
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 88, NO. C7, PAGES 4381-4392, MAY 20, 1983 

The Sampling Variability of Estimates of Spectra of 
Wind-Generated Gravity Waves 

MARK DONELAN 

National Water Research Institute, Canada Centre for Inland Waters, Burlington, Ontario, Canada L7R 4A6 

WILLARD J. PIERSON 

CUNY Institute of Marine and Atmospheric Sciences, City College of New York, New York, 10031 

The sampling variability of spectra of wind-generated waves is tested against the predictions of the 
theory of waves as a stationary random quasi-Gaussian process. Both laboratory data, in which 
stationarity was prescribed, and field data, in which the external conditions were remarkably steady, 
were treated in the same way. It is demonstrated that the theory of stationary Gaussian processes 
provides accurate estimates of the sampling variability. For a record length of 17 min, commonly used 
in wave monitoring at sea, the uncertainties in the significant height and peak frequency estimates are 
approximately _+ 12% and _+5% respectively at the 90% confidence level. Furthermore, the height of 
the peak of the spectrum is generally overestimated. 

1. INTRODUCTION 

The study of waves in a wind-water tunnel has both 
advantages and disadvantages compared to the study of 
waves on the ocean. Disadvantages include the inability to 
model mesoscale and boundary layer aspects of atmospheric 
turbulence including lateral variations in the eddy structure 
of the winds. The wide range of the dimensions of the 
various wind-water tunnels that have been used can cause 

problems in scaling from one wind-water tunnel to another, 
much less from a wind-water tunnel to the free atmosphere 
over the ocean. Aspects of these difficulties can be found in 
the papers by Resch and Selva [1978], Wu [1979], Pierson 
[1980], Wu [1980], and Mitsuyasu et al. [1978] as examples. 

A major advantage of a wind-water tunnel is the ability to 
keep conditions constant for a long enough time to obtain 
time series that provide relatively stable statistical estimates. 
It is possible to control and understand the effects of 
sampling variability in a wind-water tunnel, whereas in 
nature the winds and conditions of atmospheric stability 
vary as they will. The effects of actual variation of waves are 
mixed up with sampling variability effects in ways that are 
difficult to separate. 

Techniques for the study of wave data by means of 
spectral analyses have been available since the work of 
Tukey [1949] as applied to waves by Pierson and Marks 
[1952]. The model of waves as a stationary random quasi- 
Gaussian process has been available for almost 30 years 
[Neumann and Pierson, 1966]. This method of analysis, as 
also given by Blackman and Tukey [1958], and its successor, 
the fast Fourier transform [Cooley and Tukey, 1965; Cooley 
et al., 1967], predicts certain statistical and probabilistic 
properties of both the wave time histories and the spectra 
estimated from these time histories. To our knowledge, 
these probabilistic and statistical properties of wave time 
histories and the spectra estimated therefrom have not been 
fully verified. The theory has been more or less either 
accepted, or perhaps ignored, with the calculation of a 
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spectrum treated as an end in itself and not as an aid for the 
understanding of the variability of the waves. 

As an example, Pierson [1977] has raised objections to the 
current technique of scaling spectra according to film, 
where fm is the frequency of the spectral peak. The frequen- 
cies of the spectral peaks are randomly varying quantities as 
are the spectral estimates and the significant wave heights 
computed therefrom. 

The purposes of this paper are to verify the sampling 
variability effects that are present in spectral estimates 
computed from wave time histories and to suggest some of 
the difficulties that can result when spectra are scaled 
according to f/fm in parameterizing these spectra. 

To do this, we draw on two sets of wave data: one from a 
controlled laboratory experiment and the other from a fixed 
tower in Lake Ontario. Peak periods and significant heights 
from these two experiments differ by 1 and 2 orders of 
magnitude, respectively. Steady wind and fetch conditions 
were imposed on the laboratory experiment and gratefully 
accepted in the field observations. While we cannot claim 
laboratory steadiness in the natural wind, it will be seen that 
any unsteadiness in the wave field is buried in the sampling 
variability. 

2. CONDITIONS OF THE EXPERIMENTS 

The laboratory experiment was performed in the wind- 
wave tank at the Canada Centre for Inland Waters (CCIW), 
and the field observations were obtained from a tower in 

water of 12 m depth. 
The wind-wave tank is 80 m long and 4.6 m wide. During 

the experiment, the water depth was 1.2 m and the air space 
above the still water level was 1.8 m high. The waves were 
measured at a fetch of 49.7 m. The wind at a height of 1.0 m 
above the still water level was 7.7 m/s. The friction velocity 
from previous measurements under the same conditions was 
0.34 m/s, which corresponds to a wind at 10 m of 9.7 m/s. 
The wind speed and fetch were constant throughout the 
experiment, and the stability as indicated by the bulk Rich- 
ardson number [Donelan et al., 1974] was neutral. 

The waves were recorded by means of a capacitance wire 
(1.1 mm diameter) and sampled every 0.1667 s by an A to D 
convertor with quantization steps of 0.07 mm. The Nyquist 
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Fig. 1. Wind and wave-related parameters measured on the 
CCIW tower during the storm of January 10, 1977. The wave data 
analyzed in this paper were taken from the period enclosed by the 
vertical lines. 

0.625 Hz. Eight sets of 1024 points each were obtained for 
further analysis. 

Throughout the paper we present results from both field 
and laboratory data. In order to keep them in close juxtapo- 
sition, we retain the same figure and table numbers with the 
additional designation (field) or (laboratory) in the caption. 
In the text the numerical results from the controlled (labora- 
tory) experiment are discussed directly with the equivalent 
field results in parentheses. 

3. BRIEF REVIEW OF THEORY 

An ocean wave time history consisting of N(= 2 n) points 
can be represented by the series of numbers in 1. 

r/(0), ,/(At), r/(2At),... r/(pAt),... r/((N- 1)At) (1) 

and, in turn, a fast Fourier transform would permit a 
representation as in (2) 

N/ 2 2 rcp q A t 2 rcp q A t 
rl(p/Xt) = • aq cos + bq sin • (2) 

o NAt NAt 

frequency was therefore 3 Hz. Sixteen sets of 1024 points 
were obtained for further analysis. 

Although the laboratory waves were relatively small, 
Froude's law of scaling as used in model ship testing can be 
used to get an idea of the variability of the waves that might 
have occurred at sea. This could be accomplished by scaling 
time by a factor of 10 and height by a factor of 100. The 
frequencies of the wind-water tunnel spectra would be 
divided by 10 and the heights of the waves multiplied by 100. 
A 4 cm significant wave height in the wind-water tunnel 
would correspond to a 4 m significant height at sea. A 
frequency of 1 Hz (a period of 1 s) would correspond to a 
frequency of 0.1 Hz (a period of 10 s) at sea. 

A record of natural wind-generated waves of this size was 
obtained from the CCIW tower 1.1 km offshore at the 

western end of Lake Ontario. Figure 1 is a record of the wind 
speed and direction, significant wave height, and average 
fetch during the storm of January 10, 1977. The fetch shown 
is the equally weighted average for each degree -+ 15 ø on 
either side of the wind direction. The vertical lines enclose 

the section of data in which all four of these parameters were 
quite steady. The wave records to be discussed here were 
obtained from this 2V2 h section. The eight time series 
selected in this study were chosen because the waves were 
high and because the data were expected to most nearly 
approximate the constant conditions in the wind-water tun- 
nel. The variation of these four parameters is indicated by 
the highest and lowest values of their averages taken over 
20-min sections: 

15.7 ms < wind speed < 17.4 m/s 
80 ø < wind direction < 86 ø 

151 km <fetch < 182km 

3.35 m < significant height < 3.70 m 

Wind speed and direction were measured at a height of 
11.6 m above the still water level, and the atmospheric 
boundary layer was slightly unstable (the bulk Richardson 
number was approximately -0.01). The waves were record- 
ed by means of a capacitance wire (4.8 mm diameter) and 
sampled every 0.2 s by an A to D convertor with quantiza- 
tion steps of 1.5 mm. In the following analysis, only every 
fourth sample is used. The Nyquist frequency was therefore 

The value of a0 will typically be zero for a wave record 
without loss of generality, and bN/2 will be zero. There will 
be a total of N values of the a and the b. The frequencies in 
the terms of (2) will range from 0 to 1/(2At), or from 0 to 3 
(0.625) Hz. The Fourier coefficients are unique for each 
wave record, and (2) can be evaluated to reproduce (1) 
exactly. 

The quantity 

Cq 2-- «(aq 2 q- bq 2) (3) 
has a probability density function given approximately by 

f(Cq2)dCq 2 -- (exp(- Cq2/Sq)) d(Cq2/Sq) (4) 
where 

Sq •-- -- S(f) df (5) 
.] q/(NAt) - I/(2NAt) 

for 1 -< q -< (N/2) - 1, and with a slight modification of (5) for 
q - 0 and q = N/2, and where S(f) is the 'true' but unknown 
spectrum of the random process which is assumed to be 
approximately a stationary Gaussian process. (Actually, 
there is a weight function involved in (5) such that the 
operation on the 'true' spectrum is not 'square.') 

Equation (4) is a chi square distribution with two degrees 
of freedom with an unknown parameter, Sq. From (1) and 
(2), the estimate of the variance of the time history being 
analysed is given by (6) 

1 N-I N/2 

vfir =• •0 (•/(pAt))2= • Cq2 (6) I 

which is an estimate of 

var = f• $(f) df (7) 
Given just one time history, say, a 1024 s (17 min, 4 s) 

sample, digitized once per second, the values of Cq 2 must be 
smoothed over frequency as, for example, in 

I q+R 
•q2= • Cs 2 (8) 

2R+ 1 q-R 
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or more generally 

where 

q+R 

•'q2 -. Z •sCs 2 
q-R 

(9) 

q+R 

• •s-1 (10) 
q-R 

so as to obtain a smoother function for the spectral estimates 
by means of the assumption, which may not always be 
correct, that the true spectrum is slowly varying. If the 
spectrum is slowly varying, then the values of Ce 2 will be 
approximately distributed according to a chi square distribu- 
tion with 2(2R + 1) degrees offreedom. Successive estimates 
will not be independent. Those elemental frequency bands 
that are 2R + 1 bands apart will be independent. 

With 16 (8) separate samples, the values of Cek 2 (k = 1 to 
16) could be averaged as in 

1 16 

= -- k• l Cqk 2 (11) •,q2 16 = 
tO obtain an estimate of (5) with 32 degrees of freedom. 

For a chi square distribution with 2 degrees of freedom, it 
can be shown that 

P 0.103 < < 5.99 = 0.90 (12) 
Sq 

and since the value of Cq 2 is known from the FFT, it follows 
that 

P 0.334 <•< 19.42 = 0.90 (13) 
Cq 2 

P(0.334 Ce • < S e < 19.42 Ce 2) = 0.90 (14) 

6iven just one value of Ce •, the value of the spectrum is not 
known to within a factor of 58 at the 90% confidence level. 

For the 16 pooled samples, the estimate of Ce 2 has 32 
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Fig. 2a. (Laboratory) Three examples of the FFT spectra. Each 
spectral estimate has two degrees of freedom. The sample numbers 
are indicated on the figure. 

60]8 

0.08 FREQUENCY (Hz) 0.18 

Fig. 2b. (Field) Three examples of the FFT spectra. Each 
spectral estimate has two degrees of freedom. The sample numbers 
are indicated on the figure. 

degrees of freedom so that 

thus 

p (20.1 < 32 •'t'2 ) < 46.2 - 0.90 
Sv 

P Ct, 2<S t ,< •Ct, 2 = 0.90 
20.1 

or 

(15) 

(16) 

P(0.69 (?t,2 < St, < 1.59 (?t,2) = 0.90 (17) 
The true spectrum is known now to within a factor of 2.3 at 
the 90% confidence level. 

4. FFT's 

Each of the 16 (8) sample records were analysed to obtain 
the FFT's. The values of Cq 2 (Af) -1 = ,•(f) were computed, 
tabulated, and graphed. Three of these graphs are shown in 
Figure 2 for samples 1 (1), 7 (3), and 13 (8), chosen to 
illustrate some of the extreme variability of FFT spectral 
estimates. Only the frequency range from 1 (0.08) to 2 (0.18) 
Hz is graphed. The spectrum above 2.0 (0.18) Hz had quite 
low values. 

Table I gives the numerical values for the FFT spectra of 
the 16 (8) samples for the values somewhere in the general 
neighborhood of the peak of what might be the true but 
unknown spectrum. The individual values vary all the way 
from 0.02 cm 2 s (0.15 m 2 s) to 27.53 cm 2 s (71.59 m 2 s) for the 
80 (40) numbers that are tabulated. 

5. AN AVœVO, Gœ Ovœa yI-Iœ SlXyœœN (EIGI-Iy) S^MPLES 

The 16 (8) sample FFT spectra can be averaged over 
values for each frequency in the FFT's. Those values for 
frequencies in the general vicinity of the peak of the 'true' 
spectrum are also given in Table 1. The 90% fiducial 
confidence intervals based on 32 (16) degrees of freedom 
from (17) are also given. 
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TABLE 1. FFT Spectral estimates in the vicinity of the peak 

q= 245 q=246 q= 247 q=248 q= 249 
f = 1.436 f = 1.441 f = 1.447 f = 1.453 f = 1.459 

•(f) 

Laboratory 
Sample 

1 8.28 1.20 13.13 10.31 0.87 
2 8.70 17.99 5.95 12.65 17.87 
3 10.88 15.70 18.83 9.60 1.14 
4 2.53 0.02 9.92 8.00 6.06 
5 1.27 10.27 3.07 3.63 6.06 
6 1.37 3.46 2.90 12.97 5.00 
7 7.09 18.87 15.12 25.47 5.81 
8 25.42 9.08 2.43 18.93 2.97 
9 5.03 1.09 13.36 7.97 3.68 

10 9.06 0.30 7.42 3.45 7.52 
11 4.24 3.83 2.04 1.15 1.70 
12 0.98 2.61 8.20 11.06 3.31 

13 0.50 27.53 0.14 13.83 4.05 

14 0.28 0.77 5.72 15.83 9.49 
15 5.01 7.27 13.27 14.54 17.63 
16 9.86 6.66 6.44 1.13 24.82 

Average 
C2q/Af 6.28 7.91 8.00 10.66 7.37 
95% 10.01 12.61 12.76 17.00 11.75 

5% 4.35 5.48 5.54 7.39 5.11 

Nine-point filtered 
•ga(f) 7.19 7.28 7.59 7.33 7.02 
95% 8.23 8.34 8.69 8.39 8.04 

5% 6.28 6.36 6.63 6.40 6.13 

q = 89 q = 90 q = 91 q= 92 q= 93 
f= f= f= f= f= 

0.1088 0.1100 0.1112 0.1124 0.1136 

•(f) 
Field 

Sample 
1 17.36 0.94 3.49 20.64 13.40 
2 3.72 38.73 31.53 3.72 23.07 

3 4.19 5.71 0.85 71.59 23.24 
4 27.35 11.50 21.06 30.44 1.79 
5 0.15 23.40 4.40 39.34 24.09 
6 13.20 45.71 32.25 0.54 9.84 
7 19.62 56.36 47.46 22.00 4.41 
8 40.06 15.55 6.62 0.73 5.65 

Average 
C2q/Af 15.71 19.15 18.46 23.63 13.19 
95% 31.57 38.48 37.09 47.48 26.50 

5% 9.55 11.65 11.23 14.37 8.02 

Nine-point filtered 
•ga(f) 17.63 18.80 19.18 17.65 18.50 
95% 21.62 23.05 23.52 21.64 22.68 

5% 14.65 15.63 15.94 14.67 15.38 

The highest and lowest three are underlined. 

A graph of this spectrum is shown in Figure 3. There are 
now no exceptionally low spectral values between 1.2 (0.1) 
and 1.8 (0.14) Hz. The variability from point to point of the 
spectral estimates is still large. This result is not an ensemble 
average, nor has the need for the ergodic hypothesis been 
eliminated. The samples have simply been pooled under the 
assumption of stationarity. 

c.• •o cm2/Hz 0{ .... J••••• - 
1 

FREQUENCY (Hz) 

Fig. 3a. (Laboratory) The average for the 16 FFT spectra. Each 
spectral estimate has 32 degrees of freedom. 

6. SMOOTHING OVER FREQUENCY 

Data from the ocean are rarely obtained for long enough 
time histories to be the equivalent of these 16 laboratory 
samples which each scale to 28 min, 27 s for the ocean, for a 
total sample of 7 h, 35 min. The alternative for a single 
sample is to smooth over frequency as in either of (8) and (9). 

0.08 FREQUENCY (Hz) 0.18 

Fig. 3b. (Field) The average for the eight FFT spectra. Each 
spectral estimate has 16 degrees of freedom. 
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The original spectral analysis pi'ocedures of Tukey [1949] 
and Blackman and Tukey [1958] are effectively various 
versions of (9) for which the •is differ slightly. Also, only 
every Rth value of the spectrum, instead of that which can 
be obtained by means of a running average, is obtained. 

i i i i i i i i 
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0 i r' '1 - i .i i i , , 

1ø t 14 ! i ! i 

FREQUENCY (Hz) 

Fig. 4a. (Laboratory) FFT spectra averaged by a nine-point 
running average. Each spectral estimate has 18 degrees of freedom. 
The dotted line is the smoothed overall average from Figure 5. The 
sample numbers are indicated on the figure. 

3O 7 

008 Q18 

FREQUENCY (Hz) 

Fig. 4b. (Field) FFT spectra a,eraged by a nine-point running 
average. Each spectral estimate has 18 degrees of freedom. The 
dotted line is the smoothed overall averfige from Figure 5. The 
sample numbers are indicated on the figure. 

Each of the 16 (8) sample records was averaged over 
frequency by means of a nine point running average so that if 
the spectrum is slowly varying over frequency, each spectral 
value has 18 degrees of freedom. The successive values are 
not independent so that the graphs of the spectra appear to 
have a certain pseudo-continuity. Every ninth point is inde- 
pendent. 

These 16 (8) frequency smoothed spectra, •a(f), are 
shown in Figure 4. (The circumflex is used throughout the 
paper to emphasize that the quantity is an estimate.) Only 
the frequency range from 1 (0.08) to 2 (0.18) Hz is graphed. 
These Spectra still have multiple maxima. An analysis by 
means of the methods described in Blackman and Tukey 
[1958] for each of these samples might have yielded a value 
at every fourth dot (to be discussed shortly) with about 16 
degrees of freedom such that every other value would be 
nearly independent. Connecting just every fourth value of 
the solid curves in these figures would yield spectra that 
would be deceptively smooth and that would often appear to 
have single maxima. 

7. AN AVERAGE OF THE FREQUENCY SMOOTHED 
ESTIMATES 

The next figure (Figure 5) can be obtained in either of two 
different ways. One is to use the running average of nine as 
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Fig. 5a. (Laboratory) The spectrum of Figure 3 smoothed by a 
nine-point running average. Each spectral estimate has 288 degrees 
offreedom and is within - 12.7 to 14.5% of the 'true' spectrum at the 
90% confidence level. The 90% confidence limits are also shown. 

in (8) on the results of FigUre 3. The other is to average 
frequency by frequency the 16 (8) results obtained by 
applying (8) to each sample; that is to average the spectra in 
Figure 4 so as to obtain a grand average, 2•ga(f), based on a 
nine point running average over frequency and an average of 
all of the 16 (8) spectra. The result is still only an estimate of 
the 'true' spectrum, S(œ). Either way, the result is Figure 5, 
which is beginning to take on the properties that one might 
expect for the wave spectrum at this fetch and wind speed. A 
peak is located somewhere in the general vicinity of 1.45 
(0.113) Hz. 

Each spectral estimate has 18 x 16 (8) or 9 x 32 (16), or 
288 (144) degrees of freedom (D). The 90% confidence 
interval for this large number of degrees of freedom is given 
[Blackman and Tukey, 1958, Table II] by 

P(a•g,(f) < S(f) < ]3•ga(f)) = 0.90 (18) 
where 

and 

O• --' 10 -1/Dl/: (19) 

• --' 10+l/D 1/2 
so that 

P(0.873 •e,(f) < S(f) < 1.145 •ga(f)) = 0.90 (20) 
These a and/3 differ from Blackman and Tukey in that their 
(D - 1) 1/2 has been replaced by D 1/2, not significantly 
altering the level of approximation for D > 10. The spectrum 
is known to within about +-14.5 (21.1) % or a range of 27 
(39) % at the 90% confidence level. These 90% confidence 
intervals are also given in Figure 5 and Table 1. 

At both high and low frequencies a smooth curve between 
the two confidence intervals can be drawn. The exact 

location of the peak of the 'true' spectrum is an area of 
uncertainty even for 288 (144) degrees of freedom. The peak 
may lie somewhere between 1.42 (0.11) and 1.52 (0.12) Hz. 

The dots on the spectra for the 16 (8) samples (Figure 4) 
are the values of this function at each of the frequencies for 
which it was computed (i.e., Figure 5 or •,,,(f)). The spectra 
for the individual samples fluctuate above and below the 
spectra for •qx,,(f). Sample spectrum number 12 (7) is domi- 
nantly above •qx,,,(f), and sample spectrum number 10 (4) is 
dominantly below. Instead of each of the 16 (8) sample 
spectra oscillating about the spectrum for the total sample at 
a fairly rapid rate, the sample spectra lie consistently above 
or below the spectrum of the total sample over substantial 
frequency intervals. 

Table 1 also gives the values of •ga(f) and the 90% 
confidence intervals for five spectral bands somewhere near 
the peak of the sample spectrum. For the 80 (40) illustrative 
values for the sample spectra, only 8 (4) fall within the 
confidence intervals for the appropriate frequency. The need 

for a large sample for the study of waves is demonstrated by 
the numbers in Table 1 and the graphs that have been shown. 

8. VERIFICATION OF THE CHI SQUARE DISTRIBUTION 

If Sq were known in (4), the random variable x = Cq2/Xq 
would be distributed according to exp (- x) for x greater than 
zero. The quantity, 2•ga(f) = •ga(q/NAt) can be used as an 
estimate of the true value and the hypothesis tested that the 
resulting values of x will have the exponential distribution. 

This was done for values of q ranging from 196 (74) to 324 
(170), or for frequencies from 1.148 (0.090) to 1.898 (0.208) 
Hz, for which •ga(f) was greater than 7% of •ga(fm). The 
result was 2064 (776) values of x. 

The histogram of these 2064 (776) values of x for a class 
interval 0.05 wide is shown in Figures 6a and 6b over the 
range from zero io four normalized to 1 at x - 0. Also shown 
is the theoretical curve, exp (- x). The sampling fluctuations 
about the theoretical curve are to be expected. Although not 
actually plotted the data continue past x - 4, and the last 
observation is in the range between 4.95 and 5.00. For this 
class interval the expected number is 0.44. The last four 
class intervals with data contain two observations so that, 
even for the highest values of x for this size sample, the 
distribution is fitted well. 

This particular probability density function has the unique 
property that a variant of its cumulative density function is 
the same function as the probability density function as in 
(21) 

F(x) = f• exp (- 0 d• = exp (-x) (21) 
for0 < x < o•. 

A graph of F(x) is shown in Figures 6c and 6d. The left- 
hand part of each horizontal line represents the ratio of the 
number of points having values of x in excess of that value to 
the total number of points in the sample. This ratio, except 
for sampling variability, should equal exp (-x) as shown by 
the dashed curve. The curve for the 2064 (776) sample values 
agrees very well with the theory. 

The average value of all of the sample values of x was 
0.9931 (0.9776) compared to an expected value of exactly 
one as in (22). 

•x exp (-x) dx = 1 (22) 
The spectra of the 16 (8) samples satisfy the hypothesis 

that wind-generated waves are closely associated with the 
properties of stationary Gaussian processes. 

•ga(f) 1 
m•/Hz 1 

0'! 

0.08 FREQUENCY {Hz} OJ8 

Fig. 5b. (Field) The spectrum of Figure 3 smoothed by a nine- 
point running average. Each spectral estimate has 144 degrees of 
freedom and is within -17.5 to 21.1% of the 'true' spectrum at the 
90% confidence level. The 90% confidence limits are also shown. 
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Fig. 6a. (Laboratory) Histogram of the ratio, x, of raw FFT 
spectral estimates (Figure 2) to the smoothed average spectral 
estimates (Figure 5). The class interval is 0.05, and the histogram 
has been normalized by its value in the first interval (0-0.05). The 
dashed line is exp (-x). 

9. SAMPLING VARIABILITY OF THE SPECTRAL PEAK 

The frequency of the spectral peak and the value of the 
spectral peak vary randomly from one of the 16 (8) subsam- 
ples to the other as shown in Figure 4. Table 2 gives the 
sample number, the frequency of the spectral peak as shown 
in Figure 4, the harmonic number, the value of the spectral 
estimate and its 90% confidence interval for that peak, and 
the value of the average of all spectra for that frequency as in 
Figure 5. 

The confidence intervals on the spectral estimates for the 
peaks of the 16 (8) samples enclose the values'of •e,(f) for 11 
(8) out of the 16 (8) samples. If •g,(f) were, indeed, the 'true' 
spectrum, the chance that all 16 (8) would enclose the true 
value is 0.185 (0.430), that 15 would and one would not is 
0.329 and that 13 would and three would not is 0.142, that 11 
would and five would not is 0.014. 

Picking the spectral peak for a spectral estimate from a 
sample with the degrees of freedom of one of the 16 (8) 
samples being studied in this paper and then scaling spectral 
properties according to f/fm guarantees that the value of the 
spectral peak will be overestimated when many spectra 
fitted in this way are averaged. For the 16 (8) samples, all but 
2 (2) are greater than the corresponding value for •,(f). 
There is almost a 50% chance that an estimate picked at 
random will be greater or less than the true value with 18 
degrees of freedom. (For the chi square distribution the 
median is slightly less than the expected value.) There is 
only a 0.21 (14.4)% chance that values picked at random 

1.0 

00'•"•'•'---'•- :• 3 4 

Fig. 6c. (Laboratory) A comparison of the inverse cumulative 
density for the normalized FFT random variables and the theoretical 
curve (dashed). The left inner corner of each step should be 
compared to the dashed curve for exp (-x). 

would be such that 14 (6) out of 16 (8) or more would be 
greater than the 'true' value. The bias in the procedure of 
scaling according to the spectral peak is shown by the 
disparity between the fact that 14/16 (6/8) of the values of the 
peaks of individual sample spectra lie above •g•(œ), whereas 
the chance at a particular frequency of being high so often is 
only 0.21 (14.4) %. Figure 7 illustrates the variability of the 
estimates of the spectral peak. 

A given estimated spectrum •(f) will have a peak at some 
frequency, fl. Other estimated spectra from the same sta- 
tionary random process will have spectral estimates at fl 
that are not necessarily their peak values and that will more 
often than not be lower than •l(fl). If the peak spectral 
values •,(œ) in Table 2 are averaged and if the frequencies 
associated with these values are averaged, the result would 

_ - 

be S(fm) as given in Table 2 and as indicated (asterisk) on 
Figure 7. This value is appreciably larger than and at a 
different frequency from '-•ga(fm) our best estimate of the 
'true' spectral peak S(fm). 

The ratio of •a(fm) to the value of •e,(f) at the same 
frequency is also given in Table 2. The average of these 
ratios is 1.40 (1.21). Thus, picking the spectral peak and 
scaling to f/fm biases the spectra toward values that are too 

ß 

high. 
The frequency of the spectral peak varies from harmonic 

231 (88), a frequency of 1.354 (0.1075) Hz to harmonic 256 
(97), a frequency of 1.500 (0.1185). This is a Variation of 
more than 10% in frequency. Even for the total sample, the 
true spectral peak could fall anywhere between harmonic 
242 (90) and 259 (98) at the 90% confidence level (see Figure 
5). 

1.0 

\ 

1 2 3 

Fig. 6b. (Field) Histogram of the ratio, x, of raw FFT spectral 
estimates (Figure 2) to the smoothed average spectral estimates 
(Figure 5). The class interval is 0.05, and the histogram has been 
normalized by its value in the first interval (0-0.05). The dashed line 
is exp (-x). 

1.0 
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Fig. 6d. (Field) A comparison of the inverse cumulative density 
for the normalized FFT random variables and the theoretical curve 

(dashed). The left inner corner of each step should be compared to 
the dashed curve for exp (-x). 
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TABLE 2. Sampling Variability of the Spectral Peak 

Lower* Upper* Y/N (R) 
f (Hz) q (5% c.l.) •a(f)* (95% c.l.) gg,,(f)* H/L 

Laboratory 
Sample 

1 1.453 248 5.27 8.45 16.20 7.33 Y 1.15 H 
2 1.477 252 7.99 12.81 24.56 7.03 N 1.82 H 
3 1.430 244 7.16 11.48 22.01 6.92 N 1.66 H 
4 1.471 251 4.10 6.57 12.59 7.16 Y 0.92 L 
5 1.482 253 5.54 8.88 17.02 6.75 Y 1.32 H 
6 1.441 246 4.75 7.62 14.61 7.28 Y 1.05 H 
7 1.436 245 7.70 12.35 23.67 7.19 N 1.72 H 
8 1.430 244 6.02 9.66 18.52 6.92 Y 1.40 H 
9 1.471 251 6.36 10.20 19.55 7.16 Y 1.42 H 

10 1.459 249 3.90 6.26 12.00 7.02 Y 0.89 L 
11 1.488 254 5.17 8.29 15.83 6.60 Y 1.26 H 
12 1.500 256 7.96 12.77 24.48 6.07 N 2.10 H 
13 1.430 244 4.84 7.76 14.88 6.92 Y 1.12 H 
14 1.354 231 4.69 7.52 14.42 4.60 N 1.63 H 
15 1.436 245 6.84 10.97 21.03 7.19 Y 1.53 H 
16 1.447 247 6.54 10.49 20.11 7.59 Y 1.38 H 

_Average 1.40 _ _ 

frn 1.450 S(fm) 9.51 
•g,,(fm) 1.447 247 6.63 7.59 8.69 7.59 

Field 

Sample 
1 0.1185 97 9.26 14.86 28.49 13.94 Y 1.07 H 
2 0.1149 94 14.89 23.88 45.78 19.06 Y 1.25 H 
3 0.1173 96 13.93 22.35 42.84 15.78 Y 1.42 H 
4 0.1112 91 11.77 18.88 36.19 19.18 Y 0.98 L 
5 0.1100 90 13.11 21.02 40.29 18.80 Y 1.12 H 
6 0.1112 91 15.54 24.92 47.77 19.18 Y 1.30 H 
7 0.1075 88 16.67 26.74 51.26 16.70 Y 1.60 H 
8 ' 0.1136 93 10.42 16.72 32.05 18.50 Y 0.90 L 

_Average 1.205 _ - 

f•m 0.1130 S(fm) 21.17 
Sga(f,,) 0.1112 91 15.94 19.18 23.52 19.18 

* Laboratory in cm2/Hz; field in m2/Hz. 
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Fig. 7a. (Laboratory) The values of the smoothed average spectrum and its 90% confidence interval (Figure 5) with 
the peak values of the smoothed individual spect•ra (Figure 4). The average of the peaks of the 16 individual spectra _ - 

S(fm) is indicated by an asterisk. 
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Fig. 7b. (Field) The values of the smoothed average spectrum 
and its 90% confidence interval (Figure 5) with the peak values of 
the smoothed individual spectra_(_Figure 4). The average of the peaks 
of the eight individual spectra S(frn) is indicated by an asterisk. 

Thus, the predictions of Pierson [1977], that the spectral 
peak is an overestimate of the true spectral shape near the 
peak and that the frequency of the spectral peak varies 
randomly about a value estimated by combining the entire 
data sample, are verified. 

Portions of a study by Gl•nther [1981] also demonstrate 
exactly the same features. Gl•nther [1981] assumed a JONS- 
WAP [Hasselmann et al., 1973, 1976] spectral form defined 
by the five JONSWAP parameters with the frequency of the 
spectral peak frn normalized to a dimensionless form fm* = 
fro/A f, where Af is the spectral resolution. For that spectral 
resolution, each spectral estimate was assumed to have 30 
degrees of freedom. A set of spectra was generated by 
Monte Carlo techniques such that each band had a chi 
square distribution with an expected value defined by the 
chosen JONSWAP spectral shape. 

This set of Monte Carloed spectra was then used to 
recover the five JONSWAP spectral parameters. For exam- 
ple, 7 was computed from each of the simulated spectra, and 
the average value of 7 was obtained. The values of fro* were 
found and averaged to produce the average value of fro*, and 
so on. The parallelism to our present study is clear. Giinther 
[1981] also derived the theoretical probability density func- 
tions for the distributions of the JONSWAP parameters and 
compared the statistics of the Monte Carlo simulations with 
the derived theory. 

The theoretical analysis and the Monte Carlo simulations 
both demonstrated that recovered values of 7 were always 

significantly larger than the input values of 7. The results are 
summarized in Table 3 for three spectral shapes, with 
spectrum III having the form of the fully developed sea given 
by Pierson and Moskowitz [1964]. Each of the three spectra 
simulated by Monte Carlo methods had the input parameters 
as listed. The random values of the frequency of the spectral 
peak averaged nearly to the input value of the frequency of 
the spectral peak. The average value of the values of the 
spectrum at the randomly varying frequencies of the spectral 
peaks did not yield the input value of 7. In fact, as Table 3 
shows, the output values of 7 were 9% and 22% too high for 
spectrum I, 28% and 40% too high for spectrum II, and 46% 
and 50% too high for spectrum III depending on whether the 
theory or the Monte Carlo results were used. Also tra and trb 
would result for the output spectrum for input spectrum III 
but, by definition, they do not exist for the input spectrum. 

The three spectral shapes in Table 3 correspond to a 
sharply peaked spectrum (I), a fairly sharply peaked spec- 
trum (II), and the broadly peaked spectrum of Pierson and 
Moskowitz (III). The variances and standard deviations of 
the JONSWAP parameters were also found. For the Monte 
Carlo simulations for spectra I, II, and III, fro* equaled 16.9 
-+ 0.37, 48.9 _+ 1.28, and 26.0 -+ 1.83 for 2.2, 2.6, and 7.1% 
variability of the location of the spectral peak, respectively. 
Similarly, the values of 7 were 4.02 -+ 0.91, 4.61 _+ 0.78, and 
1.50 _+ 0.54 for 23, 17, and 36% variability, respectively. 

Had Giinther averaged all of the spectra for a given Monte 
Carlo simulation, the recovered parameters would have been 
very close to the input parameters. Thus, the procedure for 
fitting parameters to individual estimated spectra (which are 
all that are ever available) does not converge to the true 
parameters of the spectrum and does not recover these 
parameters. The error, of course, decreases as the number of 
degrees of freedom of the individual spectral estimates is 
increased. 

10. TOTAL DEGREES OF FREEDOM 

A sample from a normal distribution with a zero mean of 
16,384 (8192) values (16(8) x 1024) that were independent in 
the probability sense would yield a chi square distributed 
estimate of the variance with 16,384 (8192) degrees of 
freedom. The confidence interval on the estimate of the 

variance would be _+ 1.8 (2.6)%. 
The values used in the computation of the variance of an 

ocean wave record as in (6) are not independent. The areas 
under the individual sample spectra are random variables, 
and the area under the spectrum in Figure 5 is also a random 
variable. The distribution of these estimates of the variance 

TABLE 3. Summary of Some of the Results of Giinther [1981] 

Parameter 

Spectrum I Spectrum II Spectrum III 

Input 

Output Output Output 

Theory$ MC? Input Theory$ MC? Input Theory$ MC? 

f*rn 16.6 
a 1.00 

7 3.30 
tra 0.07 
trb 0.09 

16.7 16.9 48.6 48.9 48.9 
1.00 0.88 1.00 0.988 0.953 
3.60 4.02 3.30 4.21 4.61 
0.0706 0.0802 0.07 0.0551 0.0587 
0.0793 0.0843 0.09 0.0666 0.0725 

25.60 
1.00 

1.00 

26.1 26.00 
1.02 0.98 
1.46 1.50 

NOT FOUND 
NOT FOUND 

* Theoretical results. 

? Monte Carlo results. 
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Fig. 8a. (Laboratory) Sampling variability of the significant wave height. The dashed line represents the estimate 
from the complete data set. 

of a time history is not known. However, it can be approxi- 
mated. 

It must be assumed that the spectrum is a slowly varying 
function of frequency. This yields the various frequency 
smoothed spectra in Figure 4. Each independent estimate 
(every ninth value) then has a chi square distribution with 
the degrees of freedom given by twice the number of values 
of Cq 2 that are used (in the smoothing), say, D and an 
unknown parameter. If the unknown parameter does not 
change, as for the average over the 16 (8) sample spectra to 
get •qga(q/NAt), the chi square distributions compound and 
18 degrees of freedom become 288 (144) degrees of freedom 
over a relatively narrow frequency band of nine elemental 
estimates. 

Since the spectrum does vary from one nine element 
frequency band to another nine element band, the unknown 
parameters vary from part one of the spectrum to another, 
and the chi square estimates cannot be compounded. The 
moment generating functions (mgf's) for each independent 
band can be found. They will correspond to Chi Square 
mgf's, each with a different unknown parameter (the integral 
of the true spectrum over that band). The product of these 
different mgf's is then the mgf of the probability density 
function of the estimated variance. This product of moment 
generating functions cannot be inverted to obtain an analyti- 
cal form for the desired probability density function. 

However, this product of mgf's can be approximated by 
the mgf of a chi square distribution with a newly chosen 
unknown parameter and a different number for the total 

H•3 3- 
(m) 

2- 

1. 

•-54.6 m•ns _1 GAP OF •-54.6m•ns•[ rl 30mns 

SAMPLE NUMBER 

Fig. 8b. (Field) Sampling variability of the significant wave height. 
The dashed line represents the estimate from the complete data set. 

degrees of freedom. This approximation for the total degrees 
of freedom is given by (23) 

(•S(f r)) 2 
TDF • D (23) 

•(S(f r)) 2 

For large values of the TDF, an additional fact makes the 
computation of the 90% confidence intervals quite simple. 
The confidence interval for the estimate of the variance is 

given by (24) 

P(10 -(TDF)-'/2 vfir < var < 10 +(TDF)-'/2 vfir) = 0.90 (24) 

TABLE 4. Estimates of Significant Height 

Lower /•/3 Upper Within 
TDF (5% c.l.) (cm) (95% c.l.) c.l. 

Laboratory 
Sample 

1 172 5.65 6.17 6.74 yes 
2 128 5.83 6.46 7.15 yes 
3 143 5.74 6.32 6.96 yes 
4 197 5.38 5.84 6.34 yes 
5 159 5.62 6.16 6.75 yes 
6 181 5.78 6.30 6.86 yes 
7 129 5.90 6.53 7.23 yes 
8 166 5.87 6.42 7.02 yes 
9 147 5.91 6.50 7.15 yes 

10 195 5.22 5.67 6.16 low 

11 162 5.46 5.98 6.55 yes 
12 138 5.89 6.50 7.17 yes 
13 172 5.25 5.73 6.26 yes 
14 157 5.40 5.92 6.49 yes 
15 131 5.33 5.89 6.51 yes 
16 153 5.98 6.56 7.20 yes 

Sum 2530 
Total 2840 6.06 6.19 6.33 

Field 

Sample 
1 101 3.04 3.41 3.82 yes 
2 72 3.10 3.55 4.07 yes 
3 84 3.12 3.54 4.01 yes 
4 78 3.01 3.43 3.91 yes 
5 80 3.20 3.64 4.14 yes 
6 60 3.02 3.50 4.06 yes 
7 59 3.06 3.56 4.14 yes 
8 93 3.02 3.40 3.83 yes 

Sum 627 
Total 649 3.37 3.53 3.69 
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The significant wave height can be computed from (25) 

/-•rl/3 = 4(vfir) 1/2 (25) 

The confidence interval on the significant wave height is 
given by (26) 

P((lo-(TDF)-V2)l/2t•rl/3 < H1/3 < (10+(TDF)-V2)I/2/-•I/3)= 0.90 
(26) 

The significant wave heights for each of the 16 (8) samples 
and for the total sample are given in Table 4 and graphed 
versus sample number in Figure 8. The values for the total 
degrees of freedom for each sample were computed by 
means of (23) by starting with the estimate at the spectral 
peak and by using every ninth value toward both lower and 
higher frequencies in the range 0.76 fm < f < 1.4 fm. 
Spectral values outside of this range had a negligible effect 
on (23). From these estimates of the total degrees of free- 
dom, the confidence intervals on the estimated significant 
wave heights were found for each sample and for the total 
sample. 

The sum of the TDF's for the 16 (8) samples does not equal 
the TDF for the total sample. It is 89 (97)% of that value. 
This discrepancy is not too serious. Large changes in the 
total degrees of freedom are needed to obtain appreciably 
different ranges for the confidence intervals. 

For the 16 (8) samples, the significant wave height is 
essentially unknown to within -+0.6 cm (0.5 m) out of about 
6.2 cm (3.5 m) for an uncertainty of _+ 10 (14)%. The largest 
value for the upper confidence limit is 7.23 cm (4.14 m), and 
the smallest value for the lower confidence limit is 5.22 cm 

(3.01 m) for a range of 2.01 cm (1.13 m), or 32 (32)% of the 
significant height of 6.19 cm (3.53 m) from the total sample. 

The last column in Table 4 shows whether or not the 

confidence interval on the significant height for each sample 
encloses the significant height for the total sample. 

If 6.19 cm (3.53 m) were the 'true' value of the significant 
wave height, then each of the 16 (8) intervals has an a priori 
probability of 0.90 of enclosing this 'true' value. Fifteen 
(eight) of the 16 (8) do enclose the assumed 'true' value. The 
probability of this happening is 0.51 (0.43) for 15 or more 
(and for all 8). 

Figure 8 illustrates these features in another way. The 
confidence intervals for all but 1 (0) of the 16 (8) estimates 
enclose the overall average value represented by a dashed 
line. 

The main conclusions are, however, quite simple. The 
1024 values for each sample are worth only about 160 (78) 
independent values for the estimation of the variance. The 
16,384 (8192) values for the total sample are worth only 2840 
(649) independent observations for the estimation of the 
variance. 

11. EFFECTS OF DECREASED RESOLUTION 

Smoothing an FFT by a running average serves to empha- 
size the effects of sampling variability because of the irregu- 

õ4(f)10{ 
cm•"'Hz 0 { ' , , , ,•, 

I FREQUENCY (Hz) 2 

Fig. 9a. (Laboratory) Every fourth harmonic of the nine-point 
smoothed spectrum (Figure 4) of sample 1. 

0.08 FREQUENCY (Hz) 0.•8 

Fig. 9b. (Field) Every fourth'harmonic of the nine-point smoothed 
spectrum (Figure 4) of sample 5. 

larities that result in graphs such as those in Figure 4. Many 
wave records have been analyzed by means of the methods 
described in Tukey [1949] and Blackman and Tukey [1958]. 

These analysis procedures yielded far fewer values along 
the frequency axis, and therefore gave the impression that 
the spectra were much smoother. 

As an example, the values of •,(f) for sample 1 (5) have 
been plotted for every fourth harmonic between 171 (66) and 
339 (146) in Figure 9 to be compared with the corresponding 
complete plot in Figure 4. 

Every other point in this figure is nearly independent as 
they would be in a Tukey-type analysis. Spectra in this form 
may compound the problem of the effects of sampling 
variability by masking it. 

12. CONCLUSIONS 

The effects of sampling variability in the estimation of 
spectra of wind-generated waves have been studied by 
means of 16 samples obtained in a wind-water tunnel at a 
constant wind and fetch and eight samples from Lake 
Ontario at virtually constant wind and fetch. The effects of 
sampling variability are as predicted by the theory of station- 
ary Gaussian processes. They are appreciable for record 
lengths comparable to a 17-min record obtained at sea. 

In particular, the significant wave height is not known to 
within _ 10-15% of an estimated value, and the spectral peak 
is typically an overestimate of a value that would be obtained 
from a larger sample. Also, the frequency of the peak is not 
known to within a range of -5%, or so, of its true value. 
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