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From observations of wind and of water surface elevation a t  14 wave staffs in an array 
in Lake Ontario and in a large laboratory tank, the directional spectrum of 
wind-generated waves on deep water is determined by using a modification ofBarber's 
(1963) method. Systematic investigations reveal the following: (a) the frequency 
spectrum in the rear face is inversely proportional to the fourth power of the frequency 
w, with the equilibrium range parameter and the peak enhancement factor clearly 
dependent on the ratio of wind speed to peak wave speed; ( 6 )  the angular spreading 
0 of the wave energy is of the form sech2 (PO),where /? is a function of frequency 
relative to the peak; (c) depending on the gradient of the fetch, the direction of the 
waves at the spectral peak may differ from the mean wind direction by up to 50°, but 
this observed difference is predictable by a similarity analysis; (d) under conditions 
of strong wind forcing, significant effects on the phase velocity caused by amplitude 
dispersion and the presence of bound harmonics are clearly observed and are in 
accordance with the Stokes theory, whereas (e) the waves under natural wind 
conditions show amplitude dispersion, but bound harmonics are too weak to be 
detected among the background of free waves. 

Directional spectra of wind-generated waves find application in fields as diverse as basic air-sea 
interaction, upper mixed layer dynamics, practical wave forecasting, satellite surveillance and 
engineering design of marine structures and vehicles. This paper attempts to provide a carefully 
documented description of the purely wind-generated wave directional spectrum derived from 
lake data which is free of residual wave energy (swell). Laboratory spectra are used to extend 
our understanding of strongly forced natural waves. 

By far the most widely used and accepted method of studying wind waves has been by 
examination of the spectra of single point time traces of the wave surface elevation. This has 
been born of the recognition that observed sea states require a statistical description, and that 
the theoretical shape for waves of small amplitude is a sinusoid (Airy 1845). Hence, by the 
principle of linear superposition, the spectral representation is a natural description of wave 
kinematics. 

The form of the nonlinear correction to the sinusoidal form of water waves was first computed 
by Stokes (1847).This correction predicts the familiar narrow high crest and broad shallow 
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trough intuitively recognized in observations of wind-generated waves, together with an  
associated increase in the wave phase speed. In terms of the spectral representation, this would 
appear as enhanced energy a t  frequencies equal to integral multiples of the wave spectral peak 
frequency and alterations in the distribution in wavenumber space of the directional spectrum. 

As soon as nonlinear features begin to be discussed, however, the principle of superposition 
is no longer applicable and the spectral representation, although still possible, must be treated 
with care, especially when seeking to interpret any higher-order features that may be present. 
Indeed, it has been shown by Whitham (1967) that the amplitude dispersion introduced by 
the Stokes correction to the phase speed will tend to destabilize a train ofuniform parallel crested 
waves. Thus, the wave spectrum should not be regarded as representing a permanent 
description of the sea state which would be maintained in the absence of wind forces and viscous 
dissipation. Instead the spectrum will be in a state of flux through nonlinear interaction of the 
various spectral components. 

Fortunately, however, the second-order nonlinear or Stokes interactions do not result in 
large frequency shifts of the wave energy. The instability of a Stokes wave train was first 
discovered by Brooke Benjamin ( I  967) as a 'side band ' instability which would eventually cause 
wave breaking but could not transfer energy to other than adjacent frequencies. 

Phillips (1960) has shown that the third-order nonlinearities that transfer energy from three 
waves to a fourth, are the first ones that can cause continuous energy transfer over large 
frequency intervals to a free wave. The size of this transfer was first computed by Hasselmann 
et al. (1973), and has been the subject of many papers: Hasselmann (1962, 1963 a, b),  Fox 
( I976), Longuet-Higgins ( I976), Korvin-Kroukovsky ( I  967), Zakharov (1968), Webb ( I978), 
Dungey & Hui (1979). In  the last reference it was also shown that a good knowledge of the 
directional spectrum is required for the nonlinear energy transfer to be calculated accurately. 
However, because of their high order, these interactions are only of importance when discussing 
the evolution of the wave spectra with time or fetch. Observations ofwave spectra at  a particular 
point in time and space might be supposed to exhibit principally features associated with linear 
wave theory and the Stokes corrections to it. However, to verify that this is indeed the case 
requires knowledge not simply of the one-dimensional frequency spectrum but of the 
three-dimensional directional spectrum which describes the wavelength and directional 
distributions of each frequency component. For this reason and others associated with the 
practical matter of wave forecasting, much attention has recently been paid to obtaining 
estimates of the directional spectrum of wind-generated waves. 

Barnett & Kenyon (1975), in a review of the study of wind waves, discussed the methods 
then available for the measurement of directional spectra. At that time, some measurements 
had been made of what we call the two-dimensional spectrum, i.e. the one in which the radian 
wavenumber k and the (radian) frequency w were assumed to satisfy the linear dispersion 
relation on deep water 

w2 = gk. ( 1 . 1 )  

Using aerial photogrammetry, Cote et al. (1960) obtained the first wavenumber (two- 
dimensional) spectrum. But, apart from a pioneering attempt by Garrett (1970), who obtained 
four spectra, no systematic attempt to explore the properties of the full three-dimensional 
(wavenumber-frequency) spectrum had come to light. 

Since that time, a completely new family of methods has become available for measuring 
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the two- and three-dimensional spectra, namely, remote techniques (see, for example, Tyler 
et al. 1974; Wu 1977; Schuler 1978; Fontanel & de Staerke 1980; Mcleish et al. 1980; Pawka 
et al. 1980; Trizna et al. 1980; Holthuijsen 1981 ; Irani et al. 1981). Among the established 
methods reported by Barnett & Kenyon (1975) are those that use the pitch-roll and cloverleaf 
buoys (Longuet-Higgins et al. 1963 ; Mitsuyasu et al. 1975 ;Hasselmann et al. 1980), and the 
measurements from an array of wave staffs. The disadvantage of the pitch-roll and cloverleaf 
buoys is that only the first few Fourier coefficients of the angular distribution of the spectral 
energy density can be determined. The present study was done with an array of 14 wave staffs, 
thus allowing the calculation of much finer detail in the directional distribution, at  some cost 
in computer time. 

The investigation began in 1975 when a tower was built at the western end of Lake Ontario 
to record wave and wind data to determine the directional spectrum of wind-generated waves. 
Complementary laboratory experiments of wind-generated waves were done in the large 
wind-wave tank of the Canada Centre for Inland Waters. Effects of surface tension and finite 
depth of water will be neglected throughout this paper as the waves observed and discussed 
here fall into the range of deep water gravity waves. 

Our  primary purposes in conducting this study were to: 
(i) determine the dispersion relation appropriate to natural wind waves; 
(ii) describe the fetch-limited frequency spectrum in terms of a small number of parameters; 
(iii) find a parametric representation for the spreading function of the directional 

distribution ; 
(iv) use laboratory data to extend the parameter range of field observations. 
In addition, the data set is of high quality and allows new information to be obtained on 

many problems previously not resolved, for example, the dependence of the spectral shape 
parameters on fetch and wave age, a more detailed look at  the polar distribution of the spectral 
density and its dependence on wave frequency and other parameters. 

We begin with a discussion of the possible departure of the dispersion relation of wind waves 
from the limiting linear relation (1.1). Thus, without wind forcing, the Stokes wave on deep 
water has been calculated analytically to eleventh order in wave slope ak of the first harmonic 
(Hui & Tenti 1982). The surface elevation is given by 

CS, 

= k-' C bn cos [n(kx -ot)],
n - 1  

where, to fourth order, b, = ak, b2 = b3 = t ( ~ k ) ~ ,= The corresponding i ( ~ k ) ~ + g ( a k ) ~ ,  b4 + ( ~ k ) ~ .  
dispersion relation is 

w2 = gk(1+a2k2 +ia4k4). (1.3) 

In the limit of infinitesimal waves on deep water, (1.3) reduces to (1.1). For a single train of 
harmonic waves, any departure from the linear dispersion relation must be caused by one or 
more of the following effects: (a) finite amplitude; (b )  existence of currents; and (c) forcing 
of the wind. 

Comparisons of (1.3) with (1.1) show that the effect of finite amplitude a or finite slope, is 
to increase the frequency w for a given wavenumber k or, equivalently, to decrease the 
wavenumber (by at  most about 20 %) for a given frequency. This is generally called the (local) 
amplitude dispersion. Another finite amplitude Stokes effect is that the energy of the second 
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(and possibly higher) harmonic of (1.2) at  the peak frequency wp, say, appears in the 
wavenumber spectrum at  frequencies 2wp, 3wp etc. These will be called higher harmonic effects. 
For both effects, the energy density in the wavenumber spectrum for a given frequency will 
appear inside the linear dispersion circle (1.1) in wavenumber k space: the local effect will 
shift the energy slightly inside the circle by up to about 20%, whereas the higher harmonic 
effect will shift it at  least half-way inside. They are, therefore, quite distinct. In  both situations, 
the effect of finite wave amplitude is to increase the phase velocity. 

The water currents in the present investigation are quite small compared with the phase 
velocity of the wave. Their effects on the dispersion relation are generally insignificant except 
for laboratory waves. More detailed discussions are given in $7.  

The wind pressure that acts on the irrotational wave consists of two parts: one that is 
associated and correlated with the wave form and the remainder that is random and 
uncorrelated with the wave form. T o  determine the effect of the wind pressure on the dispersion 
relation, only the first part needs to be taken into account. I t  is found (Phillips 1977, p. 113) 
that the pressure field in the air pa that is correlated with the wave form is necessarily of the 
form 

Pa = (v+ iP)P, g s .  (1.4) 

The corresponding dispersion relation for infinitesimal waves is 

The magnitude of p, a measure of the energy input by the wind, is necessarily small under 
normal generating conditions in nature. O n  the other hand it can be shown (Phillips 1977, 
p. 131) that v is less than zero and that its magnitude is also small in most cases, but it has 
been observed that under very active generating conditions may not be negligible. In those 
cases, the effect of forcing by the wind is to decrease the frequency for a given wavenumber, 
or equivalently, to increase the wavenumber for a given frequency. This will move the energy 
density somewhat outside the linear dispersion circle (1.1) in wavenumber space. I t  can also 
be shown (Donelan et al. 1983) that once the pressure force pa is removed, a forced wave 
generated byp, instantaneously becomes a free wave of the same wavelength but with a sudden 
decrease in its phase equal to the excess of the forced wave frequency compared with the 
corresponding frequency of a free wave with the same wavelength. 

In a spectrum, Longuet-Higgins & Phillips (1962) have shown that tertiary interactions 
among components will also produce phase speed changes. However, near the peak of a narrow 
spectrum, the phase speed changes are dominated by self-interaction of the components near 
the peak (the Stokes effect discussed above). Fetch-limited wind wave spectra are sufficiently 
narrow that, as a first approximation, only the Stokes effect need be considered. 

2. E X P E R I M E N T A LA R R A N G E M E N T S  

2.1. Field site 

The map (figure 1) shows the location of the stable platform (a bottom mounted tower: 
figure 2) in the western end of Lake Ontario. During any given year, Lake Ontario sees several 
episodes of wind speed in excess of 15 m s-l. Its surface temperature varies from about 
1 "C in the late winter to about 20 OC in the late summer, and, with an air temperature range 
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FIGURE1. Map showing the location of the research tower in Lake Ontario and the shore-normal profile in the 
vicinity of the tower. 

FIGURE2. Photograph of the research tower. The wave staffs can be seen suspended from the tower itself and from 
its extensions in three directions. Meteorological instruments are mounted on a mast a t  the centre and the 
measuring and communications devices are housed in the box at the foot of the mast. 



515 D I R E C T I O N A L  S P E C T R A  OF W I N D  W A V E S  

more than twice as great, near-surface atmospheric stabilities can take on significant non-neutral 
values even in moderate winds. Although the prevailing winds are westerly and yield fetches 
of 1.1-2 km, fetches of up to 300 km occur throughout the year. 

As indicated in figure 1 (inset), the bottom slopes relatively rapidly (about 11 m km-l) from 
the shore to the location of the tower at  12 m depth; whereas a t  and beyond the tower, the 
bottom slope is gentle (1.5 m km-l). In  addition, the shoreline is very straight and the bottom 
contours are parallel for 3 km in both directions. The annual variation in water level is less 
than m ;  tides, seiches and wind set-up change the water level by, at  most, 0.1 m ;  there are 
no significant tidal or seiche currents, and other less organized currents are typically less than 
10 cm s-l. 

The computer-controlled recording equipment (Birch et al. 1976) is housed in a trailer 
onshore, and communication between tower and trailer is by means of an  underwater cable. 

2.2. Array design 

At the chosen site, wave periods of up to 4 s are common, with larger peak periods up to 
8 s occurring less frequently. Waves having periods in excess of 4 s and, therefore, deep-water 
wavelengths in excess of 25 m, are modified to some degree by the bottom topography. We, 
therefore, designed the array for the more common 'deep-water' waves (periods less than 4 s). 
Barber (1963) has suggested that the dispersion relation for surface water waves be invoked 
to avoid the need for a two-dimensional array. We specifically chose not to follow this piece 
of advice to be able to determine the extent to which the dispersion relation is modified by 
nonlinearities in the wave field. Thus the array is in the form of a cross with a maximum extent 
of 28 m as shown in figure 3. 

-14 1
-15 &wave sensors 

-5-3 0 3 10 1415m 

FIGURE3. Location of wave staffs in the array. 

This array allows us to estimate the directional spectra in the manner described by Barber 
(1963) or Garrett (1970) for waves having wavelengths from 2 to 28 m. The array is oriented 
so that waves from the longest fetch directions (57-83 degrees true) approach the array at  45' 
to the arms. 
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2.3. Wave s ta f s  

The 14 wave staffs are of the capacitance type in which the sensing element is a teflon-coated 
wire 6 m in length. The diameter of the wire is 1.6 mm, and the overall diameter is 4.8 mm. 
Each wave staff is suspended from the upper deck of the tower, or from one of the arms, by 
steel cable, and held to a tension of 490 N by rubber 'shock cords' which are anchored to the 
bottom. The total unsupported length is 18 m with the top support 6 m above mean water 
level. This arrangement avoids additional attachment structures at  mid-depth, which would 
interfere with the flow field of the waves. The tower itself was constructed with the minimum 
of cross bracing, and, in fact, is free of any between 3 m above the mean water level and 6 m 
below. This region is disturbed only by the presence of the four legs of diameter 41 cm, and 
a fifth smaller pole of ellipsoidal cross section at  the mid-point of one side of the tower (see 
figure 2).  The long unsupported length of the staffs has the disadvantage that passage of a wave 
moves them slightly and hence affects the array configuration. The magnitude of the 
displacement so produced is roughly proportional to the wavelength of the incident wave and 
less than 0.3 % (about 1 degree phase error) of it for waves that are resolvable by the array. 

Among the characteristics of wave staffs of most interest to us were calibration stability, 
linearity and speed of response. Laboratory tests were done in a transparent pipe (10 cm 
diameter) in which the water level could be adjusted rapidly. Readings were made at  intervals 
of 1 m, and a linear regression computed. The deviation from the least squares regression line 
is nowhere greater than 0.33% (Der & Watson 1977) and the slope and intercept of 
the regression line changed on average by 0.7 % and 21 mV (equivalent to 1.3 cm) respectively 
over four months of field exposure. These laboratory tests established the linearity and stability 
of the wave staffs, but the actual calibration used was determined in the field by immersing 
the staffs to various depths near the tower. 

The frequency response of the electronic circuitry of the wave staffs was computed and 
checked by replacing the wave staff with a voltage variable capacitor driven by a sine wave 
generator. The amplitude response is flat to 30 Hz and the phase shift from 0 to 10 Hz was 
1.2" per Hz with a maximum variation of 10 % among the 14 staffs. Therefore, the maximum 
relative phase shift between staffs at  frequencies below 5 Hz was less than lo .  The highest 
frequencies for which we can resolve directional spectra are about 1 Hz for the field and 4 Hz 
for the laboratory. Much more difficult to establish is the deterioration of frequency response 
due to the adherence of a film of water to the staff as the water level drops rapidly. A chart 
recording was made of the output voltage of a wave staff while the water level was dropped 
in the transparent pipe at  the rate of about 1 m s-l and then suddenly stopped. The sharpness 
of the corner, between the decreasing voltage part of the trace and its final constant value, served 
as an  indication of the degree to which the surface film affected the frequency response of the 
wave staff. Within the time resolution (0.2 s) of the chart recorder used, the corner showed 
no roundness. It would appear then that the wave staffs were capable of faithful response in 
the frequency band of interest (0-5 Hz), at  least while clean. Evidently algal growth and the 
accumulation of dirt on the staffs would affect the ability of the teflon to reject water. To  reduce 
this danger, the staffs were cleaned weekly in situ with a sponge attached to a rod. As a further 
precaution, for each run the standard deviations of surface displacement, as indicated by each 
of the 14 staffs with its own field calibration, were compared with the average standard 
deviation, and any staff that differed from the average by more than 10% was deemed to be 



517 D I R E C T I O N A L  S P E C T R A  O F  W I N D  W A V E S  

dirty or faulty and rejected. The noise level was sufficiently low that no filtering was deemed 
necessary before A to D conversion. The sharp fall off of the wave spectrum reduced the 
importance of aliasing. The digitization step (resolution) was 1.5 mm. 

At the end of the field observations, a $ scaled version of the wave staff array was constructed 
for use in the wind-wave flume of the Canada Centre for Inland Waters (figure 4). I n  this 
case, the sensor was made of a single length of teflon insulated hook-up wire of 1.1mm outside 
diameter. Each staff was attached to plywood disks on the top and bottom of the wind-wave 
flume, and held in 10 N tension. Calibration of the staffs was achieved during filling and 
emptying of the flume. The same electronic packages were used in both field and laboratory. 

fetch =0 
I 
I 

4.57m 

O L 2  m 

section A-A 

FIGURE4. Plan of the wind-wave flume. The location of the directional wave array is indicated by an x labelled 
D.S. The lower part of the figure shows an enlargement of the directional array and its orientation in the flume. 

In  the laboratory, there was some evidence of 60 Hz noise on some of the wave signals. As a 
result, all the signals were filtered with matched 12 dB per octave Bessel (linear phase shift) 
low-pass filters, with -3 dB points set a t  30 Hz. The sampling frequency was 20 Hz per channel 
and the maximum resolvable wavenumber 28 .n rad m-l, which corresponds to a frequency of 
about 5 Hz. The total time delay between channels, caused by the Bessel filter-A to D 
converter system, was determined by recording a sine wave from a signal generator on all 
channels simultaneously. At 5 Hz the maximum phase shift between any two channels was lo. 
The digitization step (resolution) was 0.4 mm. I t  has been demonstrated by theory and 
experiment (Sturm & Sorrel1 1973) that surface-intersecting wave gauges effectively average 
over a circle of diameter much larger than the diameter of the gauge. The effective diameter 
increases slowly with the gauge diameter and, extrapolating their results, would be about 7 cm 
for our laboratory gauges, which is the limit of wavelength resolution of our laboratory array. 
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2.4. Meteorological measurements 

At the tower, wind speed, direction and Reynolds stress measurements were made with a 
Gill anemometer bivane (Gill 1975) mounted at  11.5 m above the water. In addition, air 
temperature, humidity, water temperature, heat flux and evaporation were also recorded. As 
an indication ofhorizontal homogeneity a meteorological buoy was moored about 11.2 km from 
the tower on a bearing of 60'. 

In this paper the wind is characterized by its speed rather than the momentum transfer (or 
Reynolds stress) to the surface. Since a significant proportion of the stress is supported by very 
short waves (beyond the limits considered here) it would seem that the wind speed itself is more 
useful than the friction velocity as a means of characterizing the wind effects on the 'energy 
containing' gravity waves. 

2.5. Summary of data 

The field experiment was designed to gather sufficient data to describe the directional 
spectrum of wind-generated waves under a variety of natural conditions. A suitably non- 
dimensionalized description of the directional spectrum might be expected to be sensitive to 
non-dimensional numbers descriptive of the general water-air interfacial conditions. I t  is 
difficult to conceive of a wind-wave generating process that is unaffected by the relative speeds 
of wind and waves; thus the parameter U/c, relating wind speed to wave phase speed, was 
regarded as the primary 'sorting' variable in classifying a population of wind-generated wave 
spectra. Inasmuch as the wind profile and the intensity of turbulence (hence the pressure 
fluctuation spectrum) play an important role in the wind-wave coupling problem and are 
strongly affected by the stability of the atmospheric surface layer, it would seem that a suitable 
non-dimensional index of stability would be an additional parameter against which to examine 
the behaviour of the directional spectra. In  this paper, we use the bulk Richardson number 
Rb as a convenient measure of atmospheric stability, where 

Here U and Taare wind speed and air temperature evaluated at  height 2; Tw is the water 
surface temperature. Finally, the degree of nonlinearity, the tendency towards whitecapping 
(instability) and the strength of wind-wave coupling are all, to some extent, reflected in the 
wave slope S. 

We have chosen to classify the data in terms of the atmospheric stability Rb, an average wave 
slope S and the parameter U/c, which relates wind and wave speeds. Other non-dimensional 
parameters may be constructed from the variables of the overall flow and geometry, but they 
are either virtually constant throughout our measurements or unlikely to influence that part 
of the directional spectrum which is accessible to our observational and computational 
arrangements. 

Clearly, the establishment of the behaviour of the directional spectrum in the three-parameter 
space defined above would require a large number of measurements of the directional spectra. 
This led to the design of wholly automatic digital data logging for the field site. However, since 
each directional spectrum would be calculated from time series of 14 wave staffs sampled at  
5 Hz for 14-60 min, some pre-selection of recording times would be required to limit the 
collected data to a manageable quantity. Our approach was to use a mini-computer to control 
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the data logging and to decide when to gather data suitable for the computation of directional 
spectra. The details of the data logging system are described by Birch et al. (1976), but a brief 
summary of the relevant aspects is warranted here. From May 1976 to July 1977, the field site 
was in operation almost continuously. During most of that time, recordings were made of 1 min 
averages of wind speed and direction, air temperature and humidity, water temperature and 
mean square wave height. Every 10 min the average wind speed and air temperature over the 
previous 10 min were computed and, if they differed by a preset amount from stored reference 
values, samples, taken five times per second sequentially from each of the channels mentioned 
above and from all 14 wave staffs, were directly recorded for later processing. This mode of 
recording of the instantaneous time series for later spectral analysis continued for 1 h, after which 
the system returned to its normal mode of data logging of the 1-min averages. Ten minutes 
after this, the reference wind speed and air temperature were updated, and the search for a 
further change in the wind speed or air temperature continued. I t  can be seen that this simple 
method reduced the collection of raw data during periods of steady winds, thereby avoiding 
repeated realizations of the wave field under very similar overall conditions. By the same token 
there was, of course, a bias towards changing conditions, but not an  overwhelming one, since 
it was not the rate of change of the wind speed or air temperature which initiated the 'fast' 
mode but rather the change itself which may have occurred over an hour or several days. 

The net product of this scheme was a series of hour-long time series recordings over a wide 
range of the three parameters of interest. In  this paper we are concerned with characteristics 
of the directional spectrum a t  steady state. Eighty four runs were analysed, and the overall 
conditions that prevailed during these runs fell into the following ranges of U/cp, Rb and S: 

U/cp is referenced to the peak of the spectrum and the wind at  10 m height U,,/cp and S is 
the 'significant slope ' as defined by Huang et al. ( I98I a ) .  

There were seven laboratory runs and these are listed separately in table 1 with the values 
of U,,/cp, S and Rb also shown. The range of Rb for these cases is small as the wind-wave flume 
is not equipped with temperature controls of air or water. 

height/m 

fetch/m 

symbol 


run 
2 

3 

5 

6 

7 


29 

30 


a V is the measured wind speed. 
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3.1. Introduction 

Directional spectra are generally computed from knowledge of the behaviour of the spatial 
and temporal correlation function. The wave field is assumed to be both stationary and 
homogeneous and thus, according to the ergodic hypothesis, space and time averages are 
equivalent to ensemble averages. These will be denoted with an over bar. Thus the covariance 
of the surface displacement 

~ ( r ,t) = a x ,  4)a x  +r, to + t) (3.1) 

depends on the time lag t and the space lag r only. Particular cases of (3.1) are the covariance 
of the instantaneous surface displacement p ( r )  = p( r ,  0) and the covariance of the surface 
displacement at  a fixed point p(t) = p(0, t). Some properties of the self-correlation function p(t) 
are discussed in Hamilton et al. (1979). 

The wave spectrum, which is the basic product ofour study, is the Fourier transform ofp(r,  t) 

X(k, w) = (2.n)- 3  jjjP(r,t) exp [-i(k.r--ot)] d r  dt. 

In  particular, 

% = w) dk  do. j j j ~ ( k ,  

The frequency-direction spectrum F(o,  81, our observations of which are discussed in $8, is 
defined as 

F(w, 8) = 2 JOffi X(k,w) k dk, w b 0, (3.4) 

where k = (k cos 8, k sin 8),  so that 

Frequently, an approximate directional-frequency spectrum F,(w, 8) is derived by assuming 
the linear dispersion relation (1.1). Thus 

S(k- w2/g) X(k, w) kdk, w 2 0. (3.6) 

I t  is this function F, that has been the focus of many well-known studies of the directional 
spectrum (see, for example, Longuet-Higgins et al. 1963; Mitsuyasu et al. 1975). The frequency 
spectrum @(w) defined as 

@(w) = 2 j / ~ ( k ,  w) dk, w $ 0 ,  

is the cosine transform of the self-correlation function p(t) 

00 

@(a) = zj p(t) cos wt dt, 
0 

and in particular 

@(w) = F(w, 8) dB1% 
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An array of N wave staffs can yield at  the most N(N- I )  + 1 independent point observations 
o fp ( r ,  t) and, as will become evident, this will not be enough to enable direct estimates of the 
spectral energy density to be obtained at  all the required points. In  particular, we have 14 wave 
staffs (figure 3) yielding (allowing for duplicates) 165 possible spatial points at  which p ( r ,  t) 
may be determined; whereas the possible resolution is such that we would like knowledge of 
the spectrum at  2337 locations (see § 3.2). Thus, in practice, it is necessary to make assumptions 
about the location and form of the directional energy spectrum to reduce the number ofdegrees 
of freedom of the spectral description to less than the number of pieces of available information. 
The various methods proposed for evaluating directional spectra may thus be characterized 
by the objectivity and flexibility of these assumptions. 

The method utilized in the present analysis is based initially on the theoretical work ofBarber 
(1963) who described how to obtain a full three-dimensional (or wavenumber-frequency) 
spectrum X(k,, ku, o) from an array of wave staffs. The spectrum, however, is masked by the 
masking function (or transfer function) of the array of 14 wave staffs. This function will 
generally be extremely confusing and the information content (degrees of freedom) will still 
be limited by the number of available staff separations as indicated above. None the less, this 
procedure was implemented by Garrett (1970) with an  array of nine wave staffs, but little 
quantitative information could be obtained because of the masking function and the limited 
number of wave staffs used. The method which we have adopted is an extension of the work 
of Garrett (1970) with post-processing of the masked Barber spectrum to obtain the underlying 
true spectrum. The method adopted for obtaining the true spectrum with the restricted 
information available is to choose objectively, by computer algorithm, the locations at  which 
directional energy is observed to be. The amplitude of the spectral energy density is then 
obtained by a least squares fit to the observed masked wavenumber spectrum. A consequence 
of this method is that confidence limits for the estimates arise naturally from the fitting 
process. 

Since this method was finalized, a number of papers have been published in which methods 
of analysing wave staff records to obtain directional spectra are suggested. For example, Davis 
& Regier (1977) include an extensive discussion of the criteria for array and processing design. 
However, the main thrust of their argument seems to be obtaining optimal results from 
relatively sparse data. Comparatively little attention is paid therefore to computational 
efficiency, and in their companion paper (Regier & Davis 1977) they consider only two- 
dimensional spectra (satisfying the linear dispersion relation) obtained from an array of six wave 
staffs. Borgman (1979) proposes both an  iterative and a least squares approach for establishing 
the polar distribution, which approach is similar to that adopted here in the sense that by 
identifying the location of the energy an improved representation of the distribution can be 
obtained. However, no attempt is made to suggest methods of either estimating the dependence 
of X on I k I or of obtaining confidence limits from the estimates obtained. Rikiishi (1978a, 6 )  
proposes a direct method for analysing two-dimensional spectra and considers the case 
o2= ag I k 1. Although his method appears to rely on the correct choice of a, he proposes a 
test (the detection ofwave energy in the opposite quadrant from the major energy concentration) 
which 'might' enable a to be determined iteratively. However, this procedure does not allow 
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for the possibility of energy being located a t  both ( k I = 02/g and I k I = 4o2/g as would be 
expected for a Stokes wave. 

To  summarize, the method adopted for obtaining estimates of the directional spectra 
(described below) seems to compare well with other methods suggested both before and since 
its conception. Its advantages are: 

(i) the lack of an  assumption about the location and distribution of directional energy, 
particularly with respect to I k 1 ;  

(ii) the availability of confidence limits for the estimates. 

3.2. The modged Barber method 

All methods of obtaining directional spectra rely on the important relation (3.2). We first 
do the time Fourier transform of (3.2) to get the wavenumber spectrum X(k,oo) at  a given 
frequency wo. For simplicity, we shall drop the reference to a fixed frequency ooin the following. 
Thus X(k) means X(k, wo) and is given by 

X(k) = (2n)- 2  S]p(r) exp ( - iksr)  d r .  

As in Barber (1963), we obtain the observed oE raw Barber wavenumber spectrum. 

[(k) = E p(r,)exp ( -ik .rl), 
1 

where the rl are the available separations and p(rl)is the average of all the estimates of p a t  
each rl. 

The distortion introduced by the incomplete information for p(r,) (the 14 wave staffs yield 
only 165 independent correlations) can be represented by means of a masking function M 

where 
M ( k )  = (2n)'X exp (- iker,)  

1 

In figure 5 will be found a contour map of the masking function (by definition M ( k )  is real). 
I t  will be noticed that (i) there are negative areas; (ii) the two bands along the k ,  and k, axes 
are prominent (related to the arrangement of the wave staffs along orthogonal axes) ; (iii) the 
value of M ( k )  at  k = 0 is larger than values elsewhere; (iv) the resolution is 0(n/xmaX) and 
O(n/ymax) in the x and y directions where xmax and y,,, are the maximum separations of the 
wave staffs in the x and y directions respectively; and finally, (v) M ( k )  is periodic of period 
2n in k, and k,. The wave staffs are spaced at  1 m intervals, hence n (28n for the laboratory 
spectra) is the Nyquist wavenumber. 

With the aid of the masking function or array transfer function, the raw wavenumber 
spectrum can be roughly interpreted and this is the procedure adopted by Garrett (1970) 
(however, with fewer wave staffs). This is not an acceptable procedure if any systematic analysis 
is to be done. I t  is therefore necessary to invert (3.13) to obtain X(k) directly. 

The method adopted was to assume that X(k)  took the form 

M 

X(k) = z Em S(k- k,), 
m = 1  
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where the k, are a set of locations (m < 165) chosen by using the algorithm described in $3.3. 
The Em are chosen on the basis of a least squares fit to the observed wavenumber spectrum 
in the region D:  -n: < k,, ky < X. 

Evaluating the cross products such as M ( k  -k,) M ( k  -k,), whose calculation is normally 
required by a least squares fit, would prove lengthy. However, the calculation can be 
considerably simplified (Donelan et al. 1983), and the least squares fit reduced to the set of 
formulae M 

these being merely the requirement that the residual is zero at  the chosen locations kl. 
The steps in this process of recovering the detected wavenumber spectrum X(k) from the 

raw (or observed) spectrum [(k) are illustrated in the composite figure 5 .  This figure was 
produced by analysing simulated surface elevation time series corresponding to a monochromatic 
infinite crested wave train travelling along the y axis in deliberate disregard of the dispersion 
relation (1.1). Such data should yield delta functions in both frequency and wavenumber space. 
Figure 5 shows the frequency spectrum, the raw (observed) wavenumber spectrum, the array 
transfer function and the detected wavenumber spectrum. I t  can be seen that the raw 
wavenumber spectrum looks rather like the array transfer function but displaced from the origin 
along the y axis. In  fact, the raw spectrum is a convolution of the single delta function 
wavenumber spectrum with the array transfer function. In  this case, the inversion process 
recovered the delta function (within grid resolution) and accounted for 99.88% of the energy 
in the prescribed spectrum. 

Note that the wavenumber spectrum, whatever its shape, is always represented by a set of 
delta functions. These delta functions may not be located arbitrarily but must be a t  one of a 
cartesian array of points 

k, = rAk,i+sAkyj, (3.18) 
where r, s are integers and 

2x 2n:
Ak, = rn-l; Ak,, = m-l,

(2 x 20+ 1) ( 2 x 2 8 + 1 )  

the maximum staff separations in the x and y directions being 20 and 28 m respectively (figure 3). 
Thus there are (2 x 20+ 1) x (2 x 28+ 1) ( =  2337) possible locations a t  which values of the 
directional spectrum are desired in the 2n: x 2n: wavenumber map. 

3.3. Algorithm for choosing inversion points 

The algorithm for choosing the locations k, of (3.15), at  which the energy is assumed to 
lie, is based on the transfer function M ( k )  having a strong maximum value at  k = 0. Thus 
we proceed as follows: 

(1) The raw energy is calculated from (3.12) at  41 x 57 equally spaced points in 
--n: < k,, ky < 7C. 

(2) We find a list of at  most 25 locations kl ,  at  which [(k) rises to at  least 75 % of its maxi- 
mum value. I t  would seem reasonable that there is directional energy at  these points because of 
the nature of M ( k ) .  



524 M. A. D O N E L A N ,  J. H A M I L T O N  A N D  W. H.  H U I  

FIGURE5 .  A composite figure showing the stages in the process of recovering the detected wavenumber spectrum 
X(k). In this case the data are simulated and correspond to a monochromatic infinite-crested wave train travelling 
along thr y-axis. The circles correspond to the dispersion relation (1.1) which does not apply to the simulated 
data. The panels are in anticlockwise sequence from top right: (a) frequency spectrum, (b) array transfer 
function (or masking function), (c) observed wavenumber spectrum, (d) detected wavenumber spectrum 
(X(k,, k,, w = 1.75 s-I)). 

(3)  A least squares fit is done to explain the observed [(k). 
(4) If less than 92.5% of the variance of [(k) is explained then further searches are made 

until either a total of 100 points are used or 92.5 % is explained. 
( 5 )  As the order of performing the fitting may influence the values of Em, a refit is performed 

(in batches not exceeding 50 points) to eliminate this bias. This step adds considerably to the 
computation time required. Note that in this algorithm no use is made of any dispersion relation. 
Further details of the least squares fitting and the establishment of confidence limits are given 
in Donelan et al. (1983). 
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3.4. Polar analysis 

The directional spectrum finds its most frequent application in polar form F(o,  8).Formally, 
this is obtained from X(k, w) by integrating over all wavenumbers directed along 8 as in (3.4). 
Because of the presence of noise at  high wavenumbers in X(k, w) ,  we cannot integrate over 
the entire range of k. Instead we make use of the fact that, in the absence of significant bound 
energy, the energy in any frequency band clusters around a relatively narrow band of 
wavenumbers, and we proceed as follows: 

(i) Let S be the width of the band associated with the corresponding frequency bandwidth 

Aw 
8% 2wAo/g (3.19) 

and we set all values of Emto zero that do not satisfy 

where k* is the radius of the wavenumber circle through the k, with maximum associated 
energy. This procedure is necessary to stabilize estimates for the mean wavenumber k(8) as 
described below. 

(ii) We assume that fitting errors in El and E, are all perfectly correlated so that if 
E, = El +E, then a, = a, +a,;  where a,, a,, a, are the standard deviations of the errors. 

(iii) We then project the energy density Em (positive values only) and the zeroth and first 
moments of the energy, weighted by the standard-deviation estimates a, (say) obtained from 
the fitting procedure, on to a wavenumber circle to obtain F(o ,  8) ,  M,,(8) and Ml(8).  

(iv) These quantities are then binomially smoothed until the half-height width of the 
influence of a single Emjust exceeds 20'. 

(v) The mean wavenumber can then be obtained from 

Here F(o ,  8) and k(8) are the two main quantities of interest, and may be found presented 
in figure 6. Also plotted are estimates of the standard deviation of F(o ,  8) (obtained in the same 
manner as the F(o ,  8) but using aminstead of Em)and similar graphs calculated by using any 
negative values that may be present. The graphs, obtained from the negative values, represent 
an  independent estimate of the errors. We have the further check that the total positive energy 
resolved should be close to the energy content in the frequency band. 

As the frequency spectrum @(o)  is most easily obtained, it is customary to represent the 
directional-frequency spectrum by: 

F (o ,8 )  = @(w)h(B). (3.22) 

I t  follows from (3.5) and (3.10) that 

The method of analysis adopted yields compact polar distributions of the energy. I t  is 
preferable, therefore, that the representations adopted for h(8) retain this quality. Previous 
representations, notably the cosZS (go) of Mitsuyasu et al. (1975) and later Hasselmann et al. 
( I  980),were designed to represent directional spectra obtained in the form of a limited number 
of Fourier coefficients. These distributions are therefore not compact. In  figure 7 will be found 

mailto:@(w)h(B)
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FIGURE6. The top part of the figure is the directional spectrum corresponding to the wavenumber spectrum of figure 
9(4 :  ----, the detected directional spectrum; ---,the parametric fit described in $3.4;---, the estimated 
standard deviation of the directional spectrum. The lower part of the figure is the average wavenumber 
deduced from the wavenumber spectrum of figure 9 (d). The horizontal dashed line corresponds to the linear 
dispersion relation (1.1), for the frequency of this band w = 3.2 s-'. 

B B 

FIGURE7 .  Typical directional spectra (---) with polar representations due to Mitsuyasu et al. (1975) ( - - - ) ;  

Hasselmann et al. 1980 (---) ; sechZ(PO) (---), see $8. 


a typical polar distribution with cosZS ( i8)  distributions superimposed. Also shown is the 
distribution described in $8. The polar representations of Mitsuyasu et al. (1975)and 
Hasselmann et al. (1980),both deduced from buoys, appear to broaden too quickly with 
increasing w / w ~ .Possible reasons for this are discussed in $8. In  addition, double-peaked 
distributions of h(8)were occasionally observed. In these cases, cosine distributions would not 
be appropriate. 
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T o  avoid placing too stringent controls on the shape of h(8) while, at the same time, 
smoothing out some of the sampling variability inherent in any spectral decomposition, we 
devised (Donelan et al. 1983) a four-parameter fit to the observed h(8). The parameters were 
direction and height of the peak, width and flatness. The last parameter allowed for multiple 
peaks. The fitted distributions are symmetrical about the peak direction; the fitted distribution 
is henceforth described as the 'test model'. Examples of these fitted h(8) are given in figures 
6, 27 and 28. This set of four parameters per spectrum was then used ($8)to select an average 
shape function h(8). 

4.1. Field wavenumber-frequency spectra 

In  this section, we present and discuss some representative wavenumber spectra calculated 
from wind-wave data recorded in Lake Ontario during 1976-1977. In  all these calculations, 
the wave fields are assumed to be stationary and homogeneous. 

In each of the two cases to be presented (figures 8 and 9), we show a frequency spectrum 
and a sequence of wavenumber spectra X(k) far frequency bands of width Aw. In  these plots, 
the solid circles represent the limits of the deep-water dispersion relation (1.1) for infinitesimal 
waves and correspond to the limits of the frequency bands analysed, whereas the broken circle 
corresponds to the (energy) centroidal frequency of the band. 

All the waves analysed have wavelengths of the dominant wave less than twice the water 
depth at the tower (i.e. less than 24 m).  Hence, finite depth effects on the dispersion relation 
are negligible. Within the resolution of these contour plots, higher harmonics of the dominant 
waves are not observed, but they are observed in the laboratory experiments as will be seen 
below. 

In figure 8 near the peak frequency, the energy is concentrated and lies between the two 
solid circles, which indicates that the linear dispersion relation (1.1) is obeyed for those waves 
which are near full development, U/cp = 1.5. At higher frequencies, the energy density appears 
slightly inside the inner solid circle. This could be due to the local Stokes effects of finite wave 
slope. As discussed in $ 1, such effects can cause a departure from the linear dispersion circle 
by up to about 20 %. Figure 9, on the other hand, corresponds to younger waves (U/cp = 3.1), 
i.e. stronger wind generation near the peak frequency. I t  can be seen that in this case there 
is evidence of amplitude (finite slope) dispersion just above the peak as well as a t  higher 
frequencies. 

In  a few cases it was observed that the energy density lies outside the larger dispersion circle. 
This may be explained by the presence of forced waves according to the theory in $1. Actually, 
one should expect forced waves to be present much more regularly than the directional spectra 
show. We attribute this lack of evidence of forced waves in the directional spectrum to 
intermittency of the generation process. I t  was shown in Donelan et al. (1983) that on removal 
of the forcing, forced waves instantaneously revert to free waves of the same wavelength but 
with a sudden shift in the phase, and hence, since the spectra represent averages over time and 
do not retain the phase information, they should be predominated by the free waves, as 
observed. 
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4.2. Laboratory wavenumber-frequency spectra 

Wave data were also recorded in the wind-wave flume at  C.C.I.W. with a &th scale array 
of wave staffs in the same configuration as the tower. In no case was the wavelength of the 
waves at  the spectral peak more than 1.15 times the water depth (1.1 m) .  Therefore, as for 
the field data, these laboratory waves are deep water waves. Wavenumber spectra for a typical 
case (run no. 5) are shown in figure 10 at  various frequencies. The frequency spectrum is narrow 
and the general features of the wavenumber spectra resemble those in the lake, with some very 
significant differences. Thus, for instance, while at  the peak frequency (op= 8.96 s-l), the wave 
energy is nearly on the linear dispersion circle, for higher frequencies, the energy appears 
progressively inside the circle. As we shall describe in detail in $ 7 ,  this is a reflection first of 
amplitude dispersion and then, at  o/op= 1.7, of the appearance of bound harmonics. In these 
plots the lowest positive contour is 12.5% of the peak so that the relatively small free wave 
energy cannot be seen in (e) and ( f ) .  The coexistence of free and bound energy is seen clearly 
in (d). 

5. THEF R E Q U E N C Y  S P E C T R U M  

5.1. Introduction 

In this section we examine certain characteristics of the frequency spectrum. We restrict our 
attention to cases in which there is no swell. In  fact, Lake Ontario is smaller than typical 
meteorological systems and the wave spectra are usually uni-modal with little or no evidence 
of swell. 

Kitaigorodskii's (1962) similarity argument on the scaling of fetch-limited spectra has 
provided the basis for a consistent description of several sets of field observations and tank 
experiments (Pierson & Moskowitz I 964; Mitsuyasu I 968, I 969 ;Liu I 97 I ;Hasselmann et al. 
1973; Ramamonjiarisoa 1973). The success of Kitaigorodskii's scaling law is strong support 
for the concept of the similarity of fetch development of the wind-generated gravity wave 
spectrum, which can be completely described by a length scale associated with the fetch, and 
a velocity scale associated with the source of energy: the wind. Such a description, however, 
is limited in its practical usefulness to situations in which the fetch is known and the wind is 
relatively constant along the fetch. In  the general case of winds variable in speed and direction, 
a description of the parameters of the spectrum in terms of local conditions would be valuable. 
Therefore, instead of the non-dimensional fetch 2 = xg/ UZ, we have chosen to relate the spectral 
parameters to U,,/cp, the ratio of the component of the 10 m wind speed in the direction of 
the waves at  the peak of the spectrum to the phase speed of those waves. 

In figure 11 we have collapsed the frequency spectra for all the cases on to axes normalized 
by the magnitude of the peak spectral density and of the peak frequency. The spectra have 
been grouped into classes by the parameter UC/cp. The 90% confidence limits based on the 
standard errors of the mean, in each band of width 0.1, are indicated at  the top of the figure. 
The position of the vertical bar indicates the average value of @/up in each band. I t  appears 
that there is a pronounced narrowing of the spectra with increasing U,,/cP. The smooth 
variation in width and otherwise smooth variation of the spectra support the idea that 
wind-generated spectra may be described in a similarity framework such as that proposed by 
Kitaigorodskii (1962) and applied with dramatic effect by Hasselmann et al. (1973). 
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A 1 1 - 1 7  ) laboratory 
A 7 - 9  

- 1 field 
2 - 3  

FIGURE1 1 .  Normalized frequency spectra grouped into classes by UC/cBThe vertical bars at  the top of the 
figure are an estimate of the 90 % confidence limits based on the standard error of the mean. 

Spectra normalized in this way provide useful summaries of the observed process provided 
that the estimates of the normalizers, peak frequency and spectral peak, are accurately 
determined. Donelan & Pierson (1983) have shown that errors in estimation of the peak 
frequency and the spectral value there may arise if the confidence limits on the spectra are not 
sufficiently narrow. Each of the 16 spectral estimates from each of the staffs contains 256 degrees 
of freedom corresponding to 90 % confidence limits of -t 15 %. The frequency spectra discussed 
here are averages of all 14 wave staffs so that the number of degrees of freedom per estimate 
is increased by a factor between 1 and 14 depending on the wavelength or frequency. In the 
extreme case of very short waves the 90 % confidence limits are only 1 4  %. 

As pointed out by Donelan & Pierson (1983), the uncertainty in the measured spectral 
estimates can lead to error in the selection of the peak frequency. For 90% confidence limits 
+ 15 % wide and spectral shapes as shown in figure 11 the peak frequency is within -t 5 % of-

its true value 90% of the time. A more serious error is associated with the coarse frequency 
resolution: the price paid for close confidence limits on the spectra. That is, if the true peak 
falls between two spectral estimates it may be as much as 10 % away from either estimate. To  
compensate for this the peak frequency wp is taken to be the centroid of the three estimates 
at  and on either side of the measured peak. 
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5.2. T h e  rear face 

I t  is generally agreed that wind-wave spectra have a very sharp cut-off at  frequencies below 
the peak, i.e. on the forward face, and a somewhat more gently sloped rear face. Current 
practice in describing wind-wave spectra owes its origin to the pioneering work of Phillips 
(1958). He argued that the shorter waves on the rear face of the spectrum are limited in 
amplitude largely through breaking of their steepest members. Phillips's argument, based on 
dimensional considerations, suggests that the energy density of the rear face of the spectrum 
should be inversely proportional to frequency to the fifth power: the so-called w P 5  power law. 
He further argued that, although the wave energy in a wind-wave field may grow with time 
or down fetch, the growth should be largely by the development of the longer waves below 
the peak without much change to the shorter waves. That  is, the rear face of the spectrum could 
be described by where a is a universal constant. The first attempts to test Phillips's 
hypothesis (see, for example, Burling 1959; Kinsman 1960) supported the idea of an  
'equilibrium range' on the rear face of the spectrum with an w-5 behaviour. More recently, 
however, both the constancy of a and the w - 5  frequency dependence have been called into 
question (Garrett I 969 ; Longuet-Higgins I 969 ; Hasselmann et al. I 973; Ramamonjiarisoa 
1973; Toba 1973; Kitaigorodskii et al. 1975; Misuyasu et al. 1975; Forristall 1981; Kahma 
1981). 

Longuet-Higgins (1969) demonstrated that a is related to the wave age. Hasselmann et al. 
(1973), in a careful study of fetch-limited waves, related a to the non-dimensional fetch 
2 = x g l U 2 .  In these studies the power law that described the rear face of the spectrum varied 
between -3.5 and -5.0. I t  would appear that not only is a not a constant but the frequency 
dependence of the rear face may also vary considerably. 

Accordingly, as a starting point in describing our spectra we examined them to attempt to 
determine the characteristics of the rear face of the spectrum. In  the 'energy containing' region 
of the spectrum, i.e, spectral levels greater than 1 % of the peak, the rear face of the spectrum 
is well described by an w-4  power law. T o  illustrate the slope of the rear face the spectra have 
been multiplied by o4and normalized by the average level of the spectral estimates multiplied 
by o4in the frequency region 1.5 op< w < 3.0 wp (see figure 12). I t  is clear that an  w - 4  power 
law is a good description of the reai- face of the spectrum in the energy containing region. For 
comparison w - ~and w - ~power laws are also shown. Although harmonic peaks are clearly 
evident in the largest U,,/cp spectral group, the mean spectral level is in good agreement with 
the w - ~line. Both the laboratory and field data support an  w P 4  description of the rear face 
of the spectrum in the frequency region 1.5 op< o < 3.5 opof the wind-generated gravity wave 
spectrum. Although the result we have quoted is simply an empirical one, there is theoretical 
support for an  w-4  equilibrium range in the work of Zakharov & Filonenko (1967). 

I t  is not our purpose here to try to reconcile our observations with the conclusions of the 
enormous literature of wave spectra that has gone before. We emphasize, however, that we 
have confined our attention to the energy containing region ofthe rear face ofthe wind-generated 
gravity wave spectrum, because it is here that a simple and accurate spectral description finds 
frequent and valuable practical application. 

The establishment of a power law appropriate to the rear face of the wave spectrum is often 
troubled by the possibility ofDoppler shifting of the spectral estimates by currents (Kitaigorodskii 
et al. 1975). Tidal currents in Lake Ontario are insignificant in this context, and the wind-driven 
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A 11-17 ) laboratory 
A 7 - 9  

FIGURE12. Frequency spectra times w 4 normalized by the rear face [w4q5(w)],.,. which is the average of w 4 4 ( w ) in 
the region 1 . 5 ~ ~< w < 3wp. The lines corresponding to w - ~and w - 3  are also shown (---). The effect of 
a 1 0  cm s-' ambient current with or against the waves is also shown 6--)as is the effect of wind drift in a 
10 m s-l wind (---). The spectra are grouped in classes of Uc/cp. 

and thermal circulation produces upper layer currents that aregenerally under 10 cm s-l (Simons 
1974, 1975). The field spectra have been analysed in 16 frequency bands with the lowest and 
the highest centred on 0.044 Hz and 1.22 Hz respectively. As a result, the ratio of phase speeds 
to current speeds is 13 or greater, and the calculations of Kitaigorodskii et al. (1975) indicate 
that the Doppler shift does not alter the slope of the rear face materially. Furthermore, there 
is no reason to suppose that the direction of the currents and waves are correlated. In  fact the 
waves tend to be offshore or onshore (prevailing wind directions) and the lake currents are 
inclined to be shore parallel (topography steered). None the less, we have indicated (figure 12) 
the maximum distortion to the observed wP4 slope based on Kitaigorodskii et al. (1975) for 
10 cm s-l currents with and against the waves. We have used their results for the cosine squared 
distribution since this is in reasonable agreement with the directional spread ($8)at high values 
of w/wp where the Doppler shift might be important. I t  appears that the effect on the spectral 
slope of the ambient currents is not significant in these lake data, and of course does not exist 
in the laboratory tank data. 

Doppler shifting due to surface wind drift may, in some instances, be an important factor. 
The combination of short waves and strong winds is particularly prone to this source of error, 
since the current is strongly sheared near the surface and is about 2.5 % of the wind speed (Wu 
1975). In  $ 7  we demonstrate that in strong surface shear the short waves appear to be advected 
a t  a speed corresponding to the current speed at  a depth of order ilk. In  figure 12 is indicated 
an approximate correction for the wind drift (field data) based on an average wind speed of 
10 m s-l and the wind drift profile inferred by Donelan (1978). I t  can be seen that this 
correction is only of importance in these field data for w/w, > 3. Furthermore, correcting for 
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this source of error would make the spectral slope slightly more negative than 0-4for o > 3wp 
and essentially unchanged for o < 3wp. Evidently an  wP4 power law provides an excellent 
description of the rear face of these lake spectra in the energy containing region 
1 . 5 ~ ~< o  < 3wp. 

The laboratory spectra show a tendency to increase slope above w/wp = 3.2, which is 
probably because ofwind drift currents. We shall explore this further in $7. However, we remark 
that it is difficult to assign a slope to the rear face of the spectrum of the strongly forced 
(U/cp > 9) laboratory waves, because of the presence of pronounced harmonic peaks (see $ 7).  
Moreover, we are attempting to find a general description for the spectra of natural waves, 
and are using the laboratory data only to extend the parameter space beyond that able to 
be realized with our field site. The rationale for this is that the broader parameter ranges thus 
achieved help us to discern trends that may otherwise be buried in the noise - sampling and 
geophysical variability - of the field data. At the same time we remain fully cognizant that in 
many instances the differences between the conditions of the laboratory and lake are sufficient 
to prevent close quantitative correspondence between them. 

Inasmuch as the rear face of both the laboratory and field spectra falls off as wP4, previous 
spectral shapes based on an wV5 rear face, such as the Pierson & Moskowitz (1964) and 
JONSWAP (Hasselmann et al. I 973), are not appropriate. More recently, Huang et al. (198 I 6) 
have proposed a spectral model in which the slope of the rear face is dependent on the 
'significant slope', an  internal parameter of the wave field defined as the ratio of root mean 
square surface elevation to the wavelength of the spectral peak. While the model of Huang 
et al. provides some flexibility in the slope of the rear face of the spectrum, it does not attempt 
to describe the peak enhancement independently, deemed so important in the JONSWAP data. 
In  addition, in describing the energy containing region about the peak of the spectrum, their 
model deviates considerably from the observed behaviour of the equilibrium region. 

In this section, additional runs from another laboratory experiment (Donelan 1979) in the 
same tank were used to supplement the seven directional array runs. These extra data appear 
in figures 13, 14, 15 and 16. The statistical reliability of these points is less because they are 
derived from a single wave staff rather than from the average of an array of fourteen. In figures 
13 and 14 they are grouped in bands of U/cP to compensate for their lower individual reliability 
than the runs derived from the array. 

5.3. The parameters of the spectrum 

Our  spectra are characterized by relatively constant rear face slope (wP4) and pronounced 
peak enhancement (figure 12). Accordingly the JONSWAP spectral model, modified to 
account for the w-4 rather than the w - ~rear face, would seem a plausible candidate for 
describing these spectra. The modification consists of replacing w-5 by w W 4up1: 

@(w)= a g 2 ~ - 4 ~ ; 1  f,exp { - (5.1) 
where r = exp { - (w -~ ~ ) ~ / 2 a ~ w i ) .  

The four parameters of this model are : up, a, y ,  cr. We retain the JONSWAP designations : 

w, is the frequency of the spectral peak; 

a is the equilibrium range (rear face) parameter; 


y is the peak enhancement (over the Pierson-Moskowitz spectrum) factor; 

(T is the peak width parameter. 
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U cos O/cp Ucos O/cp 
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FIGURE13. The equilibrium range spectral parameter a against Uc/cp. The solid line corresponds to (5.2) and the broken line is from the relation given 
by Kahma (1981). The data derived from a previous experiment (Donelan 1979) are indicated by solid squares. 

FIGURE14. The peak enhancement parameter y against Uc/cp. The line corresponds to (5.3). The data derived from a previous experiment (Donelan 
1979) are indicated by solid squares. 

FIGURE15. Non-dimensional fetch 2 = x(0) g/(U c0s8)~ against Uc/cp. --: fit to the field data; ---:fit to the laboratory data; ---: from Phillips 
(1977). The empirical relation that relates non-dimensional fetch and Uc/cp for the field data is UcosO/cp = ll .6~-O-0.~~. 

FIGURE16. Non-dimensional variance of surface elevation F" = eg2/(U cost?)* against UC/cp. --: fit to the field data; -----:JONSWAP; the length 
of the line indicates the range of data gathered during the JONSWAP experiment. Non-dimensional variance of the field data is represented by 
F" = 0.00274 (U  cos 0 /~ , , ) -~ .~ .  
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The dependence of the equilibrium range parameter a on Uc/cp is shown in figure 13. 
U, = U cos 0 is the component of the wind in the direction of travel of the waves at the spectral 
peak. The ratio UC/cp is a measure of the wind input and might be expected to affect a. In 
spite of the scatter in the field observations there is a clear dependence of a on U,/c,. The field 
data suggest the following relation between a and UC/cp: 

Kahma (1981) argues strongly in favour of an o-4rear face based on accelerometer buoy 
data from the Gulf of Bothnia. His spectra are based on Toba's (1973) formulation and have 
an equilibrium range parameter which, converted to the form of a in (5. I ) ,  has the linear wind 
speed dependence indicated on figure 13 for the range of Kahma's data. Evidently, Kahma's 
a is not inSonsistent with our data for the range in U/c, of his data. However, it cannot be 
comfortably extrapolated to cover the wider range of our data. 

It is also apparent from figure 13 that the laboratory and field data are drawn from different 
populations. The sudden decrease in a from the field trend (extrapolated) suggests a basic 
field-laboratory change in the mechanisms of generation or dissipation of the short waves on 
the rear face. The most obvious change to the generating process is the constraint on the lateral 
variation of the wind vector imposed by the tank walls. This would be expected to reduce the 
directional spread of the 'saturated' waves simply because the mean wind meandering has been 
arrested. However, there may be an additional reduction in the generation rate, because of 
the reduced efficiency ofmechanisms, such as that hypothesized by Stewart ( I974). As the winds 
are increased, the laboratory waves remain fetch-limited, and the rapid increase of the wind 
input overcomes the side wall effects; a increases quickly. 

Another possible reason for the initial decrease of the laboratory a values is the effect of wind 
drift on limiting the amplitude of the waves at breaking. Banner & Phillips (1974) have shown 
that the wave amplitudes are reduced by (1 -q / ~ ) ~where q, the wind drift, is approximately 
0.025 U. For the waves on the rear face at  o = 2op, this reduces to (1-0.05 U/C,)~. Initially, 
this has the effect of reducing a with increasing U/C,. However, eventually the waves become 
too long for their breaking amplitude to be modified greatly by the thin shear layer a t  the 
surface, and the effect of strengthened wind input dominates, which causes a to increase again. 

When the spectra are normalized with respect to the equilibrium range (figure 12)' systematic 
changes in the height of the peak with respect to the parameter UC/cp are manifest. At very 
low values of Uc/cp the peak is actually below the equilibrium range in w4@(w) coordinates. 
In the terminology ofJONSWAP (Hasselmann et al. I 973)' the 'peak enhancement parameter' 
y is graphed in figure 14. A systematic increase of y with UC/cp is evident. This contrasts 
markedly with the JONSWAP result (Hasselmann et al. 1973) in which the values of y derived 
from individual spectra were scattered over a sixfold range with no significant correlation with 
non-dimensional fetch. At values of Uc/cp less than unity, y seems to be fairly constant a t  1.7. 
However, the peak value of the spectrum at full development (UC/cp = 0.83) differs from 
Pierson & Moskowitz (1964) by less than 20% because the equilibrium range parameter 
(figure 13) is only 0.0054 at UC/cp = 0.83 compared with the constant Pierson-Moskowitz 
value of 0.0086. For the field data, the peak enhancement factor may be described by: 
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The peak width parameter cwas determined by requiring that the integral under the spectrum 
(5.1) agree with p from (5.7). Agreement within 4 % is achieved with: 

5.4. Non-dimensional fetch and energy 

Figure 15 shows the dependence of non-dimensional fetch x" (=  x (8)g/U2,) on UC/cp over 
five orders of magnitude in 2. Fetch x(0) is the fetch in the direction of propagation of the waves 
at  the spectral peak. Field and laboratory data are nearly contiguous, but a power law (solid 
line) fitted to the field data clearly does not represent the laboratory results. The laboratory 
data fall on a line (dotted) which is displaced upward and to the3right of the power law repre- 
senting the field data. Phillips (1977) has remarked that the laboratory and field data sum- 
marized by Hasselmann et al. (1973) do not necessarily conform to the same similarity law, and 
he fitted a power law (shown dashed) to their field data only. The laboratory wind speeds are 
the equivalent neutral profile wind speeds at  10 m height computed with the measured friction 
velocities. Had we used the wind speed at a lower height, commensurate with the shorter 
wavelengths of the laboratory waves, the laboratory points would have been in closer agreement 
with the extrapolated field line of figure 15. However, the opposite trend would have occurred 
in figure 16, thereby demonstrating that no wavelength-related choice of U(z) can reconcile 
the laboratory and field data in terms of Kitaigorodskii's (1962) theory. 

For the field data the empirical relation linking non-dimensional fetch and UC/cp is: 

The change in spectral energy density following the waves is described by the radiative 
transfer equation (Hasselmann et al. ( I  973) : 

where 4 is the group velocity averaged over direction, and the right side consists of three sources: 
wind input I,wave-wave interaction W, and dissipation D. 

For the conditions of their fetch-limited data Hasselmann et al. (1973) estimate that near 
the peak the sources are dominated by wind input and wave-wave interaction; dissipation is 
important only at  higher frequencies. However, in the much steeper laboratory data it seems 
unlikely that dissipation near the peak can be considered negligible. In  fact, at  high values of 
U/cp visual observation suggests that the waves near the peak of the spectrum are being 

dissipated by wave breaking. Evidently, the wave-wave interaction processes are too weak to 
transport the rapid wind input to lower frequencies; there is a pile up of energy near the peak, 
and the dissipation is increased there. The net effect is that the peak frequency is higher than 
it would be if wind input and wave-wave interaction dominated the source function. Higher 
frequency, or lower phase speed cp, has the effect of moving the laboratory points to the right 
in figures 15 and 16. 

Figure 16 relates non-dimensional variance 6(= pg2/Ut)  to UC/cP. The field data seem to 
be in excellent agreement with a power law dependence (solid line) on UC/cp. Here again the 
laboratory data deviate from the line, but the disagreement with the field data occurs at 
somewhat higher values of U,/cp than in figure 15. The non-dimensional variance of the field 
data is represented by: 

6 = 0.00274(U cos (5.7) 
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In  figure 16 we have indicated the range of U/cp covered by the JONSWAP data 
(Hasselmann et al. 1973). Over this range their data is sufficiently scattered to cover the solid 
lines suggested by our data in both figures 15 and 16. In other words, the results of both sets 
of observations (JONSWAP and this work) are consistent. However, the lines fitted by 
Hasselmann et al. to the JONSWAP data appear to have been biased away from those fitted 
to our data by the inclusion of laboratory data in the same similarity framework. 

5.5. Comparison with other spectra 

In figure 17 we compare the JONSWAP (Hasselmann et al. 1973) and Pierson-Moskowitz 
(1964) spectra with the spectra represented by (5.1). Two values of U/cp (4 and 0.83) are shown 
which correspond to non-dimehsional fetches of lo2 (fetch-limited) and lo6 (fully developed). 

A: 

I I 

-this paper---JONSWAP 
...... Pierson-

Moskowitz I.,=A 

w/s-l 

FIGURE17. Comparison of spectra with up= 2.5 s-I for two values of U/cp. 

The values of wind speed and fetch appropriate to these spectra (wp = 2.5 s-l) are respectively 
15.6 m s-l and 2.5 km (fetch-limited) and 3.2 m s-l and 104 km (fully developed). The 
Pierson-Moskowitz spectrum applies only to full development, and it is encouraging that the 
spectrum of (5.1), derived from fetch-limited data only and extrapolated to full development, 
is in good agreement with the Pierson-Moskowitz. At the other end of the scale of strongly 
fetch-limited spectra, the JONSWAP spectrum is in reasonable agreement with (5.1). However, 
the JONSWAP spectrum, extrapolated to full development, retains its enhanced peak and is 
therefore unable to relax to the broader peaked fully developed spectrum. The differences 
between the JONSWAP spectrum and (5.1) hinge on the choice of the power law for the rear 
face of the spectrum. Figure 12 amply establishes the choice of w-4 for these data, and the 
much-reduced scatter in a and y relative to the JONSWAP results, coupled with the smoother 
transition from fetch-limited to fully developed conditions, attests to the appropriateness of the 
spectral description of (5.1). 

Both in the execution of steady-state fetch-limited experiments and in the application of 
fetch-limited formulae in hindcasting, it is common practice to assume that the mean wave 
propagation direction agrees with the wind direction. That this cannot be true in general is 
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evident from the fact that waves are not strictly locally generated, but instead are the net result 
of their development along the entire upwind fetch. If, therefore, the gradient of fetch about 
the wind direction is large, one might reasonably expect the wave direction to be biased towards 
long fetch, where the reduced generating force of the lower wind component ( U cos 0) is more 
than balanced by the longer fetch over which it acts. In  figure 18 the observed mean direction 
of the waves near the peak of the spectrum is plotted against average wind direction. The 
straight line (dashed) is the line of perfect agreement with the wind direction. When the fetch 
gradient is small - wind directly offshore ( - 120") or along the long axis of the lake (75") - the 
wave and wind directions agree. Otherwise, the discrepancies can be as much as 50". Certainly 
such differences call into question the validity of hindcasting techniques which disregard them. 

wind directionldegrees true 

FIGURE18. Mean direction of waves at the spectral peak against mean wind direction (approach bearing in both 
cases). The broken line is the line of perfect agreement; the solid line has been deduced from similarity 
considerations (6.1),with fetch averaged over 30' (+15O) about the wave approach direction. The inset 
demonstrates the relative insensitivity to choice of averaging over 60' (solid) or not at all (broken). 

Initial attempts to use Kitaigorodskii's scaling law for non-dimensional frequency with fetch 
in the wind direction produced a much poorer correlation than that of figure 15. This supports 
the view that, unless the wind is blowing directly offshore from a straight shoreline, more 
appropriate parameters for similarity scaling are the fetch and wind component in the wave 
direction rather than the wind direction. The similarity relation of (5.5) may be written in terms 
of the peak period T p :  

T = 0.54 g-o.77 ~ 0 . 5 4  COS 0 ) 0 . 5 4  x o . z 3  
P ( , (6.1) 

where x is the fetch in the wave propagation direction. 
Since the energy density at the peak of the spectrum is roughly proportional to Tk (Phillips 

1977, figure 4.8), it is clear that the direction 8 which yields the largest value of Tpfrom (6.1) 
will be the direction of approach of the waves at the peak of the spectrum. 



D I R E C T I O N A L  S P E C T R A  O F  W I N D  W A V E S  54 1 


For any wind speed U such that the waves are fetch-limited, the right side of (6.1) (cos 6 ~ ~ . ~ ~ ~ )  
may be maximized to yield the offwind angle of approach of the peak of the spectrum 8. 
Running averages of the geometric fetch at  increments of loover various windows from fO0 
to $30' were computed and used to deduce the approach direction of the peak wave. The 
sensitivity to width of averaging window was not large, as demonstrated in the inset to figure 18 
for window widths of O0 and 60". The best agreement (solid line in figure 18) with the observed 
wave approach direction was achieved with window width of 30°, i.e. f15' on either side 
of 6. 

7. P H A S ES P E E D  

7.1. Introduction 

Attempts to assess the behaviour of natural waves by using laboratory tanks often run into 
some difficulty with the excess of steepness of laboratory tank waves over natural waves. This 
comes about because strong wind forcing is necessary to produce a reasonable spectrum of 
gravity waves in the short fetches (under 30 m) possible in most laboratory tanks. The presence 
ofharrnonics can be seen in the power spectra, and the dispersion relation (figure 19) is typically 
as described by Ramamonjiarisoa (1974).Spectra of natural wind waves, on the other hand, 
do not show pronounced harmonic peaks. In  this regard, we were able to employ the longer 
fetch possible with our tank to produce waves which were reasonable facsimiles ofnatural waves. 
Compare the double logarithmic frequency spectra of figure 20 and the dispersion relation of 
figure 19 for the natural waves of run 128173 (U,/cp = 3.6) with those of the laboratory run 
3 (U/cp = 8.5). O n  the basis of these two figures only, one would be inclined to group laboratory 
run 3 with the natural waves rather than with the steeper laboratory waves of runs 5, 7 and 
30 (U/cp = 11.8, 15.9 and 16.5, respectively). I t  appears that laboratory experiments in large 
tanks can produce results that are contiguous with observations in nature in some respects, 
though not all (see $5).  

In this section we explore the dispersion relation of waves in the laboratory and in the field. 
We make use of the greater statistical reliability and accuracy of the laboratory measurements 
to assess directly the significance of bound harmonics of the steep waves near the peak. In  
extending these results to the field, we attempt to provide a coherent picture of the dispersion 
relation for wind-generated waves in field or laboratory. 

7.2. Average phase speed 

Having gained access to the wavenumber-frequency spectrum X(k, w), we are able to 
examine the phase-speed characteristics of wind-generated gravity waves in a direct way. As 
the phase speed of any frequency component is defined by c(w) = wlk, we may examine the 
average phase speed of any frequency component w, by obtaining an average wavenumber 
k(wl) from X(k, w,) 

Calculations of the phase speed done in this way are shown in figure 19; they are in ascending 
order of Uc/cp. The lowest two are derived from field data, the rest from laboratory data. The 
hyperbola (solid line) represents the dispersion relation given by linear theory: c = g/o.  At the 
lowest value of Uc/cp the wave field is almost fully developed and the waves at  the peak obey 
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FIGURE19. Normalized average phase speed against w / w p for five spectra. The two a t  the bottom of the figure are 
from field data, the others from laboratory data. As U J c ,  increases the effects of bound harmonics are apparent. 
The normalizer cp is the theoretical linear phase speed of the peak waves c, =g / w p .  

FIGURE20. Double logarithmic spectra for three runs of field waves (bottom) and three runs of laboratory waves. 
With increasing U C / c Pthe spectra become narrower and acquire secondary peaks at  n o p . The 90% confidence 
limits are indicated by a vertical bar. 
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the linear dispersion relation. However, at somewhat higher frequencies than at the ~ e a k ,  the 
measured phase speeds are in excess of the theoretical. In  all but the lowest value of UC/cp the 
measured phase speeds near and above the ~ e a k  are in excess of the theoretical phase speed. 
The deviation from the theoretical value increases steadily with UC/cp, until at the highest values 
of UC/cp the phase speed at  twice the peak frequency wp is about equal to the phase speed at 
the peak. As already noted in $4.2, this behaviour is due to the presence of bound harmonics 
as reported previously by Ramamonjiarisoa (1974), Lake & Yuen (1978) and Mitsuyasu et al. 
(1979). Plant & Wright (1980), on the other hand, find that their observed deviations from 
the linear dispersion relation were best accounted for by Doppler shift caused by wind drift. 

Komen (1980) has calculated the expected phase speed changes based on a balance of free 
and bound waves. His results are qualitatively similar to those shown in figure 19. 

Apart from the work of Plant & Wright (1980)) previous laboratory phase-speed measure- 
ments have been based on two-point correlations of surface-intersecting wave gauges. This 
method of phase-speed measurement can produce misleading results. To  quote Phillips ( I  980), 
the two-point phase correlation methods suffer from an instrumental bias, a stationary phase 

bias, which for the short components of the wavefield emphasizes the conditions at the crest 
of long waves. I believe that these techniques measure not the average speed of the short wave 
but the speed of these components at the long-wave crest, which is the sum of their propagation 
speed plus the orbital velocity of the long waves, As we examine higher and higher frequencies, 
their intrinsic propagation speed becomes a smaller fraction of the orbital velocity of the long 
wave and one might expect that the measurements would become asymptotic towards the 
orbital speed at the long-wave crests. This happens both in the laboratory and in the field, 
but under laboratory conditions the situation is accentuated since the primary waves are very 
steep, with prominent harmonics.' Our method is free of these uncertainties since we obtain 
the full three-dimensional wavenumber-frequency spectrum, from which the average wave- 
number in any frequency band, and thus the average phase speed, may be obtained. 

In strongly forced laboratory situations as in run 5, the energy observed in the neighbourhood 
of o = 2op, 3wp, 4op, . . . is largely a result of higher harmonics bound to the dominant wave 
near the peak frequency up. (The balance between such bound harmonics and free waves will 
be explored further in this section.) Thus the second harmonic of the dominant wave opwould 
show up in the wavenumber spectrum for frequency 2wp at about? half of the radius of the 
linear dispersion circle, whereas the third harmonic would show up in the wavenumber 
spectrum for frequency 3wp but at about a third of the radius of the circle, etc. For the bound 
harmonics the phase speed at o = 2wp, 3wp, ..., is the same as that at  the peak cp. However, 
as the spectrum is not a delta spike at up, but rather a narrow spectrum with most of the energy 
concentrated in a frequency band Ao around up, the effects of higher harmonics of the 
components in this frequency band will lead us to the conclusion that the phase speed must 
be almost equal to cp in the frequency bands 2Aw around 2wp, ~ A waround 3wp, ...,etc. All 
these theoretical predictions are indeed observed experimentally for high values of U/cp. While 
this explanation is similar to those offered by Phillips (1977), it should be pointed out that his 
explanation is not valid for frequencies between wp and 2wp -Ao,  and between 2wp +Aw and 
3wp --iAo, etc. For these frequencies, the departure from the dispersion circle must be a result 

t More precisely the bound energy in the nth harmonic would appear at 1 /n the radius of the nonlinear dispersion 
circle corresponding to (1.3) since the harmonics travel at the speed of their fundamental which itself, by virtue 
of the existence of harmonics, is in agreement with (1.3) rather than with (1.1). 
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of the local effects of finite wave slope (as discussed in 5 1) which can be up to about 20 % in 
wavenumber or 10 % in phase speed, in agreement with observations (figure 19). By combining 
both effects of higher harmonics and of the local Stokes effect, theory predicts that the curve 
of average phase speed against frequency for w > u p  is wavy, but as w increases will tend to 
a relatively constant level near cp if the bound harmonics contain much more energy than the 
free waves at these frequencies. This occurs when w/wp 2 op/Aw-$ in strongly forced cases 
and is clearly confirmed by laboratory experiments for large values of U/cp (figure 19). 

For historical perspective we have opened this section with a look at  average phase speeds. 
Observations of phase speeds in both natural and laboratory conditions have given rise to 
questions regarding the dispersive nature of wind waves. Should we regard the wave field at 
o > 1.5 wp as non-dispersive on the basis of observations such as those reported above? 
Observations of average phase speeds are somewhat ambiguous because, if bound waves do 
exist, averages over the wavenumber plane or two-point correlations include the effect of two 
dynamically quite distinct sets of waves. Fortunately in our case we can, in principle, restrict 
our attention to regions of the wavenumber plane that contain only free waves or any of the 
several bound harmonics. 

7.3. Phase speed of free waves 

In  figure 21 we examine the phase speed of the free waves only. This is done by obtaining 
an average wavenumber over a band of wavenumbers limited at  low wavenumber by the 
arithmetic mean of the expected free wavenumber (kf = 02/g) and the expected second 
harmonic wavenumber (k, = 02/2g) and limited at  high wavenumber by a band ofequal width. 
The effects of amplitude dispersion are now clear. The almost fully developed case 
(Uc/cp = 1.0) shows no sign of amplitude dispersion below o / w p  = 1.3. Above this there is a 
moderate increase in the phase speed above the theoretical curve. With increasing UC/cp the 
effects of amplitude dispersion are noticeable near the peak and above. O n  the assumption that 
the waves are distorted in accordance with the Stokes theory? (5 I ) ,  the maximum amplitude 
dispersion corresponding to the Stokes steepness limit (ak = 0.44) is 10 %. At the highest values 
of UC/cp the waves a t  frequencies just above the peak approach the phase speed appropriate 
to the maximally steep Stokes waves. I t  is interesting to note that a t  the highest value of U/cp 
the phase speed near the peak shows less evidence of amplitude dispersion than in the laboratory 
runs at  somewhat lower U/cP. I t  is possible that widespread breaking of the waves near the 
peak reduces the steepness of these waves. This interpretation is consistent with the calculations 
of Longuet-Higgins & Cokelet (1976) which show that waves reach their maximum steepness 
and speed somewhat before breaking. 

7.4. Phase speed of bound harmonics 

One can also determine the dispersion relation of the bound harmonics. To  avoid 
contamination of the average wavenumber of the second harmonic, the region in wavenumber 
space considered was bounded below by the arithmetic mean of the expected wavenumber of 
the second and third harmonics (k, = w2/ng), and above by the arithmetic mean of the expected 
wavenumber of the second harmonic and of the free wave a t  that frequency. I t  was possible 
to resolve the average wavenumber for the second harmonic in the laboratory runs with high 

t Support for this is provided by Lake & Yuen (1978) who have shown good agreement between the ratio of 
spectral amplitudes of harmonic and fundamental and the predictions of the Stokes (1847) theory. 
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FIGURE21. Normalized phase speed of free waves for the same five spectra as in figure 19. The effects of 
amplitude dispersion with increasing U,/cp are apparent. 
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values of U/cp only. These are shown in figure 22. The lower hyperbola is, as before, the 
theoretical linear dispersion relation; the upper hyperbola is the locus of speeds twice as great 
as the lower and is the speed at which bound second harmonics would travel if trapped on 
waves of half the frequency on the lower curve. The bars correspond to limits of the band of 
averaging, and the dashed line is what would result from a uniform distribution of energy within 

FIGURE22. Normalized phase speed of the bound second harmonic for the two highest U/cpcases. The solid symbols 
are the measured values; the open circles are taken from figure 21 transposed to twice the frequency, and 
represent the expected speed of second harmonics bound to the observed peak waves. 

the band; i.e. white noise. At frequencies below 2.0 Hz we cannot separate effectively second 
and third harmonic contributions to the energy density. Lower frequencies do not, therefore, 
appear in figure 22. At the highest frequencies the points approach the white noise result. 
Between these two extremes, however, the phase speeds very definitely support the idea that 
these are second harmonics of the free waves of figure 21. The open circles are taken from the 
measured phase speeds of figure 21 transposed to twice the frequency. They represent the speed 
at  which the bound harmonics must travel to be consistent with the measurements of figure 21. 
While it is possible that wind drift could affect the measured phase speed, it will not affect the 
comparison between figures 21 and 22 discussed above. 

7.5. Amplitude dispersion and Doppler shzft of laboratory wavej 

I t  is, of course, impossible to generate wind waves without also producing a strongly sheared 
current near the surface. The presence of such a current has been used by some researchers 
(Lake & Yuen 1978;Mitsuyasu et al. 1979;Plant & Wright 1980) to explain part of the excess 
speed of measured waves above the linear theory. In addition, Plant & Wright (1980) have 
pointed out that the wind itself will change the propagation speed of the waves a small but 
measurable amount. We recognize that some effect of both current and wind forcing must be 
present in our data. However, since our laboratory waves are somewhat longer than those 
discussed in previous work, yet our wind speeds and currents are similar, these effects would 
be less pronounced in our data. None the less, in the following we assess the effects of currents. 
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The ratio of the energy in the bound wave to the free wave is graphed against w / w p  in 
figure 23 for the laboratory data. I t  is clear that with increasing U / c pthe energy in the second 
harmonic waves begins to dominate the spectrum above @/up= 1.9 and the shape of the peak 
of the spectrum - forward face sharper than rear - is reflected in the energy of the second 
harmonic. I t  would seem that at values of U / c pin excess of 9, evidence for bound harmonics 
will appear in the power spectra and the dispersion relation at values of @/upin the 
neighbourhood of 2.1. Such values of U / c poccur only fleetingly in nature except on small ponds. 
Thus the theoretical dispersion relation with some amplitude dispersion is generally adequate 
to describe natural wind-generated wave spectra and laboratory tank spectra for which 
U / c p< 9. 

FIGURE23. The balance of energy in bound second harmonics to free waves at the same frequency. Somewhere 
in the range 8.5 < U/cP < 11.8 the energy in the second harmonic of the peak first exceeds the energy in the 
free waves at o = 2wp 

We now turn our attention to the question of how much amplitude dispersion is appropriate. 
As we have access to the energy in the bound harmonics, we may compare this with the energy 
in the corresponding free wave (fundamental) and, in a Stokian model (1.2), thereby establish 
the slope of the fundamental wave. Figure 24 shows the result of this calculation for the 
laboratory data. The steepness increases steadily above the peak and begins to approach the 
theoretical limit at w / o p = 1.5. Beyond this there is insufficient resolution of the wavenumber 
spectra to determine the energy in the second harmonic which would be found at o / w p > 3.0. 
We know that the spectrum falls off to infinitesimal amplitudes at 0.6 < w / w p < 0.8 (see 
figure 11) so that the extrapolation towards low w / w p values is probably in order. 

These steepness estimates allow us to compute the Stokes phase speeds for the free waves (3.1) 
and to compare them with the observed phase speeds of figure 21. The difference (measured 
phase speed c ,  minus the Stokes phase speed cs = g / w [ l +  (ak)2+i(ak)4]1 is further adjusted 
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FIGURE24. The steepness of spectral components of laboratory waves deduced from the balance of energy in 
second harmonics to that in the fundamental components. 

by the correction given by Plant & Wright (1980) to account for the air flow over the waves 
6,. The Stokes correction is positive and can account for up to 10% of the linear theory; the 
air flow adjustment c, is negative and between 1 and 3 % in all cases. The difference (c, -cs -c,) 

varies between -4  and +10% and probably consists of a combination of experimental 
error and differential advection of the wave components by sheared current. 

In the laboratory tank the wind-driven current profile has been found to scale with the surface 
friction velocity and the total depth (Donelan 1978). In  figure 25, therefore, we examine the 
difference (c, -cs -c , ) ~  normalized by the surface friction velocity in the water u, against the 
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FIGURE25. Measured phase speed minus amplitude dispersion minus wind forcing. This residual normalized by 
the friction velocity in the water ( ~ / ~ , ) ishows a depth dependence similar to the velocity profile measured 
by Donelan (1978) under similar conditions in the same tank. This similarity is exploited to deduce that the 
waves are being advected by the wind drift at a speed commensurate with the current a t  depth z such that 
kz = 1 .  
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wavelength A ( =  2nlk) to total depth H ratio. Although the data are somewhat scattered, there 
is a definite trend from slow upwind advection of the longer wavelengths A/H > 0.8 to 
downwind advection of the shorter wavelengths, which when extrapolated to vanishing 
wavelengths suggests a surface advection of 15u, x 0.02U. Calculations by Stewart & Joy 
(1974)suggest that the waves are advected by the mean current at  a depth corresponding to 
some fraction ofa wavelength depending on the current profile. From matching the wind-driven 
current profile obtained by Donelan (1978) from the same tank as in the present experiment, 
it would appear that the current at depth z = l / k  is reflected in the residual wave advection 
speed after amplitude dispersion and wind forcing have been accounted for. 

7 .6 .  Amplitude dispersion of jeld waves 

We are unable to compute the Stokes distortion from the relative magnitudes of free waves 
and harmonics because of lack of sufficient resolution at  high frequencies in the field directional 
spectra. Instead, having gained confidence from the consistent picture provided by the 
laboratory results, we shall do the calculations in reverse order for the field data. That  is, having 
first removed the calculated effects of wind forcing c ,  (0.28/k)and drift current U ,  ( - ilk), 
the residual measured phase speed excess will be taken to be due to amplitude dispersion and 
will be used to estimate the slope (figure 26) .  The drift current profile scaled by the friction 
velocity is computed based on the field measurements by Donelan (1978) at  the same site. 
Figure 26 and table 2 are summaries of the 18 field cases in which the directional spectra were 
well resolved to at  least o / w p = 2.2. They are grouped by UC/cp.The two higher UC/cpcurves 
show a consistent picture of appreciably steep waves in the region near the peak 
(0.9< w/wpc 2.0) .For the lower UC/cpcase the steepness rises to nearly 0.3;in the other case 
(UC/cp= 2.9) the steepness rises to nearly 0.4.  
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FIGURE26. Wave slope deduced from measured phase speeds by using (1.3).Eighteen field cases have been grouped 
into three sets by UC/cDA pair of curves in each set corresponds to slopes computed from the uncorrected (un) 
and corrected (cor) phase speeds. The differences between corrected and uncorrected are larger for the high 
UJc,  cases since these correspond to strong winds and short waves. 

Figure 26 shows the steepness both with and without correction for the assumed drift current 
and wind forcing. In  the steady state these effects are proportional to u,. The almost fully 
developed case with small u, is hardly affected by these corrections. O n  the other hand, the 
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significant r.m.s. 
year run slope (%I slope 

1976 305093 0.97 0.061 
305094 0.82 0.051 
339063 1.15 0.073 
339064 1.10 0.069 
342163 0.94 0.059 
342164 0.95 0.060 
356123 1.44 0.090 
356124 1.38 0.087 
362053 0.65 0.041 
362054 0.61 0.038 

1977 006003 0.81 0.051 
006004 0.78 0.049 
119013 0.79 0.050 
119014 0.84 0.053 
128173 1.24 0.078 
128174 1.26 0.079 
128203 1.03 0.065 
128204 1.29 0.081 

moderately generated case has its phase speed excess and concomitant steepness reduced to zero 
near w/wP = 2.1, while the strongly generated case with large u, appears to be overcorrected. 
Quite possibly the drift currents have been overestimated. I t  may be that the steady-state profile 
assumed for the drift current is in error. The spin up time for the Ekman boundary layer is 
of the order of half a pendulum day or about 17 h for Lake Ontario, which is generally longer 
than the duration of the wind system before the wave measurements. The matter cannot be 
resolved without coincident wave and current profile measurements, but it seems probable that 
the correct values lie between the corrected and uncorrected curves for each Uc/cp in 
figure 26. In  any case, near the spectral peak 0.8 < w/wp < 1.6, the estimates of ak are not 
greatly affected by the drift current. Here we find that the moderately and strongly developed 
cases are more or less uniformly steep, while the nearly fully developed case reaches its maximum 
steepness at  about twice the peak frequency. 

The lowest value of UC/cP ( =  1.1) represents nearly fully developed waves. The steepness 
at  the peak, where there is very little direct wind input and wave-wave interaction effects are 
not strong in this case (Dungey & Hui 1979), is negligible. However, at  w / o P  x 2.2 the 
steepness increases to a value somewhere between the maxima of the other two curves. 
Evidently, near full development the wind input at  frequencies somewhat above the peak is 
relatively large compared with that of the peak. Figure 26 suggests that, except for the nearly 
fully developed case, the steepness drops off markedly above w = 1.8 up.  This is consistent with 
the idea of peak enhancement (figure 12) in which the spectral levels at  a particular frequency 
can be largest when that frequency is the peak frequency. This may occur when the peak 
enhancement factor y exceeds e + 2.7. The values of y corresponding to the three curves of 
figure 26 are, in order of increasing Uc/cp, 1.9, 2.9 and 4.5. 
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8. D I R E C T I O N A LD I S T R I B U T I O N S  O F  W A V E  E N E R G Y  

8.1. Introduction 

In this section we shall concern ourselves entirely with the description of natural (field) 
directional spectra. Two examples of the two-dimensional directional spectrum (defined by 
(3.4)) are shown in figures 27 and 28 for quite different values of U,,/cp: 1.5 and 3.1, 
respectively. These are derived from the wavenumber spectra of figures 8 and 9 respectively 
in the manner described in $3.4. The ordinates are not in relative scale but the frequency 
spectrum @(o)  is shown in figures 8 and 9. A measure of the level of confidence of the polar 
spectrum is given by the dashed line. 

The polar spectra are predominantly unimodal and tend to be more or less symmetrical about 
their peaks. The most obvious features are the difference between wave propagation direction 
and wind direction near the peak, and the directional broadening with increasing frequency 
above the peak. The first has been discussed in $6, and figures 27 and 28 demonstrate that 
with increasing frequency the mean wave direction becomes more and more closely aligned 
with the wind: a reflection of the short relaxation time of the short waves and hence their 
insensitivity to the distant fetch distribution. The second has been noticed by previous authors 
(Longuet-Higgins et al. 1963 ;Hasselmann et al. 1973 ;Mitsuyasu et al. 1975 ;Hasselmann et al. 
1980) and attempts have been made to parameterize the spreading function in various ways. 
Currently, perhaps because most published directional spectra have been obtained from 
pitch-roll buoys, the most popular parametric description is based on the cosZS(+0) form first 
suggested by Longuet-Higgins et al. (1963). Unfortunately, attempts to tie down the behaviour 
of the s parameter have led to disagreement rather than consensus, in spite of the fact that the 
best known attempts to parameterize s have all been based on floating buoys. In  the following 
we shall explore the behaviour of s and compare our results with previous work. Finding that 
~ o s ~ ~ ( + B )does not describe our results adequately we shall propose another description. 

8.2. The s parameter 

Mitsuyasu et al. (1975) were the first to present a reasonably comprehensive set of estimates 
for s using measurements obtained from a cloverleaf buoy. They presented a plot of s against 
U/c and showed that although there was good clustering for points on the rear face of the 
spectrum the points on the front face did not cluster. 

. Subsequently, Hasselmann et al. (1980) using measurements made from a pitch-roll buoy 
confirmed this behaviour, but also showed that, when plotted against the relative frequency, 
the front face (@/up < 1) could also be made to cluster. This result, that the width distribution 
of the spectrum is apparently independent of the wind strength, was attributed by Hasselmann 
et al. to the dominance of wave-wave interaction over wave-generation effects, a point that 
we shall discuss further in $8.4. 

Their estimates for s, were obtained by using the first two Fourier coefficients for F(o,, 0) 
as follows 

nF(o,, 0) = (;+a, cos0+ b, sin@) @(on) ,  (8.1) 
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The Fourier coefficients a,  and b,  were obtained from the spectrum of the two orthogonal wave 
slopes or surface horizontal accelerations. For narrow distributions ( r ,  x I ) ,  s, is very sensitive 
to the width. 

In  figure 29 may be found our results for s, which we denote s,, calculated in the same way 
from the first two Fourier coefficients of the observed polar energy distribution. The parameter 
s, shows the same sort of dependence on w/wp as that noted by Hasselmann et al. (1980), and 
the separate curves, grouped according to UC/cp, indicate that smaller s, values (wider spreads) 
are associated with higher UC/cp values. The fitted lines to both front and rear spectral faces 
given by Hasselmann et al. (1980) are indicated on figure 29. While the dependence on w/wp 
is qualitatively similar, Hasselmann et al. (1980) report generally smaller values of s, 
corresponding to broader spectra. Note that their data fall within the range 1 < U/cp < 2, SO 

that comparison of their regression lines with the top curve of figure 29 is appropriate. I n  this 
range of U/cp the results of Mitsuyasu et al. (1975) and Hasselmann et al. (1980) are in mutual 
agreement and suggest generally broader spectra than those reported here (figure 29). I t  is 
possible that the information contained in only the first few Fourier coefficients is insufficient 
to describe narrow directional spectra. 

In  practice, one's interest in the directional spread is generally focused on the 'energy 
containing' region. That  is, the peak value and width at, say, half height are of more interest 
than the width of the tails of the spreading function. We may compute a value of s (which we 
shall call s,) which matches the half-height half-width Oiof the test model ($3.4) with that of 
the Mitsuyasu type spreading function. The estimates of s, obtained in this way (figure 30) 
are much less scattered than those of s,. Furthermore, the stratification with U,/cp has 

FIGURE29. The s parameter, calculated from the first two Fourier coefficients, against w / w p .The data are grouped 
in U,/cp classes. The dashed lines are taken from Hasselmann et  al. (1980).The vertical bars at the top of 
the figure are an estimate of the 90 0/, confidence limits based on the standard error of the mean. 

FIGURE30. The s parameter calculated from the half-height of observed polar distributions. 
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disappeared, and the spreading function is now dependent only on u/up.  The reduced scatter 
implies that the half-height width is a more stable description of the spreading than the first 
Fourier coefficients. The reason for this is probably that the half-height width is determined 
by the energy containing, and thus less noisy, part of the distribution, whereas the first Fourier 
coefficients are affected by the entire distribution. Possibly the tails of the directional spread 
are more influenced by changes in U/c than the peak is. In principle, energy from the wind 
will enter the distribution out to 0 = arccos (c/U) ;while the peak of the directional spread, at  
least on the rear face ofthe frequency spectrum, is limited by dissipative processes and wave-wave 
interaction, i.e. processes less sensitive to U/c. 

A further check of the appropriateness of the C O S ~ ~ ( $ ~ )spreading function is graphed in 
figure 31. This figure compares the peak value of the test model Ao(L) with the peak of the 
C O S ~ ~ ( ~ )distribution Ao(S). The peaks of the latter are consistently too high by about 10%. 
Based on this data set, it would seem spreading function consistently that the C O S ~ ~ ( $ ~ )  

errs by overestimating the wave energy in the peak direction. 

0 1 2 

A,(L) 

FIGURE 31. Comparison of  the height of  the peak of  the cosZS(;6) distribution A,(s) with the height of  the test 
model A,(L). The distributions have equal integrals over 6 and the same half-height widths. 

8.3. The sech2 (PO)spreading function 

The failure of the various cosine distributions to model the observed polar distributions 
accurately has led us to consider yet another. The three-dimensional evolution of freely 
propagating, second-order Stokes gravity wave groups (Hui & Hamilton I 979; Hui I 980) 
indicates that an  envelope soliton group propagating around the main wave direction is 
described by a hyperbolic secant. The distribution of wave energy in the direction transverse 
to the main wave direction behaves therefore like sech2. Since the envelope solitons survive 
interactions (Zhakarov 1968; Hui 1979, 1980), it seems not unreasonable to assume that the 
wave field consists of mainly (envelope) soliton groups. Then the directional distribution of the 
waves observed at  a given point about the main wave direction must follow approximately a 
sech2( P O )  distribution, at  least for small 8. 
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This suggestion from theory led to the testing of a spreading function for the distribution 
of energy (amplitude squared) of the form sech2 (PO). The hyperbolic secant squared shape 
is preserved and the width of the spectral spread is determined by the parameter P. The 
dependence of /3 on w/wp, from fitting to the half-height width of the test model, is graphed 
on logarithmic axes in figure 32. Here again, as in figure 30, the data for various values of U,/cp 
collapse on to a single average curve. In  fact, in this sense there is little to choose between the 
C O S ~ ~ ( + O )  distributions. However, a comparison of the peak values of the test and the sech"(PO) 
model with the peak values of the sech2 (PO) distribution (figure 33) indicates that the sech2 (PO) 
distribution models the peak of the spreading function rather more faithfully than the cosine 
distribution (figure 31). In  fact, the average overestimate of the wave energy in the peak 
direction is now only 2 % for the sech2 (PO) distribution rather than 10 % for the cosZS ( iO)  
distribution. 

FIGURE32. The P parameter derived from fitting sech2 ( P O )  to the half-height width of the test model. 

Of course, the sech2 (PO) distribution extends beyond +in ,  and our observed polar spectra 
are generally contained within this angular region. However, values of are generally larger 
than 1.2 so that at  + in  the spreading function is less than 9 % of its peak value and less than 
5% of the energy is outside of the range -in < O < in.  

In figure 32 the dashed lines are a convenient representation of P :  

P = 1.24; otherwise. I 
The range of directional spread given by (8.4) is illustrated in figure 34. From the narrowest 

to the widest our wind-generated spectra expand by about a factor of 2. 
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FIGURE33. Comparison of the height of the peak of the sech2 ( p 8 )distribution A,(P) with the height of the test 
model A, (L). 

0 

FIGURE34. The sech2 (PO) spreading function for various w / w p .  

8.4. Dependence on o /w ,  

Hasselmann et al. (1980)have previously noted that the spreading function is more sensitive 
to w / o ,  than to U/c. They argue that this implies that nonlinear interactions are more 
important than direct wind input in establishing the spectral shape. Our observations 
strengthen and extend theirs in that we find that the spreading function is adequately described 
by w/wp alone in the U,/cp and w / o p  ranges of 1 < U,/cp < 4; 0.8 < o / w p  < 1.6. However, 
we caution against the use of this result to establish which of the three source functions, wind 
input, nonlinear interactions or dissipation, is dominant in establishing the spectral shape of 
the rear face. I t  seems likely that all three source functions will depend on both U/c and o / w p  
since, as we have shown, steepness is affected by both of these, and all three source functions 
are steepness dependent. 
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FIGURE35. Rate of transfer of action density dN/dt due to nonlinear interaction of waves in a gaussian spectrum 
of spectral width 0.3, calculated from the theory ofDungey & Hui (1979) .The horizontal plane is the expanded 
wavenumber plane relative to the spectral peak k,. The vertical scale is arbitrary. This perspective view is 
along the k ,  axis and at  10' below the wavenumber plane. 
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In view of the dominance of o/opin the description of the spreading function it would not 
be surprising to find that its effect is felt in the frequency spectrum as well. In fact, the 
broadening of the directional spectrum away from the peak tends to whiten the frequency 
spectrum. This is, in effect, the behaviour of the rear face noted in $5.2, where the rear face 
of the frequency spectrum was shown to depend on 

w-400,1 a(U/cp). 

This empirical result could be realized by simple dimensional considerations if the peak 
frequency and wind speed are included in the list of relevant parameters: @,, g, U, o, up ;  where 
@,(o) is the energy density on the rear face of the spectrum. Appropriate non-dimensional 
groups of these parameters are: @, 05/g2, @/up, U/cp, and the spectrum is of the form 

The measurements described in $ 5  reveal that 

8.5. The directional spread of the forward face 

I t  has been reported (Mitsuyasu et al. 1975; Hasselmann et al. 1980) that the spectra tend 
to be most narrow near the peak frequency. While this is true of our data as well (figures 27 
and 28), we note that the maximum in our s or /3 values (figures 29 and 32) is displaced slightly 
but distinctly to the low frequency side of the peak frequency at about o / w p  = 0.95. In other 
words, the narrowest spreads occur on the forward face of the frequency spectrum. Hasselmann 
et al. (1973) first showed that the growth of the forward face of wind-wave spectra can be 
attributed to nonlinear wave-wave interactions; a conclusion that was further substantiated 
by the analytical calculations of Dungey & Hui (1979) for narrow spectra. This implies that 
the shape (and hence the angular spreading) of the three-dimensional wave spectrum X(k, w) 

for w < wp must be determined predominantly by the energy transfer due to nonlinear 
wave-wave interactions, the (direct) energy input from the wind and the energy loss due to 
whitecapping being relatively unimportant in this region. Systematic calculations by Dungey 
& Hui show that the energy transfer rate of a typical narrow wind-wave spectrum is of the 
shape given in figure 35. I t  is seen that there is a highly concentrated energy gain at  
wavenumbers slightly below kp and in the mean wave direction. This may be responsible for 
the smallest angular spread occurring at  a frequency slightly below the peak frequency since 
wind input, perhaps caused by random pressure fluctuations (Phillips 1957), would broaden 
the spectrum somewhat away from the area of strong nonlinear transfer. Some support for this 
explanation is provided by the numerical calculations of Sell & Hasselmann (1972) reported 
in Hasselmann et al. (1973) for the mean JONSWAP spectrum, in which the positive peak of 
the nonlinear transfer occurs at  about w/wp = 0.95, or just where we observe the narrowest 
directional distributions. 

Based on the idea of Barber (1963), a numerical method has been developed for computing 
the three-dimensional wind-generated wave spectrum X(k, w) from an array of wave staffs. 
Essentially, the method applies the known array transfer function to the observed wavenumber 
spectrum to reveal the actual wavenumber spectrum. Wave records were obtained from a tower 
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in Lake Ontario that commanded fetches of 1.1 to 300 km, and from the C.C.I.W. wind-wave 
flume a t  a fetch of 50 m. The array consisted of 14 wave staffs and extended over 28 m in the 
lake and 1 m in the laboratory. Based on the analysis of 84 steady-state runs from the lake and 
7 from the laboratory that covered a range of wind speed component to peak wave speed ratio 
(U,/cp) of from 0.8 to 17, the following general conclusions are drawn. 

The rear face or equilibrium range of the frequency spectra in both field and laboratory 
conditions is well described by an wV4wp1 law for 1.5 < w/wp < 3.5. Accordingly, a new 
(modified JONSWAP) parametric spectral distribution is proposed, and the new equilibrium 
range, peak enhancement and peak width parameters (a,y and cr) are found to be functions 
of Uc/cp. 

The peak wave and wind directions are often quite different and the difference was correlated 
with the fetch gradient about the wind direction. An empirical formula based on a similarity 
argument is given which explains the observed difference between wave and wind directions. 
The formula can be used as a predictive tool in deducing steady-state wave directions from 
meteorological information. 

In  general, the observed phase speeds under natural conditions are slightly in excess of the 
linear dispersion relation for infinitesimal amplitude waves. The excess is explained satisfactorily 
by the amplitude dispersion effects of the Stokes wave. Significant energy was detected in the 
bound harmonics of the laboratory waves. Within the accuracy of these measurements bound 
harmonics could not be detected in the field data, although they must exist to produce the 
observed amplitude dispersion. From the laboratory data it was demonstrated that the ratio 
of the energy in the bound harmonics to the free waves at  twice the peak frequency increases 
with U/cp. Beyond U/cp = 9.0 it exceeds unity, i.e, bound harmonics dominate the spectrum 
near w/wP = 2. 

The angular spreading of wave energy is found to be smallest at  a frequency w, about 5 % 
less than the peak frequency wp. The spreading increases both as w increases and decreases from 
w,. The spreading is best described by sech2 (PO)in which /3 is found to depend solely on w/wp. 

Emerging from this is a rather tidy description of the wind-generated wave spectrum, in which 
the energy level at  any frequency w depends on the frequency itself, the position of that frequency 
in the spectrum (w/wP) and on the intensity of wind input U/c, while the directional spreading 
is related only to w/wp. 

We reproduce here our description of the wind-generated deep water directional spectrum 
in a form amenable to immediate application in wave forecasting and engineering design 
calculations : 

F(W, 8) = p ( w )p sech2 p{e -&)I, (9.1) 

where 8is the mean wave direction and 

/3 = 2.61(w/wp)f1.3; 0.56 < w/wP < 0.95, 

p = 2 . 2 8 ( ~ / w ~ ) - l . ~ ;  10.95 < w/wp < 1.6, 

p = 1.24; otherwise. 

The frequency spectrum is 

4 

~ ( w )= irg2w-5(w/wp) exp {-(%)}yr, 
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where r = exp { - (w -up) 2/2~2wE), 

and Uc is the component of the average 10 m wind in the mean direction of the waves at the 
peak of @(w). 

Finally, the fourth-order Stokes dispersion relation has been verified : 

w2 = gk{l + (ak) +t(ak)*), (9-7) 

where the Uc/cp and frequency-dependent values of ak may be gleaned from figure 26. 

We are indebted to the following members of the staff of the Canada Centre for Inland Waters 
for support during the preparation, realization and analysis of this experiment: M. Dick and 
M. Skafel (Management); E. Harrison, H.  Savile, W. Gibson, S. Watson, C. Der, B. White, 
S. Beal, A. Pashley and J. Ford (Engineering) ; M. Pedrosa, J. Diaz and M. Larocque (tech- 
nical), J. Carew, B. Macdonald, J. Roe and H.  Don (logistics and diving) ; D. Beesley (data 
collection and archiving). We also thank L. Holthuijsen for useful criticism of the manuscript. 

R E F E R E N C E S  

Airy, G. B. 1845 Tides and waves. Arctic no. 192 in Encyc. Metrop. 

Banner, M. L. & Phillips, 0 .  M. 1974 On small scale breaking waves. J .  Fluid Mech. 65, 647-657. 

Barber, N. F. 1963 The directional resolving power of an array ofwave recorders. In  Ocean wave spectra, pp. 137-150. 


Englewood Cliffs, NJ. :  Prentice-Hall Inc. 
Barnett, T. P. & Kenyon, K. E. 1975 Recent advances in the study of wind waves. Rep. Prog. Phys. 38, 667-729. 
Birch, K .  N., Harrison, E. J. & Beal, S. 1976 A computer-based system for data acquisition and control of scientific 

experiments on remote platforms. In Proc. Ocean 1976  C o n j ,  Washington D.C., pp. 25B1-25B8. 
Borgman, L. E. 1979 Directional wave spectra from wave sensors. In Ocean wave climate, pp. 269-300. New York: 

Plenum. 
Brooke Benjamin, T. 1967 The instability of periodic wavetrains in nonlinear dispersive systems. Proc. R .  Sac. Lond. 

A 299, 59-75. 
Burling, R. W. 1959 The spectrum of waves at short fetches. D t ,  hydrogr. Z. 12(2), 45-117. 
Cote, L. J., Davis, J. O. ,  Marks, W., McGough, R. J., Mehr, E., Pierson, W. J. Jr, Ropek, J. F., Stephenson, G. 

& Vetter, R .  C. 1960 The directional spectrum of wind-generated sea as determined from data obtained by 
the stereo wave observation project. Meteor. Pap., New York University, College of Engineering, vol. 2, no. 6, 
(88 pages). 

Davis, R. E. & Regier, L. 1977 Methods for estimating directional wave spectra from multi-element arrays. 
J .  mar. Res. 35, 453-477. 

Der, C. Y. & Watson, A. S. 1977 A high-resolution wave sensor array for measuring wave directional-spectra 
in the nearshore zone. In Proc. Ocean 1977  Conf., Los Angeles, California, pp. 25D1-25D10. 

Donelan, M. A. 1978 Whitecaps and momentum transfer. In TurbulentJluxes through the sea surface, wave dynamics 
andprediction, pp. 273-287. New York: Plenum. 

Donelan, M. A. 1979 O n  the fraction of wind momentum retained by waves. In  Marine forecasting: predictability 
and modelling in ocean hydrodynamics, pp. 141-159. Amsterdam : Elsevier. 

Donelan, M. A., Hamilton, J. & Hui, W. H. 1983 Directional spectra of wind-generated waves. (160 pages.). Canada 
Centre for Inland Waters, Burlington, Ontario. 

Donelan, M. A. & Pierson, W. J. 1983 The sampling variability of estimates of spectra of wind-generated gravity 
waves. J ,  geoph,ys. Res. 88, c7, 4381-4392. 

Dungey, J. C. & Hui, W. H. 1979 Nonlinear energy transfer in a narrow gravity-wave spectrum. Proc. R.Sac. Lond. 
A 368, 239-265. 

Fontanel, A. & de Staerke, D. I 980 Spectres directionnels de vagues en mer du yord. Images du radar de SEASAT. 
In Climatologie de la mer, Conference internationale, Paris, pp. 363-383. Paris: Editions Techniques. 

Forristall, G. Z. 1981 Measurements of a saturated range in ocean wave spectra. J .  geophys. Res. 86, ~9,8075-8084. 



DIRECTIONAL SPECTRA OF W I N D  WAVES 


Fox, M.J. H. 1976 On the nonlinear transfer of energy in the peak of a gravity-wave spectrum. Proc. R .  Soc. Lond. 
A 348, 467-483. 

Garrett, J. 1969 Some new observations on the equilibrium region of the wind-wave spectrum. J .  mar. Res. 27, 
273-277. 

Garrett, J. 1970 Field observations of frequency domain statistics and nonlinear effects in wind-generated ocean 
waves. (176 pages.) Thesis, University of British Columbia. 

Gill, G. C. 1975 Development and use of the Gill uvw anemometer. Boundary Layer Meteorol. 8, 475-495. 
Hamilton, J., Hui, W. H. & Donelan, M. A. 1979 A statistical model for groupiness in wind waves. J .  geophys. 

Res. 84, c8, 4875-4884. 
Hasselmann, K. 1962 On the nonlinear energy transfer in a gravity wave spectrum. Part 1. J .  Fluid Mech. 12, 

481-500. 
Hasselmann, K. I 963 a On the nonlinear energy transfer in a gravity wave spectrum. Part 2. J. Fluid Mech. 15, 

273-281. 
Hasselmann, K. 1963b On the nonlinear energy transfer in a gravity wave spectrum. Part 3. J .  Fluid Mech. 15, 

385-398. 
Hasselmann, K., Barnett, T .  P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., 

Hasselmann, D. E., Kruseman, P., Meerburg, A., Miiller, P., Olbers, D. J., Richter, K., Sell, W. & Walden, 
H. 1973 Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project 
(JONSWAP) (95 pages.). Dt.  hydrogr. Z., A8 (Suppl.), no. 12. 

Hasselmann, D. E., Dunckel, M. & Ewing, J. A. 1980 Directional wave spectra observed during JONSWAP 1973. 
J .  phys. Oceanogr. 10, 1264-1280. 

Holthuijsen, L. H. 1981 The directional energy distribution of wind generated waves as inferred from stereo- 
photographic observations of the sea surface. Thesis, Delft University of Technology. (193pages.) Rep. no. 81-2. 

Huang, N. E., Long, S. R. & Bliven, L. F. 1981a On the importance of significant slope in empirical wind-wave 
studies. J ,  phys. Oceanogr. 10, 56S573. 

Huang, N. E., Long, S. R., Tung, C.-C., Yuen, Y. & Bliven, L. 1981b A unified two-parameter wave spectral 
model for a general sea state. J.Fluid Mech. 112, 203-224. 

Hui, W. H. 1979 Exact envelope-soliton solutions of a two-dimensional nonlinear wave equation. Z. angew. Math. 
Phys. 30, 929-936. 

Hui, W. H. I 980 Three-dimensional nonlinear evolution of water waves. In  Nonlinear partial dzxerential equations 
in engineering and applied science (ed. R. L. Sternberg, A. J. Kalinowski & J. S. Papadakis), pp. 167-187. New 
York: Marcel Dekker Inc. 

Hui, W. H.  & Hamilton, J.  1979 Exact solutions of a three-dimensional nonlinear Schrodinger equation applied 
to gravity waves. J .  Fluid Mech. 93, 117-133. 

Hui, W. H. & Tenti, G. 1982 A new approach to steady flows with free surfaces. Z. angew. Math.  Phys. 33,569-589. 
Irani, G. B., Gotwols, B. L. & Bjerkaas, A. W. 1981 Ocean wave dynamics test: results and interpretations. Rep. 

no. STD-R-537, The Johns Hopkins University, Applied Physics Laboratory. 202 pp. 
Kahma, K. K. 1981 A study of the growth of the wave spectrum with fetch. J .  phys. Oceanogr. 11, 1503-1515. 
Kinsman, B. 1960 Surface waves at short fetches and low wind speed - a  field study. (581 pages.) Tech. Rep. 

no. 19. Chesapeake Bay Inst., Johns Hopkins University. 
Kitaigorodskii, S. A. 1962 Applications of the theory of similarity to the analysis of wind-generated wave motion 

as a stochastic process. Bull. Acad. Sci. U S S R  Geophys. Ser. 1, 105-117. 
Kitaigorodskii, S. A., Krasitskii, V. P. & Zaslavskii, M. M. 1975 On Phillips' theory of equilibrium range in the 

spectra of wind-generated gravity waves. J .  phys. Oceanogr. 5, 410-420. 
Komen, G. J. 1980 Nonlinear contributions to the frequency spectrum of wind-generated water waves. J.phys. 

Oceanogr. 5, 77S790. 
Korvin-Kroukovsky, B. V. 1967 Further reflections on properties of sea waves developing along a fetch. D t .  

hydrogr. Z. 2, 7. 
Lake, B. M. & Yuen, H. C. 1978 A new model for nonlinear wind waves. Part 1. Physical model and experimental 

evidence. J.Fluid Mech. 88, 33-62. 
Liu, P. C. 1971 Normalized and equilibrium spectra ofwind waves in Lake Michigan. J.phys.  Oceanogr. 1,249-257. 
Longuet-Higgins, M. S. 1969 O n  wave breaking and the equilibrium spectrum of wind-generated waves. Proc. 

R. Soc. Lond. A 310, 151-159. 
Longuet-Higgins, M. S. 1976 On the nonlinear transfer of energy in the peak of the gravity-wave spectrum: a 

simplified model. Proc. R .  Soc. Lond. A 347, 311-328. 
Longuet-Higgins, M. S. 1977 Some effects of finite steepness on the generation of waves by wind. In A voyage of 

discovery, pp. 393-403. Oxford: Pergamon. 
Longuet-Higgins, M. S., Cartwright, D. E. & Smith, N. D. 1963 Observations of the directional spectrum of sea 

waves using the motions of a floating buoy. In Ocean wave spectra, pp. 111-136. Englewood Cliffs, NJ. : Prentice 
Hall, Inc. 

Longuet-Higgins, M. S. & Cokelet, E. D. 1976 The deformation of steep surface waves. I.  A numerical method 
of computation. Proc. R .  Soc. Lond. A 350, 1-26. 

Longuet-Higgins, M. S. & Phillips, 0 .  M. 1962 Phase velocity effects in tertiary wave interactions. J .  Fluid Mech. 
12, 333-336. 



562 M. A. D O N E L A N ,  J. H A M I L T O N  AND W. H. HUT 

McLeish, W., Ross, D., Shuchman, R. A., Teleki, P. G., Hsiao, S. V., Shemdin, 0 .  H. & Brown, W. E. Jr 1980 
Synthetic aperture radar imaging of ocean waves: comparison with wave measurements. J .  geophys. Res. 85, 

c9, 5003-501 1. 
Mitsuyasu, H.  1968 On the growth of the spectrum of wind generated waves, I. Rep. Res. Inst. aPP1. Mech. Kyushu 

Uniu. 16, 459-482. 
Mitsuyasu, H.  1969 On the growth of the spectrum of wind generated waves, 11. Rep. Res. Inst, apPI Mech. Kyushu 

Uniu. 17, 235-248. 
Mitsuyasu, H., Kuo, Y.-Y. & Masuda, A. 1979 On the dispersion relation of random gravity waves, Part 2. An 

experiment. J .  Fluid Mech. 92, 731-749. 
Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkuso, M., Honda, T. & Rikiishi, K. 1975 Observations of 

the directional spectrum of ocean waves using a cloverleaf buoy. J .  phys. Oceanogr. 5, pp. 750-760. 
Pawka, S. S., Hsiao, S. V., Shemdin, 0 .  H. & Inman, D. L. 1980 Comparisons between wave directional spectra 

from SAR and pressure sensor arrays. J .  geophys. Res. 85, c9, 4987-4995. 
Phillips, 0 .  M. 1957 On the generation of waves by turbulent wind. J .  Fluid Mech. 2, 417-445. 
Phillips, 0 .  M. 1958 The equilibrium range in the spectrum of wind-generated waves. J .  Fluzd Mech. 4, 426-434. 
Phillips, 0 .  M. 1960 On the dynamics of unsteady gravity waves of finite amplitude, Part I. J .  Fluid Mech. 9, 

193-217. 
Phillips, 0 .  M. 1977 The dynamics of the upper ocean (2nd edn). (336 pages.) Cambridge University Press. 
Phillips, 0.M. 1980 Wave generation propagation and dissipation theory. In Transcr$t of workshop on wind-wave 

hindcasting and forecasting models, pp. 6-19. Gaithersburg, Md.: National Oceanic and Atmospheric 
Administration. 

Pierson, W. J. & Moskowitz, L. 1964 A proposed spectral form for fully developed wind seas based on the similarity 
theory of S. A. Kitaigorodskii. J ,  geophys. Res. 69, 5181-5190. 

Plant, W. J. & Wright, J. W. 1980 Phase speeds ofupwind and downwind travelling short gravity waves. J .  geophys. 
Res. 85, c6, 3304-3310. 

Ramamonjiarisoa, A. 1973 Sur l'kvolution des spectres d'knergie des vagues de vent a fetchs courts. Me'm. Soc. R .  
Sci. Liige Ser. 6, 6, 47-66. 

Ramamonjiarisoa, A. 1974 Contribution a l'etude de la structure statistique et des mkchanismes de genkration 
des vagues de vent. Thesis, UniversitC de Provence (Inst. Mech. Stat. de la Turbulence, no. A.O. 10023). 

Regier, L. A. & Davis, R. E. 1977 Observation of the power and directional spectrum of ocean surface waves. 
J. mar. Res. 35, 433-451. 

Rikiishi, K. 1978a A new method for measuring the directional wave spectrum. I.  Description. J ,  phys. Oceanogr. 
8, 508-517. 

Rikiishi, K. 1978b A new method for measuring the directional wave spectrum. 11. Measurements of the directional 
spectrum and phase velocity of laboratory wind waves. J .  phys. Oceanogr. 8, 51&529. 

Schuler, D. L. 1978 Remote sensing of directional gravity wave spectra and surface currents using microwave 
dual-frequency radar. Radio Sci. 13, 321-331. 

Sell, W. & Hasselmann, K. 1972 Computations of nonlinear energy transfer for JONSWAP and empirical wind 
wave spectra. Rep. Inst. Geophys., Univ. Hamburg. 

Simons, T .  J. 1974 Verification of numerical models of Lake Ontario, I. Circulation in spring and early summer. 
J .  phys. Oceanogr. 4, 507-523. 

Simons, T .  J. 1975 Verification of numerical models of Lake Ontario, 11. Stratified circulations and temperature 
changes. J .  phys. Oceanogr. 5 ,  98-110. 

Stewart, R. W. 1974 The air-sea momentum exchange. Boundary Layer Meteorol. 6, 151-167. 
Stewart, R. H. &Joy, J. W. 1974 H F  radio measurements of surface currents. Deep Sea Res. 21, 1039-1049. 
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441-455. 
Sturm, G. V. & Sorrell, F. Y. 1973 Optical wave measurement technique and experimental comparison with 

conventional wave height probes. APpl. Optics 12, 1928-1933. 
Toba, Y. 1973 Local balance in the air-sea boundary processes, 111. O n  the spectrum of wind waves. J .  oceanogr. 

Soc. Japan 29, 209-220. 
Trizna, D. B., Bogle, R. W., Moore, J. C. & Howe, C. M. 1980 Observation by H. F. Radar of the Phillips 

resonance mechanism for generation of wind waves. J ,  geophys. Res. 85, c9, 4946-4956. 
Tyler, G. L., Teague, C. C., Stewart, R. H., Peterson, A. M., Munk, W. H. &Joy, J. W. 1974 Wave directional 

spectra from synthetic aperture observations of radio scatter. Deep Sea Res. 21, 989-1016. 
Webb, D. J. 1978 Nonlinear transfers between sea waves. Deep Sea Res. 25, 279-298. 
Whitham, G. B. 1967 Nonlinear dispersion of water waves. J .  Fluid Mech. 27, 399-412. 
Whitham, G. B. 1974 Linear and nonlinear waves. (636 pages.) New York: John Wiley & Sons. 
Wu, J. 1975 Wind-induced drift currents. J .  Fluid Mech. 68, 49-70. 
Wu, J. 1977 Directional slope and curvature distributions of wind waves. J .  Fluid Mech. 79, 463-480. 
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. Soviet Physzcs 

appl. Mech. tech. Phys. 4, 190-194. 
Zakharov, V. E. & Filonenko, N. N. 1967 Energy spectrum for stochastic oscillations of the surface of a liquid. 

Soviet Phys. Dokl. 11, 881-883. 


