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ABSTRACT

It is proposed that the sea surface be studied in a way that takes into account the observed groupiness of wind-
generated waves. A new method of analysis to study the directional properties of the surface is developed. It is
demonstrated that this method, based on wavelet transforms, allows the instantaneous wave propagation direc-
tions at various frequencies to be estimated. Furthermore, the approach is shown to yield wavenumber spectra
directly —a result of particular importance to such pursuits as remote sensing, gas transfer, and air—sea coupling.

1. Introduction

A record of the surface elevation at a point or a snap-
shot of the ocean surface reveals two important char-
acteristics:

1) There is a definite underlying wavy structure, al-
beit strongly modulated and with superposed fine struc-
ture.

2) No section of the record of length greater than,
say, three basic periods is duplicated elsewhere in the
record.

These characteristics together suggest a random pro-
cess in which elevation variance is distributed unevenly
among frequency and wavenumber with a strong peak
at some frequency/wavenumber and rapidly decreas-
ing contributions away from the peak. The idea of a
spectral representation of the statistical variability of
the ocean surface was given formal expression by Pier-
son and Marks (1952), and is the basis for virtually all
research and engineering studies of wind-generated sea
waves. The idea is extremely appealing because, while
it yields no prescription for predicting the occurrence
of a particular sequence of events, it allows one to mea-
sure the average statistics of the process and to assign
probabilities to the occurrence of wave heights and pe-
riods in a certain range (e.g., Longuet-Higgins 1952,
1983). Furthermore, since surface water waves are in-
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herently dispersive, a spectral decomposition provides
a convenient basis for calculation of, for example, wind
forcing (Miles 1957 and ff; Phillips 1957; Makin
1979), wave—wave interaction (Phillips 1960; Hassel-
mann 1962 and ff), wave—bottom and wave~—current
interaction (Longuet-Higgins and Stewart 1964; Has-
selmann and Collins 1968; Tolman 1991; Magnusson
1993), and wave dissipation (Hasselmann 1974; Phil-
lips 1985; Donelan and Pierson 1987). Calculations of
the directional properties of wind-generated waves
(e.g., Donelan et al. 1985; Lygre and Krogstad 1986)
are also predicated on the assumption that the wave
field may be represented statistically by an average
spectrum.

This surface wave model considers any realization
of the sea surface to be composed of the sum of an
infinite set of infinitesimal waves propagating with ran-
dom phases and directions allocated such that the dis-
tribution of energy in frequency and direction agrees
with the observed directional spectrum. The impressive
success of this model of the ocean surface has tended
to obscure its shortcomings. Key to this spectral rep-
resentation model is the assumption of stationarity and
ergodicity of the wave field (treated as a random pro-
cess). These assumptions essentially preclude the use
of standard spectral analysis techniques in unsteady
conditions (i.e., during the growth of a wind sea) or
during isolated events, such as a freak wave, inter alia.
The common analytical approach is to omit these
events, yet these very conditions are often the ones that
are least understood and of the greatest practical con-
cern.

In the following, an alternative model of the sea sur-
face is presented. Based on this model, a new method
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FiG. 1. Surface velocity variations during a 3-min interval from an S-band frequency-modulated continuous wave radar directed
into the wind. The dark stripes correspond to wave crests propagating toward the radar. From Poulter et al. (1995).

of analyzing the sea surface is developed. Resulits from
this new method, the wavelet directional method
(WDM), are compared to those of the more traditional
maximum likelihood method. Field data are analyzed
and the directional properties of wave groups within
the record are studied. It is also shown that the new
method yields wavenumber spectra.

2. A group model

The idea that the sea surface may be represented by
the superposition of wave groups of varying amplitude,
group shape, and group velocity was first advanced by
Mollo-Christensen and Ramamonjiarisoa (1978). In-
spired by the envelope solitons of Yuen and Lake
(1975), they proposed a model in which groups of
Stokes-like waves propagate without change of form.
Interactions between groups were assumed to be neg-
ligible. The observed spectrum arises through a random
distribution of the amplitudes, propagation directions
and phases of these groups. Although the solution of

the nonlinear Schrédinger equation gives rise to an en-
velope of sech? shape (Hui and Hamilton 1979), for
simplicity the groups were given Gaussian envelopes
and were described by

(x=VD?_ Y )

WP(X,)’, t7¢)= exp<_ 212 2—11_2‘

X E‘, a, cosn(kix — wit — ¢), (1)

n=1

where x is the propagation direction, V the (nonlinear)
group velocity, and [ and 4 are horizontal scale param-
eters for the group shape. The Fourier series describes
the Stokes-like frequency distribution with all the com-
ponents having the phase speed of the fundamental:
c(k) = c(ky) = wi/k,. The group velocity and wave-
number may differ from the linear theory values. The
subscript p denotes permanency of group shape.

The permanency of the above groups depends on a
subtle balance among amplitudes of the spectrum. If
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FI1G. 2. Fourier space plots of |12140]2 forg =-2,-1,0,1,2.
Meyer and Morlet wavelets in panels (a) and (b) respectively.

the amplitude of the envelope of these groups is too
small or too large compared to the wavelength of the
fundamental component, the groups will not be of per-
manent form. However, through coalescence and dis-
persion of the various components, groups may exist
over a finite interval in space and time. Pierson et al.
(1992) have demonstrated that a sufficiently steep
group will propagate for a short time without a percep-
tible change of form.

One can think of the sea surface as a collection of
such groups randomly distributed with a probability
such that the average spectrum has the observed char-
acteristics of a sharp forward face, an equilibrium range
and suitable spreading about the wind direction. A for-
mal statement of the treatment of a sea consisting of
wave groups, rather than infinitesimal wave trains, has
been given by Komen et al. (1994, section 1.2.6).

We envisage the sea surface consisting of a random
collection of groups propagating in various directions
and having different levels of energy or envelope steep-
ness. Groups of low steepness are approximately linear
and evolve over time and space: groups may steepen
(coalesce) or flatten (disperse) depending on phasing
of component waves in any time/space interval. The
steepest groups exhibit Stokes-like harmonics, such as
that modeled by (1). Ramamonjiarisoa (1974) and
Mollo-Christensen and Ramamonjiarisoa (1978) give
evidence for the existence of groups of type (1), and
Donelan et al. (1985) have shown that the balance of
“‘bound’’ (Stokes like) harmonics and free waves de-
pends on the intensity of wind forcing, U/c,.

Radar observations (e.g., Poulter et al. 1995) and
acoustic mapping of the surface from beneath (Farmer
and Vagle 1988) have indicated the presence of di-
rected groups propagating for several periods in a given
direction. These observations have also confirmed the
modulated group breaking structures first noticed by
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Donelan et al. (1972). Figure 1 (reprinted from Poulter
et al. 1995) illustrates the group structures in a wind-
driven wave field. Such time-range data displays yield
information that is not available from point measure-
ments. Horizontal slices correspond to the usual time
histories at a point that could be obtained by, for ex-
ample, a moored accelerometer. Vertical slices are the
instantaneous ‘‘topography’’ of surface velocities
along the radar look direction, which in this case is into
the wind. The slope of dark (or light) lines corresponds
to the component of phase velocity toward the radar,
while the group velocity component may be estimated
from the slope of lines joining the centers of successive
crest/trough (dark/light) traces. The most pronounced
features show the characteristic deep water (here, depth
> 100 m) relation between phase and group velocity.
The offwind propagation angle may, in principle, be
estimated from the apparent wavelength (vertical sep-
aration between parallel crest lines) and the theoretical
wavelength deduced from the period (horizontal sep-
aration between parallel crests). Coherent group pat-
terns over many periods and the observed range of 325
m correspond to wave groups propagating toward the
radar or at a small angle to the radar look direction.
Groups propagating at large off-range angles appear for
relatively short space-time intervals—depending on
degree of long-crestedness—and several of these may
be discerned on the figure. Of course, this presentation
emphasizes the largest waves, which have the largest
orbital velocities, and these are generally narrowly fo-
cused in the wind direction under these steady wind,
long fetch, deep water conditions.

The common method of wave observation—time
histories at a point, corresponding to horizontal slices
in Fig. 1—does not yield any information about the
coherence of groups. A run of high waves may occur
through random superposition of time independent
components—the assumption inherent in Fourier anal-
ysis of time series—or may be caused by the passage
of groups of waves in which the energy is concentrated
in a small range of wavenumbers along particular
space—time trajectories. Radar derived displays, such
as Fig. 1, provide powerful evidence for the latter.

These observations of strongly modulated coherent
groups lead us to suggest a new model for the propa-
gation characteristics and energy distributions of waves
in a wind-generated sea. We postulate the propagation
of waves in groups having a narrow range of variation
of wavenumber magnitude and direction within a
group. Groups of various wavenumber ranges and di-
rections may coexist. The statistical average of the
propagation characteristics of a sea is called a direc-
tional spectrum. Energy may be concentrated near par-
ticular vector wavenumbers at any instant (or posi-
tion). Over time (or space) the variability of the spec-
trum arises from the passage of groups with various
amplitudes and vector wavenumbers.
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FiG. 3. A comparison of Fourier and wavelet analyses of an isolated dispersing Gaussian wave group. The time series of the group is
illustrated in panel (a). In (b), the solid line bars show the Fourier spectrum, while the dashed and dotted bars show the Meyer and Morlet
wavelet spectra of the full time series. In (c), a contour plot of |W,,|? is shown on the same timescale as (a), while in (d) wavelet energy
spectra |W,, | 2 versus [, for p corresponding to times of 0.5 s (solid line), 1.5 s (dashed), and 2.5 s (dotted) are shown.

3. The wavelet directional method

In order to test our hypothesis we need a nonstation-
ary method of analysis of wave records that will be
capable of decomposing the space/time (X, t) obser-
vations into a frequency (or wavenumber )/time frame.
Fourier analysis is clearly inadequate in that it sacrifices
all temporal resolution within a given block for excel-
lent frequency resolution. Recently developed wavelet
analysis techniques (e.g., see Farge 1992 or Kaiser
1994), on the other hand, are ideally suited to this pur-
pose. Wavelet analysis allows for good temporal and
frequency resolution, although there is considerable
loss of frequency resolution compared to Fourier anal-
ysis. Recall that the radar principle (or Shannon’s un-
certainty principle ) limits the product of time resolution
and frequency resolution, so that an increase in one
~must be at the expense of the other.

In wavelet analysis, one defines a mother wavelet
() (meeting certain integrability requirements in
the' Hilbert space L*(R)—see Kaiser 1994), and
then considers the set of translations and dilations of
this mother wavelet, (1) = 24%y(2%% — p), where
g, p are integers. Note that p serves as a surrogate
for time. The convolution of this family of wavelets
with tiine series G(t) yields the coefficients W,,,
each with information about G (¢) at scale 27 and time
p. This is analogous to Fourier analysis where by
convolving G(t) with the family of functions e,
one determines the frequency spectrum G(w,). Since
the family of functions e ™¢ also form a basis for
functions in L?, one can, of course, write G(¢) as a
combination of these functions in the standard way.
In a similar fashion, one can choose certain mother
wavelets such that the i, s form a basis in L. In this
case, G(t) = 2,2, W,,,,. We distinguish here be-
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FIG. 4. An example of a wavelet transform of surface elevation at
a point. The upper and lower panels show respectively the amplitude
and phase of a frequency component at the peak frequency (- - -) and
twice the peak frequency ( ).

tween the frequency information resulting from Fou-
rier analysis and scale information resulting from
wavelet analysis. As we will see below, how closely
the two are related depends on the properties of ¢. It
is more convenient to calculate the W coefficients in
frequency space, using W, = 1fft(G¢,l/qp) where § is
the fft of ¢ and [i]fft means [inverse] fast Fourier
transform.

It is clear that there are many possible choices for
the mother wavelet ¢, and indeed, a variety have been
introduced into the literature (see Kaiser 1994 ). Farge
(1992) in her review of wavelets in turbulence research
makes the important point that the W,,s contain infor-
mation not only on G, but also on ¢, hence it is im-
portant to choose a wavelet that is in some sense suited
to the physical quantities to be studied.

We investigate here two mother wavelets, the
Meyer and Morlet wavelets, recently introduced into
air—sea related fields. Meyer (1989) proposed an al-
gorithm by which a family of orthogonal wavelets,
spanning (and thereby forming a basis for) L?, could
be generated. Hayashi (1994), studying atmospheric
turbulence, implemented the algorithm, defining the
mother wavelet in Fourier space ¢, as

J(w) = exp(—iw/2)[$(w/2)? — $(w)?] ™"
d(w) = [g(w)g(—w)]™ 2

(2)
(3)
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g(w)=h{4n/3 — w)/[h(w — 27/3)
+ h(4n/3 — w)] (4)
h(w) = exp(—2/w?) X (w > 0), (5)

where (w > 0) is 1 if true and O if false. We note that
our expression for 4 is different from that of Hayashi
(1994) by the addition of a normalization factor of one-
half in the denominator. This scales | W,, | to represent
spectral power, analogous to that derived from the Fou-
rier coefficients. In Fig. 2a, we plot fz,!rqo[ forg = -2,

—1, 0, 1, 2, corresponding to the scales of 1/4, 1/2, 1,
2,and 4 Hz. The following points should be noted from
the figure: First, although at a given scale, for instance
1 Hz (¢ = 0), the wavelet is clearly centered at that
frequency, it contains information at neighboring fre-
quencies as well. This is, in essence, the distinction
between frequency and scale made above: a scale is an
average weighted over neighboring frequencies. Sec-
ond, 2, |,0|% = 1, as must be the case for orthogonal
wavelets Although the Meyer wavelets have found ap-
plication in the analysis of atmospheric turbulence
(Hayashi 1994), they are not particularly well suited
to our present work due to their relatively poor fre-
quency resolution for a given scale.

Although nonorthogonal, Morlet wavelets (see Gross-
man and Morlet 1984) with the mother wavelet defined
by #(t) = exp(ict) exp(—|t|*/2), ¢ a constant, are well
localized in both time and frequency. Furthermore, their
Gaussian envelope shape makes the Morlet wavelet a nat-
ural choice for ocean wave anab/s1s (see, e.g., Chapron et
al. 1996). In Fig. 2b, we plot lh0l?, forg = =2, -
calculated using the Morlet wavelets. The improvement in
frequency resolution compared with the Meyer results of
Fig. 2a is evident. It is also evident that 3, |¢/,0]> < 1. In
particular, midway between wavelet scales, Morlet wave-
lets tend to lose most of the energy in the signal. It is
therefore common to carry out Morlet wavelet analysis
with additional intermediary scales or ‘‘voices,’” so that,
for example, g = ---, —1, —1/2, 0, 1/2, 1, - --. These
additional voices are largely, but not fully, independent
of the integer scales. As the number of voices is further
increased, the independence of neighboring voices is
clearly reduced. In what follows below, the Morlet
wavelet is used for the bulk of the analysis, although
the Meyer wavelets are also applied to provide an in-
dication of the effects of the choice of wavelet on the
results.

Prior to proceeding with the main results, we provide
a brief example of the different results gained from Fou-
rier and wavelet analysis. Consider the time series G ()
consisting of the isolated dispersing wave group given by

G(x.1) A 4w3B? gt \?
N T - — X — x —_— ——
X D]/4 exp gZD 2(.4)()
. (wix we 4B**x 1 _ 4B%x
Xsmf———— + —tan ,
Dg D Dg 2

(6)
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FiG. 5. Frequency—direction spectra for a well-developed wave field (run 87062). Panels (a), (c), and
(e) are the contour plots of the spectrum via the WDM using Morlet wavelets, WDM using Meyer
wavelets and MLM respectively; panels (b), (d), and (f) are the corresponding spectra multiplied by f°.

where B = 2 is the envelope decay constant, x = 1 the fetch,
A = 04 the amplitude, D = 1 + (16B*x*/g?*), and wy
= 3. This is the classic dispersing two-dimensional Gauss-
ian group of Neumann and Pierson (1966). The time series
of G is shown in Fig. 3a, along with its Fourier frequency
spectrum in Fig. 3b, with each solid (line) bar representing
the energy in a discrete frequency bin. In Fig. 3¢, a contour
plot of the magnitude squared of the (Meyer) wavelet trans-
form coefficients, {W,,|%, (g = =2, =3/2, =1, ---,3) on
frequency/time axes is shown. The passage of the wave
group is readily identified, as is the frequency upshift-
ing which occurs as the faster long waves lead the
slower short ones. This time localization is the advan-
tage of wavelet analysis over Fourier analysis. The

compromise comes in a loss of frequency resolution.
In Fig. 3d, we plot wavelet spectra at times 0.5, 1.5,
and 2.5 s. The increase in frequency and change in local
energy as the group passes are clearly seen, although
there are only six fully independent (logarithmically
spaced ) frequency bands. The spectrum derived by av-
eraging the wavelet energy over the full time record is
shown using dashed bars in Fig. 3b. Note that the wave-
let points identify scales, that is, averages of frequen-
cies around some center frequency. The dotted bars
show the spectrum derived from the Morlet wavelet:
the Morlet scales are seen to be closer to the true fre-
quency (i.e., the energy follows more closely the Fou-
rier spectral energy) than the Meyer scales.
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FI1G. 6. Directional distributions at various frequencies for run 87062.

WDM (

The most reliable data for analyzing the directional
properties of waves is that obtained from arrays of
wave staffs. The method we will describe here is writ-
ten with these data in mind. Consider a set of time series
obtained from an array of n wave staffs: 7,(¢), i = 1,
-+ -, n. The first step is to obtain the (complex ) wavelet

); MLM (- - -).

transform of these n datasets at m discrete frequencies
fpgq=1 - m Wi, i=1, -, n Thus, for each
chosen frequency f,, we now have a time series of the
amplitude and phase of that component (Fig. 4). Pairs
of wave staffs (i and j) yield measured phase differ-

ences ¢;:
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staffs, and k = (k, 6) is the wavenumber vector at the
chosen frequency and time.

It is easily shown that the wavenumber vector may
be determined from two pairs of staffs by

[sin(a. — ag) cOsO]

6 = arctan[(I" cosa,; — cosay,) /

(sina,, — T sina,)],

(8)

9
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F1G. 7. The ratio of cross-wave slope spectra to alongwave slope
spectra for run 87082 from the data ( ), via WDM (— — —),
and via MLM (— - —), upper panel. The stars on the WDM curve
show the (mostly) independent scales. In the lower panel, the 1D
wave spectrum shows where the spectral energy is concentrated.

where I' = (¢u/boy) (1ol ) and the pairs ab and cd
are chosen so that the angular difference between their
separation vectors (a,, — a.y) is close to 90° or 270°, If
there are more than two pairs (i.e., more than three wave
staffs) multiple estimates of k are obtained and the
means and standard deviations of the estimates of k may
be calculated. Finally, the directional spectrum is cal-
culated by binning the energy (amplitude squared of
W .,) at each time into the calculated wavenumber bin.

4. Resuits

Perhaps the most widely accepted means of com-
puting directional spectra from arrays of wave staffs is
the maximum likelihood method (MLM, e.g., Capon
1969). In the following we compare estimated direc-
tional spectra from the two methods. In order to com-
pare the results of our new method with conventional
approaches, we ignore the wavenumber magnitude and
examine the distribution of energy in frequency and
direction integrated over time. We examine data ac-
quired from the research tower in Lake Ontario (Done-
lan et al. 1985) during the WAVES Experiment
(Tsanis and Brissette 1992) in 1987. The research
tower stands in 12 m of water at the western end of
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Lake Ontario. Strongly forced conditions occur in
strong west winds over the minimum fetch of 1.1 km,
whereas weaker east winds yield waves approaching
full development over a fetch of some 300 km. Two
cases are selected for illustration: (i) run 87062, which
is near full development, and (ii) run 87082, which is
strongly forced. The data are obtained from an array of
6 capacitance wave staffs arranged in a centered pen-
tagon of radius 25 cm and sampled at 20 Hz. There
were 105 pairs of which 35 had included angles within
20° of either 90° or 270°. These 35 pairs form the basic
dataset.

a. Frequency-direction spectra

Contour plots of the frequency —direction spectra are
illustrated in Fig. 5 for the well-developed case, run
87062. In panels (a) and (c), we compare spectra de-
rived via the WDM using Morlet and Meyer wavelets
respectively in order to test how sensitive the results
are to the particular wavelet used. The right-hand pan-
els, (b) and (d), show the same two spectra multiplied
by f° to enhance the high frequency contributions.
Comparing (a) and (c), we see a very similar direc-
tional distribution, but with the Meyer wavelet produc-
ing spectra somewhat wider in frequency. This is ex-
pected, as seen in Fig. 2 and the discussion above. In
the remainder of the paper, we confine our attention to
the use of the Morlet wavelet in the WDM. The MLM
spectrum appears in panels (e) and (f), the latter mul-
tiplied by f°. Comparing the WDM and MLM spectra,
good agreement in the mean propagation directions is
seen, but the wavelet directional method shows appre-
ciably less spreading than the MLM at all frequencies.
This is emphasized by comparing panels (b) and (f).
Both methods show the turning of the waves toward
the wind direction at high frequencies, while the low
frequencies tend to come from the long fetch direction
(70°). This phenomenon was first described by Done-
lan et al. (1985). It is also apparent that the WDM is
far smoother than the MLM although both have been
treated in the same way in the contouring process.

A clearer view of these aspects of the WDM and
MLM spectra can be seen by examining the set of slices
across direction at particular frequencies shown in Fig.
6. The MLM (dashed) is consistently broader than the
WDM, and, at frequencies of twice the peak and above,
indicates significant energy in waves propagating
against the wind. Whereas the WDM shows a consis-
tent increasing trend in the spreading and a slow tran-
sition of the energy toward the wind direction (0°) with
increasing frequency, the MLM shows significant ran-
dom fluctuations in both of these aspects.

The question arises as to which of the two methods
best represents the actual spreading in the data. In Fig.
7 we plot the ratios of cross-wave and alongwave slope
spectra at each frequency for the MLM and WDM
spectra. At a given frequency, the wavenumbers cancel,
and the ratio is given by
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and 87082 respectively; panels (b) and (d) are the corresponding curvature spectra.
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where D(8) represents the normalized directional en-
ergy distribution and §, the mean wave direction at the
frequency. We can make a similar calculation from the
data, calculating the alongwave and cross-wave slopes
spectra from the wave staff time series by fitting a sec-
ond-order surface to the six elevation estimates at each
time step. The instantaneous two orthogonal directions

are then readily computed and may be rotated into and
normal to the wave direction (see Tsanis and Brissette
1992). This slope ratio is also plotted in Fig. 7. The
WDM spreading closely approximates the actual
spreading near the spectral peak but is seen to under-
estimate the spreading at higher frequencies. There is
insufficient energy at lower frequencies for a compar-
ison to be made. The MLM spreading, on the other
hand, is consistently too large, overestimating the
crosswave/alongwave spectral ratio near the peak by a
factor of over 2. The underestimate of the WDM at
higher frequencies is not unexpected. It is a result of
the inability of the WDM to resolve two or more waves
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FiG. 9. One-dimensional spectra (upper curve) and several slices
through the wavenumber-frequency spectrum in and near the wind
direction. The straight lines show slopes of k™>° (upper curve) and
k™* (lower curve). The upper and lower panels are from runs 87062
and 87082 respectively.

of the same wavenumber passing over the array at the
same time.

b. Wavenumber spectra

The method proposed here yields wavenumber spec-
tra directly and it is this form that is useful for most
purposes. Since our data are obtained from observa-
tions at fixed points and are first decomposed by a
wavelet time-frequency analysis, we are left with a dis-
tribution of energy in various wavenumbers at each
chosen frequency-of-encounter band. Waves having
different wavenumbers contribute to a particular fre-
quency band depending on the local currents and or-
bital velocities; that is, they are Doppler shifted in and
out of a given frequency band as the local currents
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change (Ataktiirk and Katsaros 1987). However, we
are able with this method to assign a wavenumber vec-
tor to the amplitude at each instant in a particular fre-
quency band. The overall distribution of these wave-
number-tagged amplitudes (squared), integrated over
time, is the wavenumber spectrum. This is shown for
the two illustrative cases in Fig. 8. Panels (a) and (c)
show the direct wavenumber spectra, and panels (b)
and (d) the spectra Xk* or the ‘‘saturation’” parameter
(Phillips 1985). In Fig. 9 the one-dimensional wave-
number spectra are shown (integrated over direction)
and also a series of slices of the wavenumber spectra
in directions close to the wind direction. In the strongly
forced case (Fig. 9b) the one-dimensional spectrum
shows a distinct region above the peak having a slope
of k73, in agreement with the generally accepted f ~*
shape of the frequency spectrum (Toba 1973; Donelan
etal. 1985). The corresponding slices through the spec-
trum in the wind direction have slopes close to k™, as
originally conjectured by Phillips (1958). The differ-
ence in slope is explained by the increased spreading
with wavenumber above the peak (Donelan et al.
1985). At higher wavenumbers the spectra fall off
slightly. The data were gathered at 20 Hz and averaged
to 2.5 Hz so that the analysis was carried out to a Ny-
quist frequency of 1.25 Hz, corresponding to a wave-
number of 6.29 m~'. However, Doppler shifting
spreads the energy at each wavenumber over various
frequencies, so that some energy at wavenumbers just
below the Nyquist wavenumber would be observed at
frequencies above the Nyquist frequency and is there-
fore not captured here. The increased slope is probably
due to this.

The well-developed case (Fig. 9a) shows much the
same behavior, but the k~* region is well above the

H [
T T

w
T

_wavenumber {1/m]

(¢} 0.2 0.4 0.6 0.8 1 1.2 1.4
frequency [Hz]

FiG. 10. Wavenumber—frequency diagram for run 87062: k versus
frequency for the whole time series (solid line), in the wave crests {7
> (n?)'2; dot—dash] and in the wave troughs [ < —(n2)"2; dashed].
Linear theory is shown by a series of dots.
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Fic. 11. Panel (a): the passage of a group in the time history of surface elevation. Panels (b),
(c), and (d): the evolution of amplitude, wavenumber, and direction of the frequency bands that
constitute the group. The frequencies 0.50, 0.55, 0.60, and 0.65 Hz are represented by solid,
dotted, dashed, and dot—dashed lines respectively. Note that while adjacent frequencies are
somewhat dependent, the first and last are virtually independent.

peak, reflecting the weak forcing near the peak and a
“‘saturated’’ spectrum only in the high wavenumber
slowly moving part of the spectrum.

. ¢ The dispersion relation

The dispersive properties of the waves can be readily
examined with this method. Figure 10 shows a plot of
the average wavenumber in each frequency band ver-
sus frequency for the well-developed case. Close agree-
ment with linear theory (shown dotted ) is apparent ex-
cept at the highest frequencies. There are three possible
reasons for the observed lower wavenumbers above
frequencies of 1 Hz: (i) wind drift current, (ii) ampli-
tude dispersion, and (iii) Doppler shifting of the high-
est wavenumbers above the Nyquist frequency, thereby
lowering the average wavenumber. The effect of Dopp-
ler shifting may be clearly seen by separating the esti-

mates of wavenumber into two classes depending on
the instantaneous surface elevation, n: > (n?)"/? and
n < —(n*)""?. These classes correspond to the crests
and troughs, respectively, of the largest waves. The re-
sulting average wavenumbers in these classes are, re-
spectively, lower and higher than the linear theory val-
ues, corresponding to forward advection on the crests
and backward advection in the troughs as expected.

d. Group structure

Our hypothesis, that waves propagate in groups with
significant energy concentrated in a narrow wavenum-
ber band, may be tested by examining the time history
of wavenumber magnitudes and directions. Figure 11
shows the evolution of amplitudes and wavenumbers
during the passage of a group. The wave components
at contiguous frequency bands, shown here by the dif-
ferent lines (0.50, 0.55, 0.60, 0.65 Hz), are the ones
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that have consistent directions and whose amplitudes
reflect the group shape. The propagation directions are
shown in Fig. 11d and the amplitudes in Fig. 11b. The
consistent tracking of the directions is striking and the
standard deviation of the directions among these four
frequencies is about the same as the standard error of
the measurement of direction at each frequency as de-
termined from the 35 independent estimates of direc-
tion given by (9).

The evolution of amplitudes through this group is
consistent with a group that is coalescing (Pierson et
al. 1992); that is, the higher frequencies are more
prominent at the start of the group and there is a smooth
evolution toward the end of the group, where the lower
frequencies are dominant. This bunching of energy-
containing wavenumbers happens repeatedly through-
out the record. Similarly, there are times (Fig. 11b)
when the energy in a particular frequency or band of
frequencies falls to very low values.

Figure 12 shows an example of a wave group ob-
tained on the EKOFISK oil platform in the North Sea.
A group of three waves in excess of 6 m were observed
and the corresponding time-dependent amplitudes of
four frequencies in the vicinity of the peak show the
evolution of energy toward low frequencies with time.
The relatively high speed of the lower frequencies leads
to coalescence of the group and the probability of even
higher waves at some distance beyond the sensor. This
raises the possibility of using information obtained at
one point to deduce the statistics of extremes of waves
for some considerable distance upstream and down-
stream. The additional information may greatly im-
prove the confidence limits on extrema.

Finally, we address the question of whether these
groups are isolated events or typical aspects of the
ocean surface. In Fig. 13, we plot the spectrum of | W, |
at the peak frequency for run 87082 (dashed line). This

wave height {m]

300 310 320 330 340 350 360

time [sec]

FiG. 12. The passage of a wave group as recorded on the EKOFISK
oil platform in the North Sea, 93.01.12 at 1221 UTC.
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FiG. 13. Semilog plots of waveheight spectrum times frequency
(solid line) and spectrum of |W,,| (times frequency) at the most
energetic frequency for run 87082 (dashed line).

is an indication of the periodicity of groups around the
peak frequency. Although broad compared to the wave
spectrum (solid line in Fig. 13), there is a clear spectral
peak around 0.05 Hz or 20 s, about 10 times the peak
period, with significant energy between 40 s and 5 s.
A more complete analysis of the group structure re-
mains to be carried out, but this suggests that groups
play an important role in the dynamics of the ocean.

5. Conclusions

We have proposed a way of viewing the underlying
order in a chaotic wind-generated sea that has its an-
tecedents in the group structure suggested by Mollo-
Christensen and Ramamonjiarisoa. The analyzed data
support this view and lead to a direct way of calculating
directional properties of waves. The new resuits on di-
rectional spectra indicate that the most energetic waves
are more focused than originally thought. Furthermore,
the intermittent distribution of energy in any wavenum-
ber band elucidates the process by which seas become
steep and permits the calculation of extreme waves in
a sea and other parameters of direct engineering inter-
est. Perhaps most importantly, this new approach yields
wavenumber spectra and wavenumber related time-de-
pendent information, from which may be calculated
surface properties of direct value to understanding the
mechanics of remote sensing, gas transfer, and related
fields.
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