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New rates of decay are presented for temporally-attenuated gravity waves in deep water,
allowance being made for the energy dissipated in the Stokes interfacial boundary layer in
the air. This decay-rate, involving air drag, may then be used to deduce a new “free-surface”
boundary condition for the problem of the mass transport velocity due to progressive waves;
for shallow-water waves, two specific velocity profiles are calculated, and indicate large
differences in comparison with the corresponding profiles of Longuet-Higgins (1953) for a
vacunm-water interface.

1. INTRODUCTION

Many authors have given an approximate formula for the decay with time
of gravity waves in deep water. The formula, derived for damping due to
molecular viscosity, applies strictly to a vacuum-water interface, but it is
invariably employed for an air-water interface. In the latter application,
the formula is a good approximation only for waves whose period is a
small fraction of a second. Nevertheless, such applications are also made
by many authors to waves of appreciable length, and the deduction is
made that the decay-rate for these waves is extremely slow indeed.

The formula referred to above is associated with energy dissipated in
the interior of the water alone, that is, beyond the oscillatory, free-surface
(or, more strictly, interfacial) boundary layer. For the longer period waves,
however, it is found in Section 3 that the dominant contribution to the
decay-rate arises from energy dissipation in the Stokes interfacial boun-
dary layer in the air. Examples are given to illustrate the changes obtained
through use of the new formula. .

Likewise, no direct consideration of the effect of air above water has
previously been made in calculations of the mass transport velocity field.
Such calculations have been made strictly for a vacuum-water interface—
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216 B. D. DORE

see, for example, Harrison (1909), Longuet-Higgins (1953, 1960), Phillips
(1966), Unliata and Mei (1970), and Dore (1975). Thus, in Section 4, we
consider explicitly the mass transport velocity at the interface between air
and water, and it is found from the Appendix that the effect of the air is
dominant for the longer period waves. An approximate procedure is
suggested for the calculation of the mass transport velocity field in the
water, and is applied to shallow-water waves. Such a calculation is made
for two typical cases, and the results are compared graphically with those
found on the basis of the much-quoted theory of Longuet-Higgins (1953)
in which the presence of the air is completely neglected.

2. FORMULATION

We first refer the equations of motion to Cartesian co-ordinates (x,z)
whose origin is fixed in the equilibrium level of the interface separating
semi-infinite expanses of air and water. The z-axis is directed vertically
upwards. We write the equations of motion for either fluid as

8q/0t+(q-Vig= —p~ 'Vp+vViq, (2.1

where q=(u, w), p, p and v denote fluid velocity, change in pressure from
the equilibrium state, density and kinematic viscosity, respectively,

The wave motions to be considered are two-dimensional, with period
2n/o and wavelength 1=27/k. A stream function  is defined such that g
= (A /dz, — p/dx), and s satisfies

ow  dw, W)

ot 3(x,z)y

W, (2.2)

where o =V?y represents the vorticity. We write
Y=ot +atp, +0() (2.3)

where « is an ordering parameter representing the maximum slope
(assumed <1) of the interface (assumed clean), and suppose that our
subsequent results are asymptotically correct as «—0. In the laminar flows
to be considered, we shall invariably have

e = (ko) 2 <1, (2.4)

where r=1 and 2 refers to the water and air, respectively. Thus, there will
be well defined, oscillatory boundary layers of thickness O(v"/g)*? ad-
jacent to the interface, and the primary, oscillatory vorticity Vi, will be
confined to these layers. However, for reasons which will become clear in
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Section 3, ¥, (and ;) will not be expanded in terms of an asymptotic
sequence of powers of ¢, Also, although we could easily formulate the full
(linearized) problem for y,, and then make use of the smallness of ¢, it
proves convenient for our purposes to make (numerical) approximations
for q, at an earlier stage of the formulation.

3. WAVE DECAY IN DEEP WATER

When viscosity is neglected, it is well-known that the dispersion relation
for Stokes waves in the present situation is given by

o?=gk(p"—p)/(p" + p?). (3.1)
Since p® < p), the effect of the air is nearly always neglected, so that
6% =gk 3.1y

to an excellent approximation. (Capillary waves are not considered here.)
Wheh viscosity is taken into account, let us consider the case when the
wave motion corresponding to (3.1), or (3.1), decays with time. If all
linearized quantities have the time factor exp (— iot), then the quantity ¢ is
complex, ¢ =0 +io, where oz, 0, are real. For laminar flow, a host of
authors have obtained the asymptotic formula

01 /o> —2eM" as g0 (3.2)

yielding the decay-rate of short waves, and have neglected entirely the
effect of the air above the water. Formula (3.2) occurs, for example, in the
books by Lamb (1932), Wiegel (1964), Kinsman (1965), Phillips (1966) and
Silvester (1974), and in articles by Biesel (1949) and Hunt (1964).
Moreover, a variety of graphs associated with (3.2) are given.

In order to account for air drag, and to obtain a simple formula for the
decay-rate of deep-water gravity waves which is reasonably accurate for
all such waves, we first write

u;=0¢,/0x+0y,/0z, w, =5¢)1/52—8)(1/5x,}

h
where Vi, =0, By, /0t =vV3y,,

(3.3)

Lamb (1932). Oscillatory vorticity w,;=V?y, is confined to interfacial
boundary layers (Stokes layers) of thickness O(ie™), and is obtained for
progressive waves from

. - 2 1 i -
X(ll)zlo'k 2A(1)8(1) ekm()zex(kx 01)’ } (34)

2) _ -2 A(2).2)2 ,—km@z i(kx—ot
¥ P =igk™2 A2 g~ km%z pitkx=am)
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where m®*=1—i/e"" RI(m")>0. Using the linearized kinematic
condition

wi'=0(,/6t=w® on z=0,

where the interfacial displacement {; =k~ 1e'** " we find that

G'D(]l):gk—2(_i_A(l)e(l)z)ekzei(kx—at)’
¢(12)=Jk—2(i+A(Z)S(Z)Z)e—kzei(kx-m). } (3.5)
To determine A®, we apply the linearized tangential stress condition
pouP oz + ow/ox) = u? (u® 0z 4+ dwiP/ox) on z=0,
where u denotes a coefficient of viscosity, and obtain
pMAD — DI A@ =2 (42— Y 4 O(p DA YD @D (3.6)

Then, we integrate w, with respect to z from (— oo, 0) and (0, o), and use
the linearized condition of continuity of tangential velocity at the interface,

uP=u® on z=0.
This gives
[2'2/(1— i (ADeD + APy = 24 0(406” 4Pe@7). (37)
Then equations (3.6), (3.7) yield

A(1)=_[2+21/'2(1_i)“(zvu(l)g(z) 1
+ O/, &%y )], ‘> (3.8)
A® = =[212(1 =i+ O 1)),

where we have made use of u'* <u'" and of /g =0(1).
The total energy density per unit surface area is

E=1u?c’k™*(p™" + p@)exp (20,1), (3.9)

Phillips (1966), and the rate of energy dissipation is -

—E =02 [ u[2(0u,/6x)* +2(8w,/0z)* + (Ou,/0z + 6w, /éx)*]dz, (3.10)

where the integral is taken over { — oo, 0) and (0, o) for the water and air,
respectively, and the bar signifies that a quantity is averaged over a
complete wave period. By equations (3.5), (3.8), the dominant contri-
butions to this integral from the irrotational regions of the air and water
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are
2ue?k™! and 2uVe?kTY, (3.1

respectively. Similarly, by using (3.4), (3.8), it is found that the correspond-
ing contributions from the oscillatory interfacial boundary layers in the air
and water are

J2uPe k™ 1e® 1 and uMetk T O UM e 6, i P utt),  (3.12)

respectively. Using equations (3.9)}-(3.12), the dominant contribution to
the decay rate is given by

R 2
01/0g = — 2M2(pD @) H N2 o)

(3.13)
= —5.803x 1073 g1 g)?

on taking

pP=1247x10"3*gmem?, p@=1.760x10"*gmem™*sec™?

p1'=0.9997 gm cm?, uP=1.304x10"2gmem ™ sec” L.

Terms neglected in formula (3.13) are O(eu®’/u’, e2u®/u®), &3). The
first term on the right-hand side of (3.13) agrees with the appropriate limit
of the formula for the decay-rate when p@'/p™'=0(1), see, for example,
Dore (1969), and corresponds to air drag in that it represents energy
dissipation in the oscillatory interfacial boundary layer in the air. The
second term corresponds to the right-hand side of (3.2), and represents
energy dissipation in the interior of the water.

The right-hand side of formula (3.13) represents, essentially, for a small
but fixed value of u®/u'"’, the leading terms of an asymptotic expansion
in powers of ¢ for /a5 as ¢”—0—see also, (3.8) and, correspondingly, ,.
However, the numerical usefulness of such an expansion is clearly dubious
when e=O0(u®/u")~10"% For this reason, the present approach, not
based on such an expansion, has been adopted and yields formula (3.13)
for the decay-rate as an excellent numerical approximation valid even
when g2 O(u*®/u™).

The two contributions on the right-hand side of (3.13) become equal
when A=2n/k=384.7cm, T =2rn/6,=0.74 sec. Thus, equation (3.2), as given
in many sources, is only a reasonable approximation for air above water
when A1=<10cm, say. The decay time 1= —¢; ' is the time in which the
wave amplitude decreases by a factor e™'. Two examples of the effect of
the air are shown in Table I.

The decay-rates represented by equations (3.2), (3.13) are compared in
Fig. 1.
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TABLE 1

Comparison of decay times 7 in deep water.

A Air-water, eqn. (3.13) Vacuum-water, eqn. (3.2}
1m 75.9 min 161.8 min
100 m 30.5days 3.1 years
T { sec)
1072

1078

10—9 i L 1 L N\
1 10 10? 10° 104 10°
Alem)

FIGURE 1 Viscous attenuation rates of surface waves in deep water with a clean surface:;
——— air-water interface, —-——— vacuum-water interface.
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Phillips (1959) obtained a formula for the decay time in deep water
corresponding to wave attenuation resulting from scattering by oceanic
turbulence, and compared his formula with that of equation (3.2) cor-
responding to the influence of molecular viscosity. He found that atte-
nuation due to scattering predominates for wavelengths greater than

" about 3m. If, however, we make the more relevant comparison of Phillips’
formula with equation (3.13), it is found that the influence of molecular
viscosity predominates for all wavelengths up to about 16 m.

For shallow-water surface waves, the above-mentioned effect of the air
on wave damping is quite negligible, since energy dissipation in the
bottom boundary layer predominates.

4. MASS TRANSPORT AT THE AIR-WATER INTERFACE

The second-order mass transport velocity «2Q,; has been given by
Longuet-Higgins (1953) as

Q,=q;+(|'q,dt' - V)q,. 4.1)

(The second term on the right-hand side is the Stokes drift velocity,
sometimes written as Q,.) For progressive waves, Longuet—Higgins (1953,
1960) showed that the gradient of the mass transport velocity at the edge
n=n,, of the oscillatory, free-surface boundary layer is given by

2 i ’
%—ng N ~4¢ coth kh, _ (4.2)
where h is the undisturbed depth of the water, n is a curvilinear co-
ordinate measured normal to the surface into the air, and ¥ is a stream
function for the mass transport velocity. In these studies, effects of the air
were completely neglected. In more recent work, Dore (1970, 1973), using
asymptotic expansions of Y, ¥, in powers of ¢, considered a two-layered
system and found that

ik o i 48

(1) —u® ~(143)27 325112
Wi |  ={1+i)27% e

A on® a0 K on® 2 (1+3)

(p(l)p(?-)#(l)ua))llz OA*

X (p(l)ﬂ(l))1/2+ (p(z)#a))l/z A Os » (4-3)
ik 2t B 1 .

—_—| ——| - 44
D |0 n® "m—O(crk ), (44)
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where s denotes arc-length measured along the interface, A represents the
strength of the interfacial vortex sheet according to linear, inviscid theory,
and the asterisk denotes the complex conjugate. These results are strictly
applicable when " <1, with p®/pM=0(1), v/ P=0(1). In order to
know the analogous conditions for the air-water interface, and thus to
know the point at which equation (4.3) breaks down, a different approach
is needed.

When the system comprises two semi-infinite expanses of air and water,
a comparatively. simple argument for progressive waves may be used,
based directly on the momentum method of Phillips (1966, pp. 38-40).
This method explicitly involves the decay-rate given by equation (3.13).
However, we shall use a more rigorous approach, which is also available
for waves in shallow water of uniform depth h. In this case,

A=ck™ (1 +coth kh)e' k==

and it is found from equations (A10, Al1) of the Appendix that

A2\p(1) ! ~2u(2) |
Y TP a2 32— ;
ek — L ey 32532k =11 +coth kh)?
HLO~S ‘ iy
x (PPUPN2 4 464 coth kh, 4.5)
oy | oy

e~ -1
ent o) an(z)ln‘2,~0(ak ). (4.6)

The first term on the right-hand side of equation (4.5) is based on the
right-hand side of (4.3), and the second term corresponds to a vacuum-
water interface. Therefore, effects of the air are negligible only when

613 27 32(p @2 521 4 coth 2kh), | (4.7)

P> 145% 1073 J

With kh=0(1), and with laminar flow, this requires that T <1 sec.
Therefore, the effect of the air is appreciable for a wide range of gravity
waves, and the boundary condition (4.2) of Longuet-Higgins (1953, 1960)
is generally inaccurate and must be replaced by that of (4.5).

Under the assumption that effects of the air are negligible, a new
calculation of the mass transport velocity in the water has been partially
carried out by Dore (1977), both in deep and in shallow water. The
calculation uses the boundary condition (4.2) of Longuet—Higgins (1953),
but mention is made that air effects can be significant. If so, precise
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¢alculation of mass transport, in air and water, is exceedingly difficult. A
possible approximate procedure, which is implicit in the approach of
Longuet-Higgins (1953), and which should be valid sufficiently far from
the region of wave generation, is as follows. Since u® <y, the second
term on the left-hand side of condition (4.5) may be expected to be small
in comparison with the first term, and is therefore omitted (although the
two terms are actually equal when evaluated at the interface n=0). The
resulting condition,

62 (1) _
a\ﬁ) “)%‘2‘3/203/2](_1(1+C01hkh)2/1(1] 1(p(2)u(2))1/2+4000ﬂ kh,
n niy :
4.5y

then becomes a boundary condition for the water alone. It is to be noted
that this condition, unlike (4.2), depends explicitly on the viscosity of the
water. The velocity condition (4.6) must be dropped, and the mass
transport velocity field in the water can, in principle, be calculated on the
lines suggested by Dore (1977). Such a calculation would yield the first
term on the left-hand side of condition (4.6), which then becomes a
boundary condition for the air alone. The mass transport velocity field in
the air can, in principle, also be calculated on the lines suggested by Dore
(1977). Finally, the relative sizes of the two terms on the left-hand side of
condition {4.5) can be checked a posteriori. This approximate procedure
will be illustrated for spatially-damped progressive waves-in shallow water
in Section 4.1.

Longuet-Higgins (1960) reported on some experiments designed to
verify formula (4.2). He remarked that the constant of proportionality is
not far from the value 4 appearing in (4.2), and is certainly closer to 4
than to 2 (corresponding to the inviscid value). The procedure described
above suggests that Longuet-Higgins’ experiments may have been incon-
clusive. This is shown in Table II, where experiments of Longuet-Higgins
(1960) and of Mei, Liu and Carter (1972) are considered.

A more dramatic illustration of the effect of the air on mass transport
velocity calculations is shown in Table III, which refers to a wave of
period 8sec moving from deep- into shallow-water conditions.

4.1. A re-calculation of some mass transport velocity profiles

The approximate procedure of Section 4 will now be considered for the
water in the case when the amplitude of shallow-water progressive waves
is strictly periodic in time and decays by a factor e~ ! over a horizontal
length-scale ¢ =0(4/e). Then, as can be deduced from the work of Dore
(1977), if a*»>e and T<O(lsec), or if a?>e2uP/u® and T3 1sec,
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TABLE II
Values of (6*¥/én), /o.

Experiments T (sec) kh Eqn.(4.2) Egn. (4.5¥

Longuet-Higgins, 0.65 2.81 4.03 5.70
h=297cm 0.93 1.54 4.39 7.19
1.20 1.06 5.09 9.30

Mei et al, 0.44 2.70 4.04 4.97
h=13cm 0.65 1.40 4.52 6.18
1.30 0.58 7.65 12.97

TABLE 111

Values of (62¥/dn?), o

A h kh Eqn. (4.2) Egn. (4.5)
100m o0 oo 4 75.66
60m 6.62m 0.69 6.67 83.10

convection effects of mean vorticity @, dominate viscous diffusion effects,
and @' does not diffuse over the total depth of water within a distance
0(¢) from the region of wave generation. Such diffusion does, however,
take place sufficiently far from this region when

a?<e T <0(1 sec), (4.1.1)

al <ty T=1sce (4.1.2)

and 1t is these situations which we have in mind here. The time-scale for
this diffusion is t{! =0 (h*/»"’) in the water, and t*(x)» t{!) in the air. By
following the above-mentioned procedure, the “conduction solution” of
Longuet—-Higgins (1953) for the mass transport velocity field may be
determined in the water, as indicated by the model of Dore (1977). Of
course, it is possible that such conduction solutions may be realised after
the shorter time-scale 74,

The conduction solution in the water is obtained, then, by following the
approximate procedure of Section 4, together with use of equation (4.5).
The general manner in which the conduction solution is determined is
fully described by Longuet-Higgins (1953). For zero net flow across any
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section x =constant, Longuet—Higgins gives
2

le z z .
(Ui =chosechZ kh [3 +kh (3h7+4ﬂ+ 1) sinh 2kh

sinh2kh  3\/z
+3 (m—+§>(%— 1)] 4.1.3)

To this expression must now be added the contribution due to the first
term on the right-hand side of equation (4.5). This contribution represents
the effect of the air. Thus, we obtain

U= (U +3Ch™ " (z+h)(3z+h),
C=2"32 32k~ 1(1 +coth kh)? (pPu®/pLyM)2yW =12 (4.1.4)

In particular,
Ulls=o= U u|z=0+3 Ch, (4.1.5)

so that the additional term always gives rise to a positive contribution to
the surface drift. Two comparisons of U, and (U,)LH are made in Figs. 2, 3.

Ul/ c
6 e 12 15

FIGURE 2 Comparison of mass transport velocity profiles for kh=0.5 T=10 sec;
present calculation,———— Longuet-Higgins (1953).
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-10

FIGURE 3 Comparison of mass transport velocity profiles for kh=10, T=1sec;
———-present calculation,~——-—— Longuet-Higgins (1953).

In Fig. 2, we have kh=0.5, T=10sec, A=72.15m, h=5.74 m, representing
conditions not untypical of ocean swell. However, it must be realised that
the relevant condition (4.1.2) on wave amplitude for this example is very
restrictive 1n laminar flow conditions.

In Fig. 3, we have kh=1.0, T=1sec, A=1.19m, h=18.92cm, which are
conditions somewhat typical of those of laboratory tests (cf. Table II).

In both Figs., it is seen that large differences due to the new free-surface
condition (4.5) are felt over the whole depth of fluid, except at the bottom
itself (that is, at the outer edge of the oscillatory bottom boundary layer).

By condition (4.4), and the fact that the vertical scale of @%’ is at least
equal, and generally much greater than that, O(h), of @}, the fundamen-
tal assumption behind condition (4.5} appears to be well-satisfied.
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Appendix
MEAN MOTION IN INTERFACIAL BOUNDARY LAYERS

For reasons associated with the oscillating interface and the possibility
a>¢, we use the orthogonal curvilinear co-ordinates (s,n) described by
Longuet-Higgins (1953). Thus, n now denotes distance measured along a
normal into the water. The quantity x(s,z) denotes the interfacial curva-
ture (positive when the centre of curvature lies in the water).

To describe the motion of the co-ordinate system, V,(s,t), V,(s,t)} denote
velocity components of the point (s,0) parallel, normal to the interface
and Qfs,t) denotes angular velocity of a normal s=constant (positive in
the sense of Longuet-Higgins). Similarly, (s-, n-) are the rates at which the
co-ordinates of a particular fluid element are increasing, and (q,, g,) are its
actual velocity in space.

Then
q.s'“[/s:ns.—ng’ qn'—‘V;l=n.7 (Al)

(C/Ct+ $'8/3s+n"0/6n—vV*)w =0, (A2)

i1l o/1é 0 é
2:— —_— — —_—
v 1 [65 (n 6s)+6n (’I 8n>} (A3)

where n=1—nx. The tangential stress condition at the interface is
plow+2kg,+20V,/ds) continuous on n=0. (A4)

Also, as indicated by Longuet-Higgins (1953), we can obtain
=0
1

for all values of s by suitable choice of origin, since k=0(a/2) in the
present context.

With a view to the applications of Section 4.1, we consider an interfacial
progressive wave which is strictly periodic in time and decays slowly over
the horizontal length-scale & =0(le) when kh=0(1). Then equation (A2)
gives

510w, /05 +ndw,/on =v(72(u)2. (AS)
Using the results
041/6s+084,,/0n=0, w, =0g,,/0n—0q,,/ds, (A6)

equation (A5) may be written

2

O0sén

2 2 —_— dw )
>(p451Qn1)+anI_8 S PR
S «n

— ——_ (3
[p(g3 —g: N +(W_F

=u(V:w), = u(0°®,/0n" — k00, /0n). . (A7)
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The first four terms on the left-hand side are, essentially, associated with
Reynolds stresses, and the other two terms arise because of the curvilinear
co-ordinate system.

Before describing the integration procedure for equation (A7), we first
emphasize that any terms which, if retained, would become
O, uMe, n**/uVe) on the right-hand side of the final result (A10) are

"neglected. This is consistent with the approach of Section 3. We now
integrate (A7) within the oscillatory interfacial boundary layers, from n'l
to n'Y in the water, and from »n'® to »'? in the air. Use is made of the fact
that @'=0 at n?, and of the second relationship of (A6) with regard to
the term pV,,w,. The result of this first integration is now integrated
across the layers, from #n{!’ to n=0 in the water, and from n=0 to n2 in
the air. It then becomes necessary to employ the tangential stress
condition in the form

1M, D = i, @ = 2, (W@ @ g) on n=0, (A8)

V,, being zero. Following the second integration of (A8), the dominant
terms are then found to arise from

H(l)w'zming,_”mggm‘"g): (mem _#(2)(02(2))’1:0
1) (1
+pVg: (g = Vo
—[p'"q 2)(q‘z’ Vi) Ju2- (A9)

The right-hand sides of (A8, A9) may be evaluated by employing the
Cartesian counterparts of ¢,,, ¢,;- In the notation of Section 3, these
correspond to
7(11] — iak~2[A(1)8(1)2ekm“)z+ 0(8(1))e—kmilj(z+h)] ei(kx—cn),
X(lil)=iak—2A(2)£(2]2e—km(z’zei(kx—at)’
¢V =0k *[{—icosech kh+ O (")} cosh k(z+h)+ O(e'")
x sinh k(z + h)]e!*=~ ",

4)(12‘.] =O'k_2[*i+ 0(8(2))]€_k26i(kx_al),

(1 —i)(1+coth kh) u® 1 RO

(1) _ _ L ~ 1 .2

AV ==2 5172 5D Mz e e )
. (1=i)(1+coth kh) u

A( b ————-—21/2 3 — +O ;(1)8 ! 1

Then (A9) gives
1y Ty _ -1
1V, O — P, @) e — 2732646

x (1+coth kh)* —20u't? coth kh. (A10)
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This represents a condition on the mean motion outside the oscillatory
interfacial boundary layers. By making the sign of n consistent with that
in Section 4, and by taking account of the inviscid contribution to
9*¥/on?, due essentially to what is termed the Stokes drift velocity O(x?),
equation (A10) yields equation (4.5) of the text. Remarks on the essential
asymptotic nature of (A10), and its extended range of validity for e
2 0u®/uM), may be made in the same vein as those concerning equation
(3.13).

Finally, we make the second integration of (A7) from »n'*) to n=0 in the
water, and from n=0 to n'® in the air, and use the condition (A8). Then,
integrating the result from n'!) to n=0 in the water, and from n=0 to n%
in the air, and applying the condition of continuity of tangential velocity
at the interface, we obtain

a%(l) aip‘z'(zll
|

on n

u‘f’=0(0'k_1), (All)

which is consistent with equation (4.6) of the text.
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