated using an adaptive method,
(ii) the volume of calculations was reduced as a result
of taking into account the integrand’s symmetric prop-
erties, (iii) exact analytic expressions were used for
the integration boundaries and for determining reso-
nance triads, and (iv) singularities were eliminated by
changing the integration variable in their vicinities.

The spectrum B(k, θ) was studied in the ranges
kL < k < 15km, where kL = (0.1 – 0.7)km and 0 ≤ θ ≤ π,
under the assumption that the spectrum is symmetric
about the wind direction θ = 0. Calculations were car-
ried out on a grid with points equally spaced in the
variables κ = ln(k/km) and θ. The grid spacings were
∆k ~ ∆θ ~ 5 × 10–2. In order to calculate integral (5), we
used a 16-point (4 × 4) interpolation of the spectrum
c(k)B(k) by a polynomial cubic in κ and θ (the
Lagrange interpolation). As in calculations of the
four-wave transfer in the gravity range of wind waves
(see, for example, [21]), our model includes a “diag-
nostic” range (where the spectrum is specified and
remains invariant during calculations) and a “prog-
nostic” range (where the spectrum is to be calculated).
In the given case, the diagnostic spectrum is the long-
wave spectrum that was specified on the grid’s exten-
sion into the range k < kL.
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Equation (1) was integrated by a two-step explicit
scheme

 = Bj + ∆B[Bj] 

Bj + 1 = Bj + (∆B[Bj] + ∆B[ ])/2  

∆B[B] = 

where j is the number of iteration. This computation
was carried out to the point where the absolute value of
the sum of all sources for each grid point was smaller
(at least by two orders of magnitude) than the absolute
value of each of the sources. The instability of the
explicit scheme manifested itself in the fact that the
spectrum approached infinity at one of the grid points,
then, on further computation, it approached infinity at
all of the grid points. This problem, as well as the prob-
lem of appearing negative values of the spectral density,
was resolved by successively decreasing the integration
step ∆t.

RESULTS
Local Interactions 

First and foremost, let us consider the evolution of
the spectrum localized in the k-space in order to reveal
the main effects of local three-wave interactions. We
specify the initial spectrum as a Gaussian function in
κ and θ with a peak at the point kp = (kp, 0):

(10)

The kinetic equation may be written as dn/dt = St[n]
for all wave components. Let n1(t, k) be a solution to
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this equation, so that n = αn1(t/α, k), α > 0) is also a
solution. In this sense, the quantity B0 does not influ-
ence the evolution of the spectrum. The normalized
spectrum B(k, θ)/B0 turns out to be the same at an iden-
tical number of iterations if the condition B0∆t = const
is fulfilled. We will present below the evolution times
for B0 = 5 × 10–3, which is characteristic of the quantity
Ç for moderate winds (see, for example, [4]).

If the initial spectrum corresponds to a quasi-
monochromatic wave ∆κ ~ ∆θ ~ 0.1, its evolution rep-
resents a very slow diffusion of the initial perturbation
in the k-space. This trivial solution reflects the fact
that a monochromatic wave has no partners for an
effective three-wave interaction.

Figure 1 shows the evolution of a broadband spec-
trum with the initial parameters kp = km/2, ∆κ = 0.5, and
∆θ = π/4. Here and below, plots for the saturation func-
tion B(k) and for the spectrum of energy inputs and
sinks

QE = ω(k)St(k).

are presented. For convenience, these two quantities in
Figs. 1–3 are normalized by B0 and a maximum value
of |QE| at t = 0, respectively. In order to use a logarith-
mic scale for representing QE(k), the plots of |QE| are
depicted, whereas the ranges of positive values of the
source are marked by plus symbols. Figure 1 presents
the plots for θ = 0, and the patterns of variation for other
wave directions remain similar. The time intervals from
the beginning of evolution for which curves 2 and 3 are
constructed correspond to 8.8 and 38 periods of waves
with a minimum phase velocity.

The basic feature of this process is energy transfer
to the short-wavelength range. When the peak of the
initial spectrum is located in the capillary range,
energy transfer to the long-wavelength range occurs
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Fig. 1. Evolution of the spectrum localized in the k space: (a) saturation function and (b) spectrum of energy inputs and sinks (the
absolute value of QE is shown, and the regions where QE > 0 are indicated by crosses). Curves 1–3 correspond to the moments of
time 0, 0.65, and 2.8 s, respectively.
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as well. However, the latter process is substantially
weaker than the dominant energy transfer to short
waves.

If energy is originally localized in the range of
short gravity and gravity–capillary waves kp = O(km), a
dip appears in the vicinity of wave numbers k ~ km as
a result of energy transfer (see Fig. 1a). In this case,
the spectrum in the capillary range may increase by
orders of magnitude, which results in the formation of
a secondary peak. For different values of kp, the dip
always occurs in the same region, whereas the position of
the secondary peak may vary in the course of evolution.
Such a character of the solutions appears to be due to the
specific form of the source QE (see [25–27]); the source

is negative in the region k <  and it undergoes a

jump at the point k = , assuming a maximum
positive value. The source has this form at the begin-
ning of evolution (see Fig. 1b, curve 1). In the course
of evolution, the source transforms substantially and
its value in the capillary range approaches zero (see
Fig. 1b).

In Fig. 1a, a portion of curve 2 has a specific saw-
tooth form. As is shown in [15], three-wave interac-
tions of unidirectional waves generate energy-transfer
cascades that are immiscible in the wave space. In
numerical calculations of the evolution of the spec-
trum of unidirectional waves under the effect of three-
wave interactions, these cascades can manifest them-
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Fig. 2. Establishment of energy equipartition for the isotropic spectrum: (a) saturation function and (b) spectrum of energy inputs
and sinks (the regions of energy input, where QE > 0, are indicated by crosses). Curves 1–3 correspond to the moments of time 0,
4.1, and 33 s, respectively.
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Fig. 3. Formation of the inertial range of the isotropic spectrum in the capillary region: (a) saturation function and (b) spectrum of
energy inputs and sinks (the regions of energy input, where QE > 0, are indicated by crosses, and the dissipation region is indicated
by squares). Curves 1–3 correspond to the moments of time 0, 2.25, and 18.6 s, respectively.
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selves in the spectrum with a saw-tooth form. Such a
saw-tooth spectral form sometimes also appears in our
calculations for waves with a wide angular spectrum,
and the positions of local peaks correspond to calcula-
tions for unidirectional waves (cf. Fig. 7 from [15]).
As is seen from Fig. 1, a saw-tooth form appeared at
the beginning of the evolution (curve 2); further, how-
ever, this form was smoothed in the curvature spec-
trum (curve 3) and remained in the spectrum of the
source QE alone. Below, however, we will present
examples in which a saw-tooth form holds in a steady-
state spectrum of waves.

Jump variations in St(k) (a jump in St at k = 
Van Gastel’s saw) is a formal consequence of using

2km,

the delta functions of frequencies in collision integral
(5). For a more realistic description of wave interac-
tions, these functions should be replaced by their
smeared analogues, which reflect the smearing of fre-
quency resonance (4) under the effect of different
physical factors (see, for example, [17], where a mod-
ification of (5) is obtained with allowance for viscos-
ity). In numerical calculations [28], the saw disap-
pears when wave evolution is considered on a variable
current, which actually violates the exact frequency
resonance because of the Doppler shifts. The jump of

St at k =  is smoothed if the modulations of the
effective acceleration of gravity that are due to orbital
motions in long gravity waves are taken into account
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Fig. 4. Establishment of the spectrum of gravity–capillary and capillary waves due to the three-wave energy transfer from the region
of short gravity waves: (a) saturation function and (b) spectrum of energy inputs and sinks. Curves 1 and 2 correspond to calcula-
tions with different initial conditions (see text) for the moments of time (a) 0.07 and (b) 0.0 s. In the course of evolution, these curves
coalesce into curve 3 at 1.3 s.
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(the sections of the spectra are shown at θ = 0 rad).
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[25]. Thus, jumps and inflections in St(k) are actually
absent in more realistic (and, correspondingly, more
laborious) calculations. In the given study, however,
the appearance of a saw, which hinders the interpreta-
tion of results, is due to the accepted simplifications,
i.e., to the calculation of St by formula (5) with the use
of the delta functions of frequencies.

Figure 2 presents an example of calculation results for
an isotropic spectrum. The initial spectrum is given by for-
mula (10) with the parameters ∆θ = ∞, kp = 0.7km, and
∆κ = 0.5. The behavior of the evolution in this case is
the same as in the case of an anisotropic spectrum with
a wide angular distribution; energy transfer to the
short-wavelength region is a dominant process which
generates a dip in the spectrum at k ~ km (cf. Fig. 1).
However, the calculation covers a rather long time
interval: curves 2 and 3 correspond to 58 and 448 peri-

ods of waves with a minimum phase velocity. In this
case, according to [22], evolution is bound to proceed
toward energy equipartition over wave numbers as a
result of local three-wave interactions in the absence
of other energy sources and sinks. The calculation
does demonstrate the establishment of equipartition in
the capillary range. The slope of the saturation func-
tion ~k2, which corresponds to equipartition, is also
shown in Fig. 2a by a dashed linear segment. The
spectrum in the range where this slope is established
evolves slowly; the spectrum increases as a result of a
continuing energy transfer from the region of its initial
localization. However, as is demonstrated by Fig. 1b,
the value of the source |QE| in the establishment region
is several orders of magnitude smaller than that in the
region of the efficient energy sink k ~ km.

Figure 3 illustrates numerical experiments on the
establishment of the Zakharov–Filonenko isotropic
flux spectrum in the capillary range. Conditions for
the occurrence of the inertial range were ensured as
follows. To consider pure capillary waves, the initial
spectrum was specified via formula (10) with the
parameters kp = 4km, and ∆κ = 0.25. The spectrum in
the region k < kp was treated as a diagnostic spectrum.
The maintenance of a constant spectral level here
physically implies the delivery of the necessary
energy, i.e., pumping in the long-wavelength region.
To provide dissipation in the short-wavelength region
k > 12km, the term γB was added to the right-hand side
of Eq. (1), where γ is a smooth monotonic function of k so
that γ(12km) = 0 and γ(15km) = –4νk2, ν = 1.3 × 10–6 m2/s
is the kinematic molecular viscosity of water. In the
beginning of the calculation, the balance St ≈ γB is
established in the dissipation range k > 12km, so the
relation |St – γB|/St = O(0.01) remains valid during fur-
ther evolution.
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The condition St = 0 must be satisfied in the inertial
range. Curves 2 in Fig. 3 are calculated for 30 periods
of waves with a minimum phase velocity and show
how the inertial regime is approached in the range
(7–10)km, where the value of |QE| becomes several
times smaller than in other regions (see Fig. 3b). The
slope of the spectrum B(k) in the vicinity of k ~ 8km is
close to –3/4, which follows from the results of [22].
The dependence ~k–3/4 is also shown in Fig. 3a by a
dashed linear segment. However, as the calculation
continues, Van Gastel’s saw appears in this spectral
range. Curve 3 in Fig. 3b, which corresponds to a cal-
culation time of 250 periods of waves with a minimum
phase velocity, shows that, physically, the inertial
range occurred in the region (5–12)km, with |QE| values
that are two to three orders of magnitude smaller than
beyond this region. At the same time, only the saw
peaks in the spectrum of the saturation function sat-
isfy the law ~k–3/4 (curve 3 in Fig. 3a).

The presented results show the potentials of the
calculation method used above and reveal the main
function of local three-wave interactions in forming
the spectrum of short wind waves (the energy transfer
to the short-wavelength region). Curves 2 in the fig-
ures demonstrate that major changes in the spectrum
that are due to three-wave interactions occur in a char-
acteristic time of 10 to 30 periods of waves with a
minimum phase velocity. In [3, 4], it is suggested that
three-wave interactions are responsible for the forma-
tion of a dip in the curvature spectrum under weak
winds. This is strongly supported by the performed
calculations; energy transfer due to three-wave inter-
actions occurs so that a dip forms in the region k ~ km,
while a secondary spectral peak forms in the vicinity
of (2–5)km.

Effect of Short Gravity Waves
on the Gravity–Capillary Spectrum 

Further, we will treat the short-wavelength portion
of the spectrum of gravity waves k < kL as a diagnostic
spectrum with a specified quantity B(k, θ) = B0(θ) and
calculate the gravity–capillary spectrum in the region
k > kL. To isolate the effect of three-wave interactions,
we will assume that there are no other energy inputs in
the prognostic region of gravity–capillary and capil-
lary waves. For the solution to be established in the
prognostic region, we will add the viscous dissipation
Qvis = –4νk2n to the right-hand side of kinetic equation
(1) (see, for example, [20]). Then, the wave spectrum
in this region will form only due to energy transfer
from gravity waves.

However, there are two possibilities for this trans-
fer. In the case of three-wave interactions, waves from

the region k < km/  can interact only with shorter

waves from the region k > km/  [15, 25]. Therefore,

2

2

energy is transferred immediately from the diagnostic

to the prognostic region only if kL ≥ km/  However,

if kL < km/  energy is transferred from the diagnostic

region to the subrange k >  where  > km/2. Energy
can be delivered only from this subrange due to three-

wave interactions to the second subrange kL < k <  to
longer waves. For brevity, these cases will be referred
to as a direct and an inverse cascade, respectively, and
we will consider the direct cascade first.

First and foremost, it is of interest to find out
whether the spectrum with a level B comparable to B0

can be established in the region k > kL only at the
expense of three-wave transfer of energy from the
region of short gravity waves and its viscous dissipa-
tion. In other words, whether the mere presence of
short gravity waves is sufficient for the existence of
the spectrum of gravity–capillary and capillary waves.
Our numerical experiments have shown that this is
actually possible for the direct cascade. The steady-
state spectrum does not depend on the initial condi-
tions in the prognostic region and is controlled by the
calculation parameters B0 and kL. Figure 4 shows the
results of two calculations for an isotropic spectrum
with the parameters B0 = 5 × 10–3 and kL = 0.8, which
differ in initial conditions in the prognostic region.
Curves 1 and 2 correspond to the initial conditions
B = B0 and B = B0/500, respectively, whereas curve 3
shows the calculation result to which both solutions
converge in 1.3 s (17 periods of waves with a mini-
mum phase velocity). Figure 4a illustrates the estab-
lishment of the spectrum when the function B(k) rap-
idly assumes a characteristic form (curves 1 and 2 in
Fig. 4a correspond to the time 0.07 s). Figure 4b
shows the absolute values of energy inputs and sinks
because of three-wave interactions: curves 1 and 2
correspond to the initial distributions of QE, whereas
curve 3 corresponds to the steady-state solution. The
evolution of the source QE proceeds so that its balance
with viscous dissipation is established first (|St +
Qvis|/St = O(0.01)) for the shortest capillary waves.
After that, variations in B and QΕ in this region occur
with balance retention, and the region itself extends
because it includes longer waves. The balance holds
for all capillary waves k > 2km for 0.4 s. As can be seen
from comparing curves 1 and 2 with curve 3 (Fig. 4b),
the spectral form of the source QE changes substan-
tially in the course of adjusting the three-wave energy
transfer to the action of viscous attenuation.

While local interactions ensure energy transfer
from the region k ~ kL to the region of a secondary
peak, nonlocal interactions accomplish an immediate
energy transfer from short gravity waves to capillary
waves. To emphasize the effect of nonlocal interac-
tions, we carried out calculations that differed from

2.

2,

kL
a , kL

a

kL
a



388

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS      Vol. 45      No. 3      2009

 DULOV, KOSNIK

the previous calculations by the absence of gravity
waves with wavelengths longer than 8.5 cm (B = 0 if
k < 0.2km). The results are compared in Fig. 5, where
curves 1 are calculated with allowance for nonlocal
interactions and correspond to the steady-state solution,
which is shown by curve 3 in Fig. 4, and curves 2 are cal-
culated without considering nonlocal interactions.
The main difference in the form of the spectrum
occurs in the region of capillary waves. As is seen in
Fig. 5a, due to nonlocal interactions, the spectral level
for k > 5km increases by an order of magnitude. Figure 5b
shows that the decrease of the spectral level results
from a strong reduction of energy input to the region of
capillary waves in the absence of a three-wave energy sink
for short gravity waves from the range k < 0.2km.

Figure 5 also depicts the sections of the steady-
state spectra for θ = 0 (curves 3) that are calculated for
the spectrum with its diagnostic part

B(k, θ) = B0/cosh2βθ, (11)

where β = 1 and B0 and kL have the same values as
before. As follows from the figure, the spectrum’s
anisotropy does not lead to new features in the form of
spectra in the principal direction.

The sections of the steady-state spectra B(k, θ) for
different values of k/km and the related sections of QE

are shown in Fig. 6. For all directions, the function
B(k) exhibits a dip at k ~ km and a secondary spectral
peak, which is followed by a rapid decrease with
increasing k. In the principal direction, the solution is
established in less than 2 s, whereas it is established
more slowly in lateral directions. (The figure shows
the spectra corresponding to 5.6 s. The angular width
of the spectra decreases monotonically as k increases.)

As was noted in [15, 25], the main contribution to
the collision integral is made by the interactions of
waves with close directions. In other words, the inten-
sity of three-wave transfer in direction θ, which is
determined by the spectral level B(θ) in the diagnostic
region, turns out to be lower than this intensity in the
principal direction, which explains the slowdown of
the establishment of the spectrum for lateral direc-
tions. The reduction of the intensity of three-wave
interactions at lateral directions are likely to result in
the fact that other energy inputs prove to be dominant
at these directions (see, for example, [6]). It should be
noted that calculations show a monotonic decrease in
the angular width of the spectra with increasing k in
the entire range from short gravity to capillary waves.
According to experimental data [7, 9, 12], the angular
width of the spectrum of short waves does decrease as
k increases in the range k < k∗, where k∗ lies in the
gravity–capillary range and corresponds approxi-
mately to a secondary peak; however, as k increases
further, the angular width increases.

The above main results of calculations are also
valid for other values of B0 in the range from 10–5 to
10–2 and for other angular dependences of diagnostic
spectrum (11) with β values from 0 to 4.

Effect of Wind Forcing 

According to experimental data, a dip in the spec-
trum B disappears when the wind speed increases.
Figure 7 shows the calculation results obtained for the

region of the direct cascade kL ≥ km/  which repro-
duce this phenomenon.

It is necessary to note that the level of the spec-
trum, as well as its dependence on the wind speed, is
substantially determined by the models of wind forc-
ing and wave-energy dissipation [1, 4]. In this study
we focused on the effect of three-wave interactions on
the form of the spectrum, leaving aside the problem of
reliably determining the spectral level. Taking into
account the qualitative character of our calculations
and the uncertainty in specifying the spectral level and
the angular distribution in the diagnostic region, we
chose the simplest model to construct Fig. 7. The
wave spectrum was assumed to be isotropic, and the
wind forcing was described by adding the term Qin =
ωβwn to the right-hand side of kinetic equation (2),
where the wind–wave interaction coefficient was writ-
ten as βw = 0.02 (u∗/c)2 [29] and the friction velocity

was estimated by the aerodynamic formula  = CDU2

with the drag coefficient CD = 1.5 × 10–3. As in Figs. 5
and 6, the parameters of the spectrum in the diagnostic
region were taken equal to kL = 0.8km and B = 5 × 10–3.
The characteristic time in whichthe solutions are
established is 1 s. As is seen in Fig. 7, the dip in the
curvature spectrum, which is due to three-wave inter-
actions, is actually filled as the wind speed increases.

Instability of the Inverse Cascade 

If kL < km/  and the wind forcing is absent, the
solution B(k) = 0 is established in the prognostic
region. Although the balance between energy input
and viscous dissipation can be achieved in individual
regions k ~ km in the course of establishment, the evo-
lution of the spectrum does not cease and its level in
the prognostic region decreases further, becoming
several orders of magnitude smaller than B0.

If the wind forcing in the form Qin = ωβwn (where
different formulas proposed in [1, 29, 30] are used) is
added to the right-hand side of kinetic equation (1), an
instability appears in the form of an unbounded
growth of βw within a certain portion of the region

kL < k <  These features of the inverse cascade
can be explained qualitatively as follows.

2,

u*
2

2

2km.
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Let indices 0, 2, and 1 be assigned to the ranges

kL < k < km/  km/  < k < km, and k > km,
respectively. Only difference processes are possible in
intervals 0 and 2, so that k0 = k1 – k2 and, according to
(2), the combinations of spectra under the integrals for
St are written as n1n2 – n0(n2 – n1). Taking into account
that k0 < k2 < k1 and that the spectra of action decrease
by a law close to the power law with an exponent of –3.5,
we retain the term – n0n2 alone in the combination of
spectra. Because the main contribution to the integral
St is made by the immediate vicinity of the integration
boundaries k0 and k2, the kinetic equation may be
approximately written as

= n0(b0 – a0n2),  = n2(b2 – a2n0), (12)

where the coefficients a are positive according to (2)
and the first terms on the right-hand sides are the differ-
ences between the wind forcing and the viscous dissi-
pation; i.e., b = ωbin – 4νk2. If the wind forcing is absent
(b < 0), system (12) has the stationary solution n0 = n2 = 0.
If the two coefficients b are positive due to the wind
forcing, there is the nontrivial stationary solution n0 = b2/a2,
n2 = b0/a0. Consider the small perturbations ∆n0 and ∆n2
in this solution. To within linear terms, the equations
for these perturbations may be written as

where the combinations of coefficients in parentheses
are positive. It follows that the stationary solution is
unstable against perturbations with different signs. If
∆n0 > 0 and ∆n2 < 0, then, in the course of time, ∆n0
increases at an increasing rate, whereas n2 continues to
decrease. If ∆n0 < 0 and ∆n2 > 0, n0 continues to
decrease, while ∆n2 increases at an increasing rate. This
is the same pattern of irregular instability development
in the solution as was observed in our numerical calcu-
lations when the saturation function increased without
bound either in interval 0 or interval 2.

Thus, the physical mechanisms considered
above—three-wave energy transfer, viscous dissipa-
tion, and wind forcing—do not ensure the existence of

the wave spectrum in the region k < km/ ; i.e., they
do not lead to a steady-state solution of the kinetic
equation. In order to construct a model for a real spec-
trum, it is necessary to take into account other mech-
anisms, for example, the dissipation of gravity waves
through the generation of capillary ripples under
microbreakings [5].

CONCLUSIONS

The effects of three-wave interactions on the for-
mation of the spectrum of short wind waves were

2, 2 2 2

dn0

dt
--------

dn2

dt
--------

d∆n0

dt
------------

b2a0

a2
----------⎝ ⎠

⎛ ⎞ ∆n2–=
d∆n2

dt
------------

b0a2

a0
----------⎝ ⎠

⎛ ⎞ ∆n0–= ,

2

studied. The spectrum was calculated by integrating
the kinetic equation with respect to time to the point
where a steady-state solution was established. The
collision integral was taken in its original form with-
out using any additional approximations, which made
the calculations easier. The averaged effect of short
gravity waves on capillary waves was automatically
included in the calculation results. A numerical imple-
mentation of the calculations made it possible to
reproduce the spectra for the cases of energy equipar-
tition and a constant energy flux in the inertial range,
which were proposed for the capillary region in [22].
The following conclusions were made on the basis of
the results obtained in this study.

(1) Three-wave interactions are an especially
effective mechanism of energy transfer from the
region of short gravity waves to the regions of capil-
lary and gravity–capillary waves. If the energy dissi-
pation of capillary and gravity–capillary waves is
determined by viscosity alone (Qvis = –4νk2n), the pres-
ence of short gravity waves alone is sufficient for
waves whose spectral density is in agreement with
observations in the order of magnitude to exist in these
regions. In this case, the spectrum of capillary and
gravity –capillary waves is established due to three-
wave interactions in no longer than 1.5 s. The spec-
trum in the capillary region is the result of the balance
between the direct energy input from short gravity
waves (the averaged result of interaction between
short and long waves, i.e., three-wave interactions that
are nonlocal in the k-space) and viscous losses.

(2) Due to three-wave interactions in the gravity–
capillary region, the experimentally observed typical
form of the curvature spectrum is established: there is
a dip in the region k ~ km (i.e., for wavelengths of about
2 cm) followed by a secondary spectral peak. With
allowance for a wind forcing, in accordance with
observations, the dip is filled and disappears as the
wind speed increases. It is possible that this effect
explains the fact that the spectral density of precisely
two-centimeter waves depends most strongly on the
wind speed (~U3).

(3) The three-wave energy transfer combined with
wind forcing and viscous dissipation cannot ensure
the stability of the spectrum of short gravity waves in

the region k < km/  To stabilize the spectrum in this
region, it is necessary to introduce additional wave-
energy losses to the kinetic equation. It seems logical
to take into account the dissipation related to micro-
breakings and the generation of capillary ripples [6].

(4) The angular distribution of wave energy that is
established as a result of three-wave interactions in the
gravity–capillary and capillary regions is character-
ized by a monotonic decrease in the angular width of
the spectrum with a decreasing wavelength. This
result corresponds to empirical notions for the region

2.
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of short gravity waves [7–9], but it is inconsistent with
experimental data related to the capillary region [12].
While correctly considering three-wave interactions
gives a realistic spectrum form at the dominant wave
directions, introducing additional sources to the right-
hand side of the kinetic equation seems to be expedi-
ent at lateral directions, where the energy of waves is
smaller and, correspondingly, the intensity of three-
wave interactions is small (see, for example, [6]).

What is the role of the above effects in forming the
actual spectrum of short wind waves? The answer to
this question could be given by the calculations that,
along with three-wave interactions, viscous dissipa-
tion, and energy input from the wind, take into account
the nonlinear dissipation of short gravity waves due to
microbreakings, as well as the accompanying genera-
tion of spurious capillary ripple [4, 18, 19]. It is nec-
essary to note that, according to this study, allowing
for nonlinear dissipation is of fundamental impor-
tance for the stability of the spectrum of short gravity
waves. However, no spurious capillary ripple is gener-
ated in the immediate vicinity of km, although dissipa-
tion becomes unimportant as the spectral level is
decreased because of the nonlinear character of dissi-
pation. Therefore, it is expected that the effect of dip
formation in the curvature spectrum in the vicinity of
km will also persist if these two sources are taken into
account.
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