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New rates of decay are presented for temporally-attenuated gravity waves in deep water, 
allowance being made for the energy dissipated in the Stokes interfacial boundary layer in 
the air. This decay-rate, involving air drag, may then be used to deduce a new “free-surface” 
boundary condition for the problem of the mass transport velocity due to progressive waves; 
for shallow-water waves, two specific velocity profiles are calculated, and indicate large 
differences in comparison with the corresponding profiles of Longuet-Higgins (1953) for a 
vacuum-water interface. 

1. INTRODUCTION 

Many authors have given an approximate formula for the decay with time 
of gravity waves in deep water. The formula, derived for damping due to 
molecular viscosity, applies strictly to a vacuum-water interface, but it is 
invariably employed for an air-water interface. In the latter application, 
the formula is a good approximation only for waves whose period is a 
small fraction of a second. Nevertheless, such applications are also made 
by many authors to waves of appreciable length, and the deduction is 
made that the decay-rate for these waves is extremely slow indeed. 

The formula referred to above is associated with energy dissipated in 
the interior of the water alone, that is, beyond the oscillatory, free-surface 
(or, more strictly, interfacial) boundary layer. For the longer period waves, 
however, it is found in Section 3 that the dominant contribution to the 
decay-rate arises from energy dissipation in the Stokes interfacial boun- 
dary layer in the air. Examples are given to illustrate the changes obtained 
through use of the new formula. 

Likewise, no direct consideration of the effect of air above water has 
previously been made in calculations of the mass transport velocity field. 
Such calculations have been made strictly for a vacuum-water interface- 
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216 B. D. DORI: 

see, for example, Harrison (1909), Longuet-Higgins (1953, 1960), Phillips 
(1966), Unliiata and Mei (19701, and Dore (1975). Thus, in Section 4: we 
consider explicitly the mass transport velocity at the interface between air 
and water, and it is found from the Appendix that the effect of the air is 
dominant for the longer period waves. An approximate procedure is 
suggested for the calculation of the mass transport velocity field in the 
wa.terl and is applied to shallow-water waves. Such a calculation is made 
for two typical cases: and the results are compared graphically with those 
found on the basis of the much-quoted theory of Longuet-Higgins (1 953) 
in which the presence of the air is completely neglected. 

2. FORMULATION 

We first refer the equations of motion to Cartesian co-ordinates (x. z ) 
whose origin is fixed in the equilibrium level of the interface separating 
semi-infinite expanses of air and water. The z-axis is directed vertically 
upwards. We write the equations of motion for either fluid as 

c'q/c?t + (q . V)q = - p - Ivp  + v v z q ,  (2.1 J 

where q = ( u ,  w), p ,  p and 1. denote fluid velocity, change in pressure from 
the equilibrium state, density and kinematic viscosity, respectively. 

The wave motions to be considered are two-dimensional, with period 
2nja and wavelength lL=27c,/k. A stream function $ is defined such that q 
=(d$ /dz .  -d$j(?x), and $ satisfies 

a o  3(a,$) 
- +y = vvza: 
a t  c(x,z)  

where w = V2+ represents the vorticity. We write 

$=a$l + C 1 2 + , + ~ ( a 3 )  (2.3) 

where CI is an ordering parameter representing the maximum slope 
(assumed 61) of the interface (assumed clean), and suppose that our 
subsequent results are asymptotically correct as a+O. In the laminar flows 
to be considered, we shall invariably have 

e'" = ( v ( r i P / c ) J ' 2  6 1, (2.4 ) 

where r = 1 and 2 refers to the water and air, respectively. Thus, there will 
be well defined, oscillatory boundary layers of thickness 0 (v(ri/a)1'2 ad- 
jacent to the interface, and the primary, oscillatory vorticity V2$, will be 
confined to these layers. However, for rcasons which will become clear in 
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Section 3, $1 (and $2) will not be expanded in terms of an asymptotic 
sequence of powers of E .  Also, although we could easily formulate the full 
(linearized) problem for I)~, and then make use of the smallness of E,  it 
proves convenient for our purposes to  make (numerical) approximations 
for qi at an earlier stage of the formulation. 

3. WAVE DECAY IN DEEP WATER 
When viscosity is neglected, it is well-known that the dispersion relation 
for Stokes waves in the present situation is given by 

c 2  = g k ( p ‘ ” -  p) / (p)  +p) .  (3.1 1 
Since ~ ( ~ ) < p ( l ) ,  the effect of the air is nearly always neglected, so that 

c2 = g k  (3.1)’ 

to an excellent approximation. (Capillary waves are not considered here.) 
Wheh viscosity is taken into account, let us consider the case when the 
wave motion corresponding to (3.1), or (3.1)’, decays with time. If all 
linearized quantities have the time factor exp ( -  icrt), then the quantity CT is 
complex, o=a,+ia, where cR,cr1 are real. For laminar flow, a host of 
authors have obtained the asymptotic formula 

el/cR ‘v - 2,41)2 as &(1)-+0 (3.2) 

yielding the decay-rate of short waves, and have neglected entirely the 
effect of the air above the water. Formula (3.2) occurs, for example, in the 
books by Lamb (1932), Wiegel (1964), Kinsman (1965), Phillips (1966) and 
Silvester (1974), and in articles by Biesel (1949) and Hunt (1964). 
Moreover, a variety of graphs associated with (3.2) are given. 

In order to account for air drag, and to obtain a simple formula for the 
decay-rate of deep-water gravity waves which is reasonably accurate for 
all such waves, we first write 

Lamb (1932). Oscillatory vorticity o1 = V z x l  is confined to interfacial 
boundary layers (Stokes layers) of thickness 0(Adr) ) ,  and is obtained for 
progressive waves from 

(3.4) 
( 1 ) - .  k - 2  ~ ( 1 ) ~ ( 1 ) ’  km(’b  i (kx -u t )  xi - 1 0  e e  

11 (2)-  -20 . k - 2  - q ( 2 ) E ( 2 ) 2 e - k m ‘ 2 ~ e i ( R x - u i )  
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where m('I2 = 1 - i / P z ,  Rl(rn'*') > 0. Using the linearized kinematic 
condition 

w"'=d[,/zt=u;\*i 1 on Z = O ,  

where the interfacial displacemeni C l  = k - '  e i (kx-ur i ,  we find that 

(3 .5 )  
. 

4\11 = crk - 2 ( - i - At1 IE(1 ) ' l e k s  ,$kx - ct) 

4 \ 2 )  = ak - 2 (i + A ( J - i E ( 2 1 2 ) e  - k z e i ( k x  -a! 

To determine A(*), we apply the linearized tangential stress condition 

p(')(GuY)/dz +dw\')/Zx) =p(2'(du' ,2) /dz+ d ~ \ ~ ) / i l x )  on z -0. 

where p denotes a coefficient of viscosity, and obtain 

1. (3 .6 )  

Then, we integrate o1 with respect to z from ( -  a, 0) and (0, a), and use 
the linearized condition of continuity of tangential velocity at the interface. 

p'"A'" -p(2iA'2' =2(/&'2' -p( l ) )  + O(pL(liA(l)C(IF p)A'2";"'2 

(3.7) 

( 3 . 8 )  

(3.9 J 

-E' = a 2  J j 4 2 ( a ~ 1 / 8 ~ ) ' + 2 ( d ~ , / d z ) ~  + (au,/dz + 6 w , / B ~ ) ~ ] d z ,  (3.10) 

where the integral is taken over (~~ m, 0) and (0, a) for the water and air, 
respectively, and the bar signifies that a quantity is averaged over a 
complete wave period. By equations (3.5), (3.8), the dominant contri- 
butions to this integral from the irrotational regions of the air and water 
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2p(zlc2k- 1 and 2p( 'bZk-l ,  (3.11) 

respectively. Similarly, by using (3.4), (3.8), it is found that the correspond- 
ing contributions from the oscillatory interfacial boundary layers in the air 
and water are 

are 

f i p ( 2 ) a 2 k - 1 d 2 ) -  ' and $')a2 k -  10(p(2)2/p(1)2c, E ,  p(2)/p('1), (3.12) 

respectively. Using equations (3.9)-(3.12), the dominant contribution to 
the decay rate is given by 

on taking 

p(2 )  = 1.247 x 10- gm cm3, p(')  = 1.760 x 

p( ' )  = 0.9997 gm cm3, 

gm em- ' sec- ' , 
pL(')=1.3O4x 10-2gmcm-'  sec-' 

Terms neglected in formula (3.13) are O ( ~ p ( ~ ) ~ / p ( ' ) ' ,  ~ ~ p ( ~ ) / p ( ' ) ,  E ~ ) .  The 
first term on the right-hand side of (3.13) agrees with the appropriate limit 
of the formula for the decay-rate when p ( 2 ) / p ( ' ) =  0(1),  see, for example, 
Dore (1969), and corresponds to air drag in that it represents energy 
dissipation in the oscillatory interfacial boundary layer in the air. The 
second term corresponds to the right-hand side of (3.2), and represents 
energy dissipation in the interior of the water. 

The right-hand side of formula (3.13) represents, essentially, for a small 
but ,fixed value of p(2)/p(11, the leading terms of an asymptotic expansion 
in powers of E for aI/aR as &(')+&see also, (3.8) and, correspondingly, ol. 
However, the numerical usefulness of such an expansion is clearly dubious 
when E =  O(p( ' ) /p( ' ) )= For this reason, the present approach, not 
based on such an expansion, has been adopted and yields formula (3.13) 
for the decay-rate as an excellent numerical approximation valid even 
when E Z  O ( p ( 2 ) / p ( ' ) ) .  

The two contributions on the right-hand side of (3.13) become equal 
when A = 2n/k = 84.7 cm, T = 2x/a, = 0.74 sec. Thus, equation (3.2), as given 
in many sources, is only a reasonable approximation for air above water 
when 25 lOcm, say. The decay time T =  -0;' is the time in which the 
wave amplitude decreases by a factor e - ' .  Two examples of the effect of 
the air are shown in Table I. 

The decay-rates represented by equations (3.2), (3.13) are compared in 
Fig. 1. 
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TABLE 1 

Comparison of decay times z in deep water 

Vacuum-water, eqn. (3.2) I Air-water, eqn. (3.13) 

l m  75.9 rnin 161 8 mln 
100 rn 30.5 days 3 1 years 

I O - ~  

10-6 

10- 

T ( sec) 
0-' 1 10 

I I 

\ 
\ 
\ 
\ 
\ 
\ 

I I I I \ 

h l c m l  

FIGURE 1 
__ air-water interface, ----- vacuum-water interface. 

Viscous attenuation rates of surface waves in deep water with a clean surface: 
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Phillips (1959) obtained a formula for the decay time in deep water 
corresponding to wave attenuation resulting from scattering by oceanic 
turbulence, and compared his formula with that of equation (3.2) cor- 
responding to the influence of molecular viscosity. He found that atte- 
nuation due to scattering predominates for wavelengths greater than 
about 3m. If, however, we make the more relevant comparison of Phillips’ 
formula with equation (3.13), it is found that the influence of molecular 
viscosity predominates for all wavelengths up to about 16 m. 

For shallow-water surface waves, the above-mentioned effect of the air 
on wave damping is quite negligible, since energy dissipation in the 
bottom boundary layer predominates. 

4. MASS TRANSPORT AT THE AIR-WATER INTERFACE 

The second-order mass transport velocity aZQr has been given by 
Longuet-Higgins (1953) as 

(4-1) 

(The second term on the right-hand side is the Stokes drift velocity, 
sometimes written as Q,.) For progressive waves, Longuet-Higgins (1953, 
1960) showed that the gradient of the mass transport velocity at the edge 
n=n, of the oscillatory, free-surface boundary layer is given by 

Q i = h  + (rqidt’ .V)qi  - 

$1 -4acoth kh, 
I, 

where h is the undisturbed depth of the water, n is a curvilinear co- 
ordinate measured normal to the surface into the air. and Y is a stream 
function for the mass transport velocity. In these studies, effects of the air 
were completely neglected. In more recent work, Dore (1970, 1973), using 
asymptotic expansions of Jlz in powers of E,  considered a two-layered 
system and found that 
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where s denotes arc-length measured along the interface, A represents the 
strength of the interfacial vortex sheet according to linear, inviscid theory, 
and the asterisk denotes the complex conjugate. These results are strictly 
applicable when dr) -g 1, with ~ ( ~ ) / p ( l )  = 0 (1 ), d2)/d1) = 0 (1 ). In order to 
know the analogous conditions for the air-water interface, and thus to 
know the point at which equation (4.3) breaks down, a different approach 
is needed. 

When the system comprises two semi-infinite expanses of air and water, 
a comparatively. simple argument for progressive waves may be used. 
based directly on the momentum method of Phillips (1966, pp. 38-40), 
This method explicitly involves the decay-rate given by equation (3.13). 
However, we shall use a more rigorous approach, which is also available 
for waves in shaIlow water of uniform depth h. In this case: 

A = 0 k -  (1 + coth /th)ei(kx-u'l, 

and it  is found from equations (A10. A l l )  of the Appendix that 

The first term on the right-hand side of equation (4.5) is based on the 
right-hand side of (4.3), and the second term corresponds to a vacuum- 
water interface. Therefore, effects of the air are negligible only when 

Wii:h kli -- 0(1), and with laminar flow, this requires that T < 1 sec. 
Therefore, the effect of the air is appreciable for a wide range of gravity 
waves, and the boundary condition (4.2) of Longuet-Higgins (1953. 1960) 
is generally inaccurate and must be replaced by that of (4.5). 

IJnder the assumption that effects of the air are negligible, a new 
calculation of the mass transport velocity in the water has been partially 
carried out by Dore (1977), both in deep and in shallow water. The 
calculation uses the boundary condition (4.2) of Longuet-Higgins (1953), 
but mention is made that air effects can be significant. If so, precise 
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ealculation of mass transport, in air and water, is exceedingly difficult. A 
possible approximate procedure, which is implicit in the approach of 
Longuet-Higgins (1953), and which should be valid sufficiently far from 
the region of wave generation, is as follows. Since ~ ( ~ ) e p ( ' ) ,  the second 
term on the left-hand side of condition (4.5) may be expected to be small 
in comparison with the first term, and is therefore omitted (although the 
two terms are actually equal when evaluated at the interface n=O). The 
resulting condition, 

, 3 2 y ( 1 )  

=2-3/2u3/2k- 1 (1 +coth k h ) 2 p ( " - 1 ( p ' 2 ' ~ ' 2 ) ) 1 ~ z  +4ucot1 kh, a#)' I -  "11) 

(4.5)' 

then becomes a boundary condition for the water alone. It is to be noted 
that this condition, unlike (4.2), depends explicitly on the viscosity of the 
water. The velocity condition (4.6) must be dropped, and the mass 
transport velocity field in the water can, in principle, be calculated on the 
lines suggested by Dore (1977). Such a calculation would yield the first 
term on the left-hand side of condition (4.6), which then becomes a 
boundary condition for the air alone. The mass transport velocity field in 
the air can, in principle, also be calculated on the lines suggested by Dore 
(1977). Finally, the relative sizes of the two terms on the left-hand side of 
condition (4.5) can be checked a posteriori. This approximate procedure 
will be illustrated for spatially-damped progressive waves, in shallow water 
in Section 4.1. 

Longuet-Higgins (1960) reported on some experiments designed to 
verify formula (4.2). He remarked that the constant of proportionality is 
not far from the value 4 appearing in (4.2), and is certainly closer to 4 
than to 2 (corresponding to the inoiscid value). The procedure described 
above suggests that Longuet-Higgins' experiments may have been incon- 
clusive. This is shown in Table 11, where experiments of Longuet-Higgins 
(1960) and of Mei, Liu and Carter (1972) are considered. 

A more dramatic illustration of the effect of the air on mass transport 
velocity calculations is shown in Table 111, which refers to a wave of 
period 8 sec moving from deep- into shallow-water conditions. 

4.7. A re-calculation of some mass transport velocity profiles 
The approximate procedure of Section 4 will now be considered for the 
water in the case when the amplitude of shallow-water progressive waves 
is strictly periodic in time and decays by a factor e - l  over a horizontal 
length-scale ~ = O ( A / E ) .  Then, as can be deduced from the work of Dore 
(1977), if n 2 $ &  and T,<0(1 sec). or if a 2 $ ~ 2 ~ ( 1 ) / p ( 2 )  and T+lsec,  
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TABLE I1 
Values of ( i i 2y /an2  jnm,/u 

-~ 

Experiments 7 (sec) k 11 Eqn. (4 2) Eqn. (4.5)’ 

Longuet-Higgins, 0.65 2.81 4.03 5.10 
h = 29.7 cm 0.93 1.54 4.39 7.19 

1.20 1.06 5.09 9.30 

Mei e t  ai.. 
h=13cm 

0.44 2.70 4.04 4.97 
0.65 1.40 4.52 6.18 
1.30 0.58 1.65 12.97 

TABLE 111 
Values of ( i i zY /Znz ) , z /o  

i h kh Eqn. (4.2) Eqn. (4.5)’ 

l0Om m WJ 4 15.66 
60 m 6.62 m 0.69 6.61 83.10 

convection effects of mean vorticity w2 dominate viscous diffusion effects, 
and does not diffuse over the total depth of water within a distance 
O ( < )  from the region of wave generation. Such diffusion does, however, 
take place sufficiently far from this region when 

a2<E T 5 011 sec), (4.1 . l )  

and it is these situations which we have in mind here. The time-scale for 
this diffusion is TL”= O ( h 2 / v ( ’ ) )  in the water, and T ~ ~ ) ( x ) $  rL1) in the air. By 
following the above-mentioned procedure, the “conduction solution” of 
Longuet-Higgins (1953) for the mass transport velocity field may be 
determined in the water, as indicated by the model of Dore (1977). Of 
course, it is possible that such conduction solutions may be realised after 
the shorter time-scale .it’). 

The conduction solution in the water is obtained, then, by following the 
approximate procedure of Section 4, together with use of equation (4.5)’. 
The general manner in which the conduction solution is determined is 
fully described by Longuet-Higgins (1953). For zero net flow across any 
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section x =constant, Longuet-Higgins gives 

l a  
(l i ,)LH=;~cosechZkh 

sinh2kh 3 z2 
+ 3 ( + 2) (p - 91. (4.1.3) 

To this expression must now be added the contribution due to the first 
term on the right-hand side of equation (4.5)'. This contribution represents 
the effect of the air. Thus, we obtain 

In particular, 
1 

U l ( z = o  = W l ) L I i  I z =  0 +r  Ch, (4.1.5) 

so that the additional term always gives rise to a positioe contribution to 
the surface drift. Two comparisons of U ,  and (U,)LH are made in Figs. 2, 3. 

FIGURE 2 Comparison of mass transport velocity profiles for kh=0.5, T=lO sec; 
~ present calculation,-----Longuet-Higgins (1953). 
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FTGlJRE 3 Comparison of m a s  transport velocity profiles for kh=1.0,  T -  1 sec. 
present calculation,-----Longuet-Higgins (1953). 

In Fig. 2, we have kh = 0.5, 7'= 10 sec, i = 72.15 m, h = 5.74 m, representing 
conditions not untypical of ocean swell. However, i t  must be realised that 
the relevant condition (4.1.2) on wave amplitude for this example is very 
restrictive in laminar flow conditions. 

In Fig. 3, we have k h  = 1.0, T = 1 sec, i = 1.19 m, 1.1 = 18.92 cm, which are 
conditions somewhat typical of those of laboratory tests (cf. Table 11). 

In both Figs., i t  is seen that large differences due to the new free-surface 
condition (4.5)' are felt over the whole depth of fluid, except at the bottom 
itself (that is, at the outer edge of the oscillatory bottom boundary layer). 

is at least 
equal, and generally much greater than that, O(Iz), of a$'), the fundamen- 
tal assumption behind condition (4.5)' appears to be well-satisfied. 

By condition (4.4): and the fact that the vertical scale of 

Ac kri ow I ed ge m en t 
The suggestion to investigate the effect of the air on mass transport velocities IS due to D. W 
Moore: and J. T. Stuart, to whom the author is indebted. The author is also grateful to two 
referees for comments which, it is hoped, have led to several improvements on an earlier 
draft of this paper. 
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Appendix 
MEAN MOTION IN INTERFACIAL BOUNDARY LAYERS 
For reasons associated with the oscillating interface and the possibility 
a+ E, we use the orthogonal curvilinear co-ordinates (s, n )  described by 
Longuet-Higgins (1953). Thus, n now denotes distance measured along a 
normal into the water. The quantity K ( S ,  t )  denotes the interfacial curva- 
ture (positive when the centre of curvature lies in the water). 

To describe the motion of the co-ordinate system, T/s(s, t ) ,  Vn(s, t )  denote 
velocity components of the point (s, 0) parallel, normal to the interface 
and Q(s, t )  denotes angular velocity of a normal s =constant (positive in 
the sense of Longuet-Higgins). Similarly, (s-, n . )  are the rates at which the 
co-ordinates of a particular fluid element are increasing, and (qs, 4 , )  are its 
actual velocity in space. 

Then 
y, -- = qs ' - nR, qn - V ,  = n *, ('41) 

( < / i t  + s 'alas + n ' a p n  - v v Z ) w  =o, ( 4  

where q = 1 - n K .  The tangential stress condition at the interface is 

p ( o  + 2 ~ q ,  + 2aI/,/ds) continuous on n = 0. ('44) 

Also, as indicated by Longuet-Higgins (1953), we can obtain 

v,, =o 
for all values of s by suitable choice of origin, since ~ = O ( c t / l . )  in the 
present context. 

With a view to the applications of Section 4.1, we consider an interfacial 
progressive wave which is strictly periodic in time and decays slowly over 
the horizontal length-scale 5 = O ( h )  when kh = O(1). Then equation (A2) 
gives 

Using the results 

____ ~ 

s;&ol/as+n;ao,/an = V ( V ~ W ) ,  . ('45) 

aqs l~a~+a4nl /an=o,  w1 =aq,,lan-aq,,,/as, (A61 

equation (A5) may be written 
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The first four terms on the left-hand side are, essentially, associated with 
Reynolds stresses, and the other two terms arise because of the curvilinear 
co-ordinate system. 

Before describing the integration procedure for equation (A7), we first 
emphasize that any terms which, if retained, would become 
O ( P ’ ~ ) ,  ~ ( ’ I E ,  p(2)2/p(11e) on the right-hand side of the final result (A10) are 
neglected. This is consistent with the approach of Section 3. We now 
integrate (A7) within the oscillatory interfacial boundary layers, from P I $ )  

to dl) in the water, and from d2) to .‘,“I in the air. Use is made of the fact 
that w ( ; ~ = O  at n$!, and of the second relationship of (A6) with regard to 
the term pVnlm, .  The result of this first integration is now integrated 
across the layers, from n$’ to n = O  in the water, and from M = O  to n‘,“ i n  
the air. It then becomes necessary to employ the tangential stress 
condition in the form 

(AS)  

T<,z being zero. Following the second integration of (AS); the dominant 
terms are then found to arise from 

p ( l ) E ( 1 )  -p.1‘~)w,’2)=2K~(P(21q6:)-P(l)qe:1) on n =o, 

- - - ~ 

~ ( 1 ) W Z ( 1 ) j n b t l - P ( 2 ) W z ( z ) i n ( 2 ) =  (P(1)(02(1) - p ( 2 ) ~ o z ( 2 ) ) n = c ,  

+ cP‘1’98:’(4:i’ - v,, )Id&) 
- CP‘21d:’(d?’ - Vn, ) I n ? l .  (A9) 

The right-hand sides of (A8, A9) may be evaluated by cmploying the 
Cartesian counterparts of qsl, q n l .  In the notation of Section 3, these 
correspond to 

1 ei‘k” - O r )  3 
1 = iak-  2 [ ~ ( 1  lE( l  lZekm(’)2 + 0(&(1) ) e -  k m ‘ ” ( z + h )  

x i 2 )  = iak-2 A E  ( 2 )  (2 )2  e - k m ( ’ b e i ( k x - o r )  
2 

q5\’)=crk-’[{ -icosech kh+  O ( d l ) ) }  cosh k ( z + h ) + O ( d ’ ) )  . 

x sinh k ( ~ + h ) ] e ~ ( ” - ~ ” ;  
,$?I = ak- 2[ - i + 0(&(21 ) l e - k z e i ( k x -  0 2 )  
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This represents a condition on the mean motion outside the oscillatory 
interfacial boundary layers. By making the sign of n consistent with that 
in Section 4, and by taking account of the inviscid contribution to 
a2Y/dn2, due essentially to what is termed the Stokes drift velocity O(a2) ,  
equation (A10) yields equation (4.5) of the text. Remarks on the essential 
asymptotic nature of (AlO), and its extended range of validity for E 

2 O ( ~ ( ~ ) / p ( l ) ) ,  may be made in the same vein as those concerning equation 
(3.1 3). 

Finally, we make the second integration of (A7) from n ( l )  to n = 0 in the 
water, and from n=O to d2)  in the air, and use the condition (A8). Then, 
integrating the result from ng’ to n = 0 in the water, and from n = 0 to n‘,“ 
in the air, and applying the condition of continuity of tangential velocity 
at the interface, we obtain 

which is consistent with equation (4.6) of the text. 
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