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P E R I O D  E Q U A T I O N  FOR WAVES OF R A Y L E I G H  T Y P E  

ON A L A Y E R E D ,  L I Q U I D - S O L I D  H A L F  SPACE 

BY JAMES DORMA~ 

ABSTRACT 

A convenient formulation of the boundary conditions applicable to elastic wave propagation 
in a layered, solid half space was obtained by Haskell in terms of matrix algebraic operations. 
Developing this method further, the analogous problem for liquid layers is solved, and the 
treatment of liquid-solid interfaces is defined in matrix notation. This leads to a simple expres- 
sion for the period equation for surface waves of the Rayleigh type on a half space of solid and 
liquid layers arbitrarily interspersed. This formulation of the period equation appears to yield 
the most rapid method for numerical computations on surface wave dispersion. It  is the basis 
for computations used in several recent studies of earthquake surface-wave dispersion. 

INTRODUCTION 

In this paper the multi-layer Rayleigh wave dispersion theory of I-Iaskell (1953) 
is generalized to include a method of treating a layered, liquid half space or liquid 
layers interbedded with solid layers, as well as the case of a layered solid originally 
developed by Haskell. This theory is suitable for rapid numerical solution of the 
dispersion equation (relation between wave period and phase velocity) for any 
number  of layers which might be of practical interest in seismological problems. 
Haskell, following Thomson (1950), used a layer matrix, developed from solutions 
of the equations of motion in a homogeneous layer, as a convenient device for 
satisfying the boundary conditions at  the interfaces between layers. The present 
theory retains this useful feature as well as the same form of the solid layer expres- 
sions. The elements of Haskell 's  matrices for solid layers are given in the appendix 
of this paper  for convenient reference. The essential points of the matr ix  formula- 
tion are reviewed briefly below and new contributions to the theory are developed 
in detail in the following section. 

Using the symbols defined in table I, assume tha t  the z-axis points downward 
into the free surface of a layered solid and the x-axis is in the direction of propaga- 
tion of plane waves. Then the required boundary conditions at discontinuities are 
continuity of u, w, p~ and p~ for Rayleigh waves and v and Pu~ for Love waves. 
For the layer m bounded below by interface m and above by interface m - 1, 
Haskell 's  t rea tment  leads to the following equations writ ten in matr ix  form 

w / c  = am 

pz, I 
p x z  m 

Uc = b,. 

a/c 
w/c 
pzz 

p x z  m--1 

~/c 
Pyz  m--1 

(1) 

(2) 

for Ray ldgh  waves and Love waves, respectively. The a,,~ is a 4 X 4 matrix whose 
only arguments  are c, T, hm, am,/~m and pm • The bm is a 2 X 2 matrix whose only 
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arguments  are c, T, h~., fl~ and p~.  The elements of the matrix, a , . ,  are given in the 
appendix. Haskell  showed tha t  (1) and (2) writ ten for each layer of a multi- 
layered structure facilitate the i terative elimination of the equations which repre- 
sent the interface boundary  conditions. 

Although Haskell 's  t r ea tment  of the Love-wave problem is complete, certain 
interesting and useful points with regard to the t rea tment  of liquid layers in the 
Rayleigh wave problem require clarification. A liquid layer matr ix  of 4 rows and 
4 columns to be used in place of a~ in (1) was given by Haskell  (1953). This matrix 
gives satisfactory results when used to represent a bounded liquid layer or layers 
with no overlying solid layers. This configuration is useful in representing the ocean 
overlying the solid crust and mant le  of the earth. However,  Haskell  pointed out 

TABLE I 

DEFINITION OF SYMBOLS 

= Compressional velocity, sound velocity in water. 
= Shear velocity 

o = Density 
c = Horizontal phase velocity 

T = Period 
w = Angular frequency 
k = Horizontal wave number 

u, v, w = Particle displacements in x, y, z-directions, respectively. 
P~i = Traction in i-direction across plane normal to j-axis 

re = ( c V ~  ~ - 1) ~I~ 
ro = ( c V #  ~ - 1) ~j~ 
h = Layer thickness 

P . ,  = kh . , r~ .~  

Q~  = k h ~ r c m  

% ,  = 2 & , V c  ~ 

Note : In this paper r~ and r e are taken to be positive imaginary when c < a or c < ~. 

(personal communication) tha t  the matr ix  leads to overspecified boundary  condi- 
tions when used in any configuration where a solid layer overlies a liquid layer. 
Therefore it is preferable to revise this portion of the theory. A 2 X 2 matrix,  I~ ,  
derived from Haskell 's  work, replaces his 4 × 4 liquid-layer matrix. In  the general, 
multi- layer case where solid and liquid layers are interbedded in any order, the 
boundary  conditions to be satisfied are continuity of u, w, p= and p= at  solid-solid 
interfaces, and continuity of w and p= at  solid-liquid and liquid-liquid interfaces. 
These two types of boundary  conditions intermixed in any way can be satisfied as 
shown below in terms of matr ix  operations yielding a convenient form of the period 
equation. The resulting theory then includes the multi-layered, solid half space and 
the multi-layered, liquid half space as special eases. In  this theory, the bo t tom or 
semi-infinite layer can be either liquid or solid. 

This theory is the basis of the multi-layer, surface-wave dispersion program used 
at  Lamont  Observatory for the past  few years. Some examples of results obtained 
with this program are given by Oliver, Dorman,  and Sutton (1959); Dorman,  
Ewing, and Oliver (1960); Dorman  and Prentiss (1960); and Oliver and Dorman 
(1961) where continental and oceanic models were treated. In  addition the general 
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liquid-solid layering feature of this program has been useful in work done by 
Kutschale (1961) on propagation of acoustic waves over a stratified floating ice 
sheet in both deep and shallow water. A version of this program used on the IBM 
709 or 7090 does automatic multiple ease processing with options of finding Love 
and/or Rayleigh wave dispersion curves in any mode and any period range in each 
case. Some points regarding the numerical solution were discussed by Dorman, 
Ewing, and Oliver (1960). 

A problem closely related to the dispersion computation is the computation of 
the vertical distribution of particle motion and stress due to the surface wave. 
This computation requires as a starting condition a solution (c vs. T) of the period 
equation and, in cases involving solid layers, the relative amplitudes of the vertical 
and horizontal components at one or more points. The latter values may be ob- 
rained as by-products of the solution of the period equation. A computation of this 
sort for particle motion in solid layered structures was devised by Dorman and 
Prentiss (1960). 

THEORY 

As pointed out above, the boundary conditions at interfaces between liquid and 
solid layers or between liquid layers are continuity of w and p~.~ only. Therefore the 
equation for a liquid layer corresponding to (1) is 

w / c  ,~ = lm ¢ / c  ,~-1 
p~z p= (3) 

The l~ is the 2 X 2 matrix 

cos Pm i ( r~Jp .~c  2) sin Pm 
. ~ (~) 

z ( p ~ c / r ~ )  sin P.~ cos P.~ 

The expression (4) is obtained by taking the four central elements from the matrix 
given by Haskell in equation (6.3) of his paper. 

Using the notation S = (~/c,  w/c ,  p~.~, p~), and L = (w/c ,  p.~), we can write 
the following set of q equations for a series of q solid layers 

Sm-~l ~ am+lSm 

(5) 

Such equations are useful in computing the distribution of motion for a layered half 
space as well as in deriving the period equation. Using the relation expressed by 
(1), Haskell found the solution for Sm+~ in terms of Sm in the system (5), i.e., 

S,,+q = am+qam+q_l . . .  a,~+lS,~ (6) 

which gives a relation between S~+q and S~ in terms of a 4 X 4 array of numbers, 
am+~a,~+~_l . . .  a,~+l. Solving the system (5) in this way satisfies the boundary 
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conditions at the intermediate interfaces, m -t- 1, m -t- 21 . . .  m ~- q - 1. Simi- 
laxqy, for a system of sound waves passing through a layered liquid wave guide, 

L~+q = l~+ql,~+q_1 " "  1,,+lLm (7) 

is the relation which correctly satisfies the boundary conditions at the intermediate 
interfaces. 

In (6) the product a~+qa,~+q_l . . .  a~+1 has the same form as a~ .  Using this, 
the problem of representing the effect of a number of solid layers between two liquid 
layers is of the same form as the problem of representing the effect of a single solid 
layer. Similarly, by (7) the use of l,,~+ql,~+q_~ . . .  1,,,+~ allows us to give the effect 
of a number of liquid layers between two solid layers in the same form, involving a 
2 X 2 matrix, as for a single liquid layer. Therefore, in order to carry the description 
of motion and stress through sections of arbitrarily interbedded liquid and solid 
layers, it is sufficient to treat the problem of a series of alternating liquid and solid 
layers. This can be done by stating and then proving two theorems. They are: 
(A) at an interface, q, where the medium, q, overlying the interface is a solid layer, 
the effect of all the overlying layers can be represented by a single matrix of 4 rows 
and 2 columns regardless of the complexity of the layering above q; and (B) at an 
interface, q, where the medium, q, overlying the interface is a liquid layer, the effect 
of all the overlying layers can be represented by a single column vector of 2 ele- 
ments regardless of the complexity of layering above q. 

The two theorems are expressed by the equations 

Sq = M ~bo/C ' 

Lq = N ( w o / c ) ,  

for overlying solid (A) 

for overlying liquid (B) 

The M is a matrix of 4 rows and 2 columns and the N is a column vector of 2 ele- 
ments. In (A) Sq gives the motion in the overlying solid medium at interface q. 

Now if (A) is true, we can prove (B) by using a suggestion made by Thomson 
(1950), namely, that  the fourth of equations (A), 

p~._ = 0 = M41(~tq._l/c) -1- M 4 2 ( w o / c )  

can be rewritten 

M42 (~o/C). (S) 
i tq-1/c = M41 

Using (8), we can write the second and third of equations (A) as 

(oq/c = (M22 --  M21( ]/[42/M~l) ) (Wo/C) 

and (9) 
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which, in matrix notation, is a set of equations of the form (B) with 

N ,  = M~2 -- M21(M42/M4~) and N2, = Ma2 - Ma~(M42/M4~). 

Then writing Lq+~ = lq+~Lq as in (3) for a liquid layer underlying interface q, Lq 
can be eliminated, giving 

L~+I = Z~+iN(¢o/C) (10) 

But lq+lN is of the form of N which proves (B),  since we can replace q + 1 by 
q in (10). Therefore (A) implies (B).  

Conversely, if (B) is true, Sq is 

t.~q z 

itq/c ~q/c 

N(wo/c) 

0 

1 
0 
0 
0 

0 
Nll uq/c 

N02~ Wo/C 
(1l) 

where Sq represents the motion in an underlying solid medium at interface, q. 
Then writing Sq+l = aa+lSq as in (1) for the solid layer, q + 1, underlying inter- 
face q, Sq can be eliminated, giving 

itq/ C 
Sq+1 = aq+lM Wo/C (12) 

But  aq+lM is of the form M which proves (A) since we can replace q + 1 by q in 
(12). Hence (B) implies (A). 

Now if the top layer is a solid, then (A) is true for q = 1, the first interface, 
since the boundary conditions of vanishing stresses at the free surface give Sc = 
(ito/c, Wo/C, 0, 0). Or if the top layer is a liquid, then (B) is true for q = 1, since 
the surface boundary condition then gives L0 = (wo/c, 0). Therefore (A) and (B) 
are proved for any arbitrary layered structure in which both liquid and solid layers 
are present. In the case of a number of successive solid layers the index, q - 1, of 
i~q_l/c in (A) is interpreted as the index of the next liquid-over-solid interface 
above q if there is one, otherwise as the index of the free surface. 

No mention has been made above of the method of including the effect of the 
bottom, semi-infinite layer. In this problem two cases arise, that  of the solid bottom 
layer and that  of the liquid bottom layer. For the case where the bottom or n th 
medium is a solid Haskell wrote the equation 

Wn I 
= E n - l S n - 1  (13) 

which we note is valid for medium n at the interface n - 1 whether layer n - 1 
is solid or liquid. The An' and wJ  are constant coefficients of the motion in the n *h 
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layer and ~r-1 is a 4 X 4 matrix function whose arguments are c, T, a,~, 5, and o~, • 

The A~', o~' and E7 ~ are defined in ttaskell 's paper. If layer n - 1 is liquid, S~_, 
takes the form indicated by (11). 

In  (13) the second equation may be subtracted from the first, and the fourth 
equation may be subtracted from the third, giving 

O 0  = F~S~_I (13a) 

where F~ is a matrix of 2 rows and 4 columns obtained from E n  1 by subtraction of 
the corresponding rows of the matrix. A simple form of F~ is given in the appendix 
of this paper for convenience. Then regardless of the layering above interface 
n - 1, we may use (A) to eliminate S~-1 in (13a), giving 

O0 ~_~/c ] 
= F~ M tbo/C 14) 

where F~M is seen to be a 2 X 2 matrix. Solutions of (14) require 

IF,~M [ = o 15) 

which is a period equation for normal modes of the structure since it contains the 
parameters of all the layers as well as the period and phase velocity of the waves. 

An expression equivMent to (13) for a bottom, or n m, layer that  is liquid will be 
derived in the notation of Ewing, Jardetzky, and Press (1956). A bot tom liquid 
layer can be considered by means of a velocity potential, ~, where 

~. = (A,~ exp {i]~.r,~z} -k  A n '  exp { - i t ~ r , j } )  exp {i(oot - kx)} 

A,0 and A~' are constants. From the properties of the velocity potential (see Ewing, 
Jardetzky,  and Press, p. 7) and noting that  p~ as used here is the negative of the 
fluid pressure, we have in the n ~h layer 

1 0(~,~ _ i tc r ~ ( A ,  exp { i k r ~ z l  - -  A ~ '  exp { - i k r ~ z } )  exp {i(cot - k x ) }  
w / c  - c Oz c 

0(o~ = i ~ p ~ ( ~  (16) 
P~ = P~ 0-7 

Considering surface waves only, we must haveA~' = 0 in (16) in order that  the 
disturbance may vanish at great depth. Then placing the origin of z at the interface 
n -- 1 and setting z = 0 in (16), equations (16) can be written in matrix notation 

aS 

A~ = c ,,~ L~-I (17) 
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omitting the common factor io~ exp {i(o~t - kx)}. Equation (17) corresponds to 
(13). If  layer n - 1 is solid, L,,_~ takes the form indicated by (9). 

In (17) the second equation can be subtracted from the first, giving 

2 
0 = ( c / r = ~ ,  - -1 /p ,~)L~_~ = G~L,~_~ (17@ 

Then regardless of the layering above interface n - 1, we may use (B) to eliminate 
L,~-I in (17a), giving 

o = G N ( w o / c )  (18) 

where G ~ N  is a scalar. Solutions of (18) require 

a n n  = o (19) 

which is then the period equation for normal modes in the liquid bottom case. 

SUMMARY 

The roots of (15) or (19) give the dispersion relations, c vs. T, for normal modes 
of all structures with any number of flat, homogeneous layers bounded above by a 
free surface and below by a semi-infinite medium. Liquid and solid layers may be 
interspersed in any order. Equations (15) and (19) cover the cases of a solid and 
liquid semi-infinite medium, respectively. These period equations are formed from 
products of matrices, one per layer, which provide for elimination of the boundary 
equations arising at each interface. A 4 X 4 matrix, due to Haskell, is used for solid 
layers as in (6) and a 2 X 2 matrix is used for liquid layers as in (7). Application of 
the proper boundary conditions at liquid-solid interfaces is represented by the 
matrix algebraic operations of (9) and (11). 

The treatment above is readily adapted for numerical evaluation of the left hand 
side of (15) or (19) by carrying a running product matrix, layer by layer, from the 
top downward. Roots of (15) or (19) may then be found by successive approxima- 
tion. The matrix formulation is also useful for computation of the vertical distribu- 
tion of particle motion and stress in the normal modes. 

APPENDIX 

The elements of the 4 X 4 solid layer matrix, am, are (see Haskell, 1953) : 

( am)11  = ( am)44  = 3% c o s  P m  - -  (~m - -  1 )  c o s  Qm 

(am)z2 = (a.~)34 = i[((v,~ - 1)/r..~) sin P~ + v.~r~ sin Q.J  

(am)l~ = (a~)24 = - (o~c2) -1 (cos P m  - cos Q,,) 

(am)~4 ., ~,-1~ -1 = z tp~c  ) L r ~  sin P~ q- r~,~ sin Q~] 

(am)21 = (am)43 = --i[r..~V.~ sin P.~ + ((V,~ -- 1 ) , / r ~ )  sin @.,] 
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(am)22 = (a.~)~a = -- (3',~ -- 1) cos P.~ ÷ 3'~ cos Qm 

( a ~ ) ~  ~ - ~  r - ~  = ~(p~c) ( r ~ s i n P ~ +  o~sinQ~) 

(a~)31 (a~)42 2 = = p m c ~ , ~ , ( ' r , ~  - -  1)(cos P~  - cos Q~) 

( a ~ ) ~ 2  " ~ 
= W m c  [ ( ( ~  1)2/r~,,~) sin P~  -4- sin Q~] 

( a m ) 4 1  = i p m c 2 [ 3 ' ~ 2 r . ~  sin P ~  -t- ( ( ~  -- 1 ) ~ / r ~ )  sin Q~] 

For the elements of the liquid layer matrix, l~ ,  see (4). The elements of the 2 )< 4 
solid bot tom layer matrix, F,~, are (rewritten from the matrix, E~ ~, of Haskell) : 

( F . ) I ~  = - ( - ~  - 1 )  

( F ~ )  1~ = - r ° ~ / p ~ J  

(Fn)14  = - 1 / p ~ c  2 

( F , , ) 2 1  = 3',~ - 1 

(F~) 22 = r~3'~ 

( F . ) ~  = - 1 / p ~ c  ~ 

(F~)24 ---= r~Jp~c 2 

For the elements of the liquid bot tom layer matrix, G~, see (17a). 
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