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Abstract Three methods of estimating the directional spectra of water waves are intercompared. The
Maximum Likelihood Method (MLM) and the Maximum Entropy Method (MEM) require stationarity of the
time series and yield only the frequency-direction spectra. The Wavelet Directional Method (WDM) does not
require stationarity and also yields the wave number-direction spectra and is suitable for event analysis. The
comparison includes three cases of wind-generated waves on a large lake and two cases of model-
generated waves with different directional spreading. The comparisons of the frequency-direction spectra
show that the Wavelet Directional Method yields the best estimates of the directional spectra.

1. Introduction

In situ wave directional information is usually gleaned from measurements of wave properties (e.g., surface
elevation and slope vector) at a point or the same property (e.g., surface elevation) at three or more points.
The directional analysis of surface waves generally starts from the assumption of stationarity of time series
of wave properties. While a new conceptual basis for measurements of three-dimensional surface waves is
emerging [e.g., Liu, 2013], spectral mapping of two-dimensional wavy surfaces remain the main means of
such analysis. The methods in common use are: Maximum Likelihood Method (MLM) [Capon, 1979], Maxi-
mum Entropy Method (MEM) [Lygre and Krogstad, 1986], and Wavelet Directional Method (WDM) [Donelan
et al., 1996; Krogstad et al., 2006]. These three methods do not yield the same directional spreads or even
the same mean direction at each frequency. We compare the spreads via the ratio of downwave to cross-
wave slopes from the time series and examine the mean direction variations with frequency.

The first two methods (MLM and MEM) are statistical and require (approximate) stationarity of the data
(time series). They yield spectra that are consistent with the correlation matrix of the observations. The third
method (WDM) estimates wavenumber, direction, and amplitude at each point in time; stationarity is not
required. The resulting spectra are composed from the squares of the amplitudes of each wave observed,
having frequency, wave number, direction, and amplitude. Both frequency-direction and wave number-
direction spectra are obtained. The Wavelet Directional Method, therefore, may be applied to stationary
processes as well as to such time variable phenomena as wave growth, decay or turning, tsunamis, acoustic,
or seismic wave packets. It reports the waves that actually occurred during the time of data collection rather
than the likelihood of waves occurring based on the statistics of correlations and cross correlations.

Intercomparison of the methods is first realized via surface elevation time series of wind-generated waves
from Lake Ontario [Donelan et al., 1996]. Then we used the model of Chalikov and Babanin [2013] to gener-
ate an evolving surface on a dense grid. The model calculations are carried out on the wave number spectra
and these are transformed to yield surface elevation time series at selected grid points
fVm tð Þ5gðxm; ym; tÞgM

m51. The model wave number spectra provide a standard with which to assess the
three methods that are based on the analysis of time series.

2. The Methods—MLM, MEM, and WDM

The starting point is a set of M measured time series fVm tð Þ5gðxm; ym; tÞgM
m51 of sensor readings in vector

positions frmg, 1 � m � M of some of the surface elevations. It is assumed that the series are recorded with
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a certain sampling frequency xs , with N samples in each series over the time interval 0 � t � T , where
T52pN=xs. The recording interval T will typically be rather long compared to the correlation time of the
series [Krogstad, 1988]. We aim to obtain wave number-frequency spectrum estimate bSðk;xÞ of the field,
where k5ðkx ; kyÞ.

2.1. Maximum Likelihood Method
Capon [1969] developed a high-resolution method for seismic processing that later has become known as
the Maximum Likelihood Method (MLM) for directional spectra. The method was introduced in the context
of ocean wave spectra by Davis and Regier [1977] and Borgman [1985].

The motivation of the MLM procedure, given by Capon [1969], is based on the idea of constructing a linear
space-time operator that when applied to a segment of the array data yields a minimum-variance unbiased
linear estimate for the complex amplitude of a discrete plane wave with a particular wave number k0. If the
spectral density matrix for the ‘‘noise’’ (components of the random field corresponding to wave numbers

Figure 1. The spreading function at increasing frequencies for a case of light winds and long fetch—run 62. Observed spreading via WDM (red); fitted sech2 b h2h0ð Þð Þ
(green).
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other than k0) was available,
then the optimum amplitude
estimator could be constructed.
However, since there is no prior
knowledge concerning the
noise, an estimate for the total
spectral density matrix (includ-
ing both the signal and the
noise) is used. The resulting
operator is applied to separate,
uncorrelated segments of the
data, and the magnitudes of the
complex amplitude estimates
are squared and averaged
together to give an estimate for
the average plane wave power
(that is, the variance of the plane
wave complex amplitude) at
wave number k0:

bS k;xð Þ5 f0ðkÞv21
n fðkÞ

� �21
; (1)

where

vnð Þij5XiðnDxÞXjðnDxÞ; (2)

Xm nDxð Þ5fm k; nDxð ÞS k; nDxð Þ; (3)

fm k; nDxð Þ5exp ik � rmð Þ; (4)

f kð Þ � ffm k; nDxð ÞgT ; m51; . . . ; M; (5)

and the prime indicates conjugate transpose.

The estimation procedure is repeated at different wave numbers to yield a plot of estimated power versus
wave number, which with appropriate normalization can be interpreted as a spectral density estimate
[Marzetta, 1983].

2.2. Maximum Entropy Method
The concept of Maximum Entropy spectrum estimation Method (MEM) for one-dimensional time series is
equivalent to fitting an autoregressive model to the data commonly referred to as the Box-Jenkins
approach [Krogstad, 1988].

We assume that a time span of data, which has an estimate of the cross spectrum between any two sensors,
is available:

bPij xð Þ � bP .i; .j;x
� �

�
ð1

21

C .i; .j ; s
� �

exp 2ixsð Þds; (6)

where the cross covariance is

C .i; .j; s
� �

5E g .i; t1sð Þ2M.i

� �
g .j ; t1s
� �

2M.j

h ih i
: (7)

Given the cross spectra bPij xð Þ, i; j51; . . . ; K , we then seek an estimator bS k;xð Þ of the spectrum using
entropy ideas. The multivariate version of time-domain maximum-entropy spectral analysis (for K time
series) has been worked out by Nuttall [1976]. We have N time samples at all of M space points having two
corresponding coordinates. Thus we consider f to be the vector of the totality of all of these samples, of
dimension NM2, each sample being a random variable. Some joint probability function pðfÞ can be

Figure 2. Spreading parameters for run 62 from the three methods and the ratio of
downslope to cross slope.
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considered. Assuming field gðr; tÞ to be Gaussian and maintaining band-limited assumptions, we obtain the
entropy of the field.

We assume that the time-frequency processing is done separately and treat frequency as a fixed parameter.
Thus we seek

bS k;xð Þ5 max
Sðk;xÞ

ðM
1

ðM
1

ln Sðk;xÞdk: (8)

The estimated cross spectrum is compatible with the estimated wave number spectrum

bP .i ; .j ;x
� �

5

ð
R

S k;xð Þexp i .i2.j

� �
� k

� �
dk; i; j51; . . . ;M: (9)

The solution to the variational problem (8), (9)

Figure 3. Comparative spreading for run 62 at various frequencies with respect to the peak.
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bS k;xð Þ5 f0ðkÞKðxÞfðkÞ½ �21
; (10)

ð
R

f0 kð ÞK xð Þf kð Þ½ �fðkÞf0ðkÞdk5bP xð Þ; (11)

where K is the matrix of the ki;j , bPðxÞ is the estimated frequency cross-spectral matrix with elements bPij xð Þ
5bP .i; .j;x
� �

and the prime indicates conjugate transpose.

2.3. Wavelet Directional Method
Wavelet Directional Method (WDM) was introduced by Donelan et al. [1996]. WDM uses wavelet analysis
techniques [see Farge, 1992; Kaiser, 1994]. For this purpose, Morlet wavelets are employed in our analysis.
WDM differs from other methods in that the wave number and amplitude of each wave in each frequency
band are identified at each sampling time step. WDM derives direction from phases of the wavelet trans-
forms of the surface elevation data at three or more wave staffs. Thus the directional resolution depends on
the precision of location of the staffs and is typically better than 1 degree. The resulting general directional
wave number and frequency spectra are specified in terms of parameters, associated with spreading and
wave development.

Figure 4. Comparative spreading for run 82 (short fetch, strong wind) at various frequencies with respect to the peak.
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The Wavelet Directional Method
(WDM) makes two assumptions: that
the water surface can be represented
by a sum of wavelets and that there is
only one wave number in each fre-
quency band at each time step. Con-
sidering the time series fVmðtÞf ggM

m51

of N records for all of the wave staffs,
the first step is to obtain the (complex)
wavelet transform of the M data sets at
N discrete frequencies xq,
q51; . . . ; N: Wi

qp, i51; . . . ; M. Thus
for each chosen frequency xq we now
have a time series of the amplitude
and phase of that component. Pairs of
the wave staffs (i and j) yield the meas-
ured phase differences /ij

/ij5krijcos h2aij
� �

; (12)

where rij; aij
� �

are the separation vec-
tors of pairs of staffs, and k5 k; hð Þ is the wave number vector at the chosen frequency and time.

It can be shown [Donelan et al., 1996] that the wave number vector may be determined from two pairs of
staffs as

k5
/ab

rab
sin acd2

/cd

rcd
sin aab

� 	
= sin acd2aabð Þcos h½ �; (13)

h5arctan Ccos acd2cos aabð Þ=ðsin aab2Csin acdÞ½ �; (14)

where C5
/ab
/cd
� rcd

rab
and the pairs ab and cd are chosen so that the angular difference between their separa-

tion vectors ðaab2acdÞ is close to 908. or 2708. If there are more than two pairs (i.e., more than three wave
staffs), multiple estimates of k are obtained and the means and standard deviations of the estimates of k
may be calculated. Finally, the directional spectrum is calculated by distributing the energy ðjWi

qpj
2Þ at each

time into the calculated wave number bins.

The summation runs over wavelets with different spatial extent and frequency, with no requirement for a
unique dispersion relationship linking them. As a result, the wavelet approach is very flexible when consid-
ering nonhomogeneous data or data where the dispersion relationship between wave number and fre-
quency is unknown.

3. Data Description

3.1. Field, Wind-Generated Waves
These data were obtained on the Lake Ontario tower of Canada’s National Water Research Institute in 1987
[Donelan et al., 1996]. The tower is 1:1 km from the western shore and is exposed to fetches of 1:1 to –
300 km. It was equipped with a six gauge (centered pentagon) array of capacitance wave staffs. Data were
sampled at 4 Hz for at least an hour in each case.

3.2. Model, Computer-Generated Waves
An exact numerical scheme for the simulation of three-dimensional potential fully nonlinear periodic
gravity waves [Chalikov and Babanin, 2013] is employed to produce surface elevations, gðx; y; tÞ, on a
10243256 grid of area 4992 m 3 4992 m. The input spectrum follows JONSWAP [Hasselmann et al.,
1973] with the peak at 0:1 Hz and fixed spreading at all frequencies. Both wide spreading, cos2h and
very narrow spreading, cos16h were tested. The model was run for 60; 000 time steps of 0:045 s. This
corresponds to 270 peak periods or three-quarters of an hour—typical of field data. The waves evolve
in the absence of wind.

Figure 5. Mean directions for run 189 (long fetch, strong wind). WDM (blue), MLM
(green), and MEM (red).
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4. Results

4.1. Frequency-Direction Spectra From Wind-Generated Waves
All the methods yield (encounter) frequency-direction spectra F f ; hð Þ in polar form such that the variance of
surface elevation, r2 is given by:

r25

ð1
0

ðp
2p

F f ; hð Þf dh df ; (15)

where f is the encounter frequency (Hz) and h is the propagation direction (radians). The spectral densities
are in (m2/Hz2/radian).

A measure of the actual spreading at each frequency may be obtained, via the time series of slopes, from
the downwave to crosswave ratio rx=ry

� �2
of slope variance in each frequency band. (The frequency bands

increase in geometrical progression in the WDM analysis. For purposes of comparison, the MLM and MEM
estimates, which increase linearly, are summed in the WDM frequency bands.) The spreading is reflected in
this downwave to crosswave ratio (DCR) as obtained from the frequency-direction spectra:

Figure 6. Spreading (run 189—long fetch, strong wind) via WDM. Observed spreading (red); fitted sech2 b h2h0ð Þð Þ (green).
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DCR fð Þ5
ðp

2p

cos2 h2h0ð ÞD hð Þdh=
ðp

2p

sin2 h2h0ð ÞD hð Þdh; (16)

where D hð Þ is the directional energy distribution and h0 is the mean wave direction at each frequency.
D h0ð Þ51:0.

The spreading of waves about a mean direction, h0 has been modeled by sech2 b h2h0ð Þð Þ [Donelan et al.,
1985]. This form is in excellent agreement with the directional distribution determined through WDM—see
Figure 1. Unlike the statistical methods (MLM and MEM), WDM reflects the actual distribution of wave
energy with direction at the wave array during the time of acquisition of the surface elevation records.
Waves occur in groups from various directions. When more than one group (in a given frequency band)
from different directions cross the array, WDM reflects energy coming from the bisector direction. This has
the effect of narrowing the distribution. On the assumption that the time of coincidence of two or more
groups divided by the time of occurrence of a single group is uniform in direction, the WDM observed will
be narrower than the actual distribution but unchanged in shape; i.e., the actual distribution will have sech2

form with a smaller value of b.

Figure 7. Observed spreading (run 189—long fetch, strong wind) via MLM.
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To determine the actual value of b; we note the correspondence between DCR fð Þ and b fð Þ and report these
along with the MLM, MEM, and WDM values in Figure 2. The MLM and MEM directional distributions do
not always follow the sech2 pattern, so we also show the generalized spreading parameter, A defined by
[Babanin and Soloviev, 1998]:

A215

ðp
2p

D hð Þdh; (17)

and

A5 b=2ð Þcoth pb=2ð Þ: (18)

The following tendencies are apparent:

1. WDM is consistently too narrow.
2. MLM is generally too broad.

Figure 8. Observed spreading (run 189—long fetch, strong wind) via MEM.
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3. MEM is far too narrow near the
peak and generally too narrow
elsewhere.

The corrected WDM spreading
distributions are obtained by multi-
plying the observed distributions by

sech2 bA h2h0ð Þð Þ=sech2 b0 h2h0ð Þð Þ
� �

,
where b0 is the observed value and
bA is the actual value deduced via
DCR obtained from the time series of
the orthogonal slope components, gx

tð Þ and gy tð Þ. (x is in the h0 direction
as determined from the WDM analy-
sis). Figures 3 and 4 show the spreads
of WDM, MLM, MEM, and the cor-
rected WDM for run 62 (well devel-
oped) and run 82 (strongly forced).
All the WDM distributions are unimo-
dal and symmetrical about the mean
direction with no energy at 180 to

the mean direction. The MLM distributions are also unimodal in the well-developed case (run 62), but
bimodal above 1:4fp in the strongly forced case (run 82). In both cases, the MLM indicates significant energy
at 180� to the mean direction at and above 2fp in the well-developed case, and above 1:2fp in the strongly
forced case. The MEM distributions are frequently bimodal but not consistently so; switching between 1
mode and 2 as the frequency increases. Most surprisingly the peak frequency in the strongly forced case
(run 82—Figure 4) is strongly and asymmetrically bimodal.

In many applications, the estimate of mean direction is even more important than the directional spread.
In Figure 5, we examine the directional estimates from the three methods for a moderately developed
case (run 189) with strong winds from the east giving a fetch of about 300 km. fp is small (0:125 Hz) and
the range of f=fp resolved is large: 0:5 – 13:5. The WDM estimates smoothly vary with advancing fre-
quency, culminating in the wind direction at the shortest waves (55 cm wavelength). The MLM and MEM
estimates are noisy and the shortest waves (78 and 55 cm) are 50 and 70 away from the wind direction
in the MLM estimates.

Figures 6, 7, and 8 show the direc-
tional spreads for WDM, MLM, and
MEM, respectively. The 12 panels
cover a wide frequency range from
f=fp50:707 to 9:51 and demonstrate
the fidelity of the methods over a
wide range (order 105) of spectral
amplitudes. WDM consistently yields
symmetrical unimodal spreads that
conform to a sech2 b h2h0ð Þð Þ shape.
Whereas MLM and MEM are often
bimodal or trimodal and, except near
the frequency peak, are not symmet-
ric. Symmetry about the mean direc-
tion is expected in a steady wind.

4.2. Frequency-Direction Spectra
From Computed-Generated Waves
Cartesian wave number spectra were
taken from the model and inverse

Figure 9. Mean directions (run 21 —cos2h input spectrum).

Figure 10. Degree of spreading via downwave/crosswave slope ratio (run
161 —cos16h input spectrum).
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Fourier transformed (IFFT2) to obtain a
rectangular array of surface elevations
at a given time. 240 of these spectra,
separated in time by 4:5 s, were aver-
aged to yield mean wave number spec-
tra. These were then transformed to
polar frequency-direction spectra using
the theoretical linear dispersion rela-
tion. These spectra are labeled FFT2 as
they are identical with the spectra that
would be obtained from an FFT2 analy-
sis of elevations on the entire grid. The
time series, at four points in the center
of the array on a square of side 19:5 m,
were used to obtain down/crosswave
slopes and elevations for input to the
WDM, MLM, and MEM methods of esti-
mating frequency-direction spectra.

Figure 11. RMS angular spread (run 161 —cos16h input spectrum).

Figure 12. Comparative spreading for run 161 —cos16h input spectrum at various frequencies with respect to the peak.
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The mean directions for the cos2h input spectrum are shown in Figure 9. Above 0:2fp WDM directions are
within a few degrees of downtank (180

�
); while MLM and MEM are similar in the energy containing region

but widely scattered outside of it as in Figure 5 for the field data. In Figure 10, we examine the directional
spreading of the narrow (cos16h) input spectrum through the ratio of downslope to cross-slope standard
deviations, rx=ry . The actual ratio determined from the time series of slopes (black squares) has a pro-
nounced peak at fp and another even higher peak at 2:8fp. WDM, MEM, and MLM are broader throughout
in order of increasing broadness. WDM, having a consistently unimodal shape, is easily adjusted, as
described above, to yield WDMcorr (black asterisks). The spectra taken from the model wave number spectra
(FFT2; red diamonds) are also too broad except between 1:4fp and 2fp. This is due to the poor directional
resolution of the Cartesian wave number spectra, which is proportional to f 20:5 and is compared with the
root-mean-square angular spreads of the WDM and FFT2 methods in Figure 11. Here WDMcorr, having been
adjusted to yield the observed downslope/cross-slope ratio, indicates the actual RMS spreads (black). The
resolution of the FFT2 spectra (dashed green line) is adequate only between 1:4fp and 2fp, where FFT2 and
WDMcorr agree. Elsewhere the actual spreads are much smaller than the resolution—leading to broadening
of the FFT2 spectra.

Figure 13. Comparative spreading for run 21 —cos2h input spectrum at various frequencies with respect to the peak.
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All these features—shifting mean direc-
tions (MLM, MEM), overbroadening
(MLM), underbroadening (MEM), shape
similarity (WDM and FFT2), resolution-
limited convergence (WDMcorr and
FFT2)—are illustrated graphically in Fig-
ures 12 and 13 for cos16h and cos2h;
respectively. The WDM also yields the
wave number-directional spectrum. A
comparison of the omnidirectional
wave number spectrum with FFT2, for
the cos16h input spectrum, is shown in
Figure 14. The WDM measures wave
number, frequency, direction, and
amplitude of the waves passing
through the array. This allows us to
examine various instantaneous and
average properties of the wavefield. In
Figure 15, the dispersion relation is
revealed through contours of RMS slope

on axes of wave number and encounter frequency. The peak (0:1 Hz) lies on the linear dispersion curve, while
higher frequencies lie between the linear dispersion curve and the dispersion of the second bound
harmonics.

5. Summary

The mean directions and directional spreads with frequency are compared for the three methods of esti-
mating frequency-direction spectra: Maximum Likelihood Method (MLM), Maximum Entropy Method
(MEM), and Wavelet Directional Method (WDM). Both wind-generated waves and modeled irrotational
waves are tested. In the latter case, wave number-direction spectra are obtained through two-dimensional
Fourier transforms of the array of modeled surface elevations. The wave number-direction spectra are trans-
formed to frequency-direction spectra using the linear theoretical dispersion relation. These frequency-
direction spectra (FFT2), within the directional resolution of the model grid, are a standard against which to
compare MLM, MEM, and WDM.

The standard methods (MLM and
MEM) are too broad (MLM) or too
narrow (MEM) and show order 5
degree variability in the peak direction.
They are generally unimodal in direc-
tion, but are sometimes bimodal (often
asymmetric) or trimodal. The
frequency-direction spectra of wind-
generated seas are consistently unimo-
dal and symmetric about the mean
direction [Donelan et al., 1985] and the
WDM, which correctly mirrors the
spreading shape, reflects this. The
WDM is generally a little narrow, but
that is easily corrected with the ratio of
downslope to cross slope.

The Maximum Likelihood Method and
the Maximum Entropy Method
require stationarity and yield only the

Figure 14. Comparison of wave number spectra from FFT2 and WDM methods
(run 161 —cos16h).

Figure 15. Contours of local slope reveal the dispersion relation via WDM (run
161 —cos16h).
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frequency-direction spectra. The Wavelet Directional Method yields the frequency-direction spectra, wave
number-direction spectra, and nonstationary (event) analyses of various wave and group properties. It prop-
erly belongs in the toolbox of all wave experimentalists.
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