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Abstract. The present state of research into and un- 
derstanding of shear waves is appraised. In this paper 
these motions, which result from an instability of an 
alongshore, wave-driven current, are described, their 
theoretical explanation is recounted, and the history of 
their discovery is related. The various investigations into 
their genesis, which attempted to develop an under- 

standing of when and why they occur, are summarized, 
and more recent research into their finite amplitude 
development is discussed, focusing on the understanding 
gained. Attention is also given to observations of shear 
waves made in the field and attempts to observe them in 
the laboratory. Finally, work that still needs to be done 
is described. 

1. INTRODUCTION 

The nearshore region called the surf zone has been so 
intensively investigated over the last 30 years, in theo- 
retical and numerical studies, laboratory experiments, 
and field campaigns, that it is rare nowadays for a 
completely new phenomenon to be discovered. It was 
therefore a great surprise to the "nearshore community" 
to discover that precisely such an event was unfolding 
when preliminary results of the analysis of data from the 
SUPERDUCK experiment of 1986 were presented at 
the American Geophysical Union Fall Meeting in San 
Francisco, in December 1988. The presentations [Hol- 
man and Bowen, 1988; Howd and Oltman-Shay, 1988; 
Oltman-Shay and Howd, 1988] focused on a remarkable 
set of measurements made at a depth of 1 m in the 
trough of a barred beach and in the presence of a 
substantial longshore current. 

The observations were noteworthy for a number of 
reasons: (1) They were highly coherent, low-frequency, 
wave-like motions; (2) they occurred apparently only 
when the longshore current was present; (3) their kine- 
matics were dependent on the longshore current orien- 
tation and strength; and (4) these kinematics revealed 
them to be distinct from any other previously observed 
nearshore motion. 

The observations, which were soon presented in a full 
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journal paper [Oltman-Shay et al., 1989], spanned a 
period range roughly from 100 to 1000 s and took the 
form of alongshore propagating, wave-like structures. 
Such low-frequency motions put them at the low-fre- 
quency end of the generally recognized infragravity (IG) 
band and led to them being characterized as far-infra- 
gravity (or FIG) motions (in fact, they were for a while 
known as FIG waves). They were also remarkable for 
being highly energetic (rms horizontal velocities exceed- 
ing 0.3 m s -1 in the presence of a mean longshore 
current of 0.9 m s-1), as well as being clearly identifiable 
in time series records of both free surface elevations and, 

particularly, velocity components (see Figure 1). 
However, these motions only occurred in the pres- 

ence of a strong longshore current, and the stronger the 
current was, the more energetic the motions were. Fur- 
thermore, the motions were remarkable for possessing 
an alongshore speed of propagation proportional to the 
longshore current strength and orientation (i.e., they 
would propagate with the current), and interestingly, all 
such frequencies would propagate at the same speed, 
given constant current conditions (i.e., they were non- 
dispersive). Finally, the observed alongshore wave- 
lengths (periods) were between about 50 and 300 m (50 
and 1000 s). These properties distinguished the motions 
from previously recognized IG waves, most notably 
alongshore propagating edge waves and oblique leaky 
modes [see, e.g., Oltman-Shay and Guza, 1987; Oltman- 
Shay and Howd, 1993]. In fact, these motions possessed 
a very distinct position in frequency-wavenumber (co - 
k) space, as can be seen in Figure 2, and are clearly not 
(known) leaky or trapped surface gravity modes. (In this 
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Figure 1. Time series of measurements of (a) alongshore velocity and (b) cross-shore velocity, from a probe 
located in the surf zone of the beach at the U.S. Army Field Research Facility near Duck, North Carolina, on 
October 10, 1986, at 0400 LT. From Oltman-Shay et al. [1989]. 

paper we refer to both co (radial frequency) and f - 
co/2,r (cyclic frequency, i.e., the reciprocal of the shear 
wave period). We overwhelmingly use k, the radial 
wavenumber, although the cyclic wavenumber (K - 
k/2,r) is referred to in some figures.) 

It was therefore apparent that a new phenomenon, or 
at least one new to the nearshore, wave-dominated re- 
gime, had been discovered. The name given to these 
motions, shear waves, which subsequently came into 
general usage, reflects the original and convincing hy- 
pothesis proposed by Bowen and Holman [1989], in a 
companion paper, that the motions were manifestations 
of a shear instability of the longshore current. 

These types of motions have since been observed 
during other field campaigns at Duck (DELILAH 
(1990), DUCK94, and Sandy Duck (1997)), as well as on 
other days during SUPERDUCK. It is believed that one 
of the reasons for the auspiciousness of conditions at the 
Duck site is the presence of a surf zone bar, on which a 
lot of the incident waves break. This intense breaking 
generates a strong shear in the longshore current, which 
is thought to favor instability and the subsequent growth 
of shear waves (see section 2). 

Shear wave like motions have, however, also been 
observed at other locations, notably on a number of 
California beaches (see, e.g., Oltman-Shay and Howd 
[1993] and section 4.1), which tend to be more planar as 
well as steeper. The first (and so far only) laboratory 
experiments in which these motions have been observed 
(see Reniers et al. [1997] as well as section 4.2) have 
highlighted this apparent difference between longshore 

current dynamics on plane and barred beaches, because 
the shear waves could only be observed when a barred 
beach was in place. 

Interest in these motions is not, however, only an 
academic one. As was mentioned, these motions are 
associated with large velocity fluctuations, in both along- 
shore and cross-shore velocities, and so seem to provide 
a very potent mechanism for momentum exchanges (or 
momentum mixing) in the surf zone, which will have a 
significant impact on the nearshore circulation in gen- 
eral and on the longshore current profile in particular 
(i.e., the width, shape, and position of the peak in the 
current). So accurate models of nearshore circulation 
must consider them. Moreover, such large velocity per- 
turbations can be expected to have a significant impact 
on cross-shore and longshore sediment fluxes in the surf 
zone, as well as to alter the mean longshore current 
profile (which is known to transport large amounts of 
sediment). They will also affect pollutant and biological 
dispersion in this zone. 

In the next section we develop the fundamental linear 
theory of these motions, focusing first on idealized mod- 
els (simplified longshore current and beach profiles) and 
thereafter examining more realistic conditions, including 
dissipative mechanisms. In section 3 we review the non- 
linear theory, in particular examining the complicated 
vortex dynamics modeled by fully nonlinear numerical 
models and examining the capacity for shear waves to 
mix nearshore momentum. In section 4 we review field 

experiments at which these motions have been observed, 
as well as describe the wave basin experiment in which 
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Figure 2. Iterative maximum likelihood estimator estimated f-K spectra of surf zone cross-shore velocity at 
the U.S. Army Field Research Facility at Duck, on (a) October 9 at 0300 LT, (b) October 11 at 0540 LT, (c) 
October 11 at 1_820 LT, and (d) October 1_0 at 1_030 LT. Rectangles mark the locations of variance peaks, 
defined as those wavenumber maxima that have an adjacent valley below their half power. Wavenumber width 
of each box is the half-power bandwidth of the peak. Shading density indicates the percent variance in the 
frequency bin that lies within the half power bandwidth of the peak. Edge wave dispersion curves (modes 0, 
1, and 2) for an effective plane beach slope of 0.055 and leaky-trapped (I.0 2 = gk) boundary are plotted. Af = 
0.002 Hz, and degrees of freedom = 56 for all spectra. From Oltman-Shay et al. [1989]. 

these motions have been observed. Finally, we briefly go 
over other mechanisms that could be responsible for 
these types of dynamics (section 5) and discuss possible 
future work (section 6). A brief review of numerical 
methods and approaches is presented in Appendix A. 

2. LINEAR THEORY 

A wave-driven, alongshore or longshore current is a 
fairly common occurrence on many coasts. It is gener- 
ated by the breaking of surface gravity waves that are 
traveling obliquely (i.e., wave crests are not parallel to 
the coastline) to the predominant direction of the coast. 
The breaking generates cross-shore gradients in the off- 
diagonal components of the radiation stresses, which 

therefore dump alongshore directed momentum in the 
surf zone, creating the current. The situation for a 
straight, alongshore homogeneous coastline is depicted 
schematically in Figure 3. 

The hypothesis of Bowen and Holman [1989] was that 
this longshore shear flow could become unstable, like 
any other shear flow, and that the observations of Olt- 
man-Shay et al. [1989] were of such an instability. Bowen 
and Holman [1989] presented a •imple model, which is 
nevertheless successful in describing the kinematics and 
dynamics of these motions. The model considers only 
the linear shallow water momentum equations 

-Jr- Vlg y = -- g TIx (1) 

vt+ Vxu + Vvy= (2) 
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Figure 3. Longshore current profile on an alongshore uni- 
form (barred) beach. 

where the total velocity field (u(x, y, t), v(x, y, t) + 
V(x)) consists of a mean, longshore current V and 
perturbations due to the shear waves (u, v). The xl(x, y, 
t) is the free surface elevation associated with these 
motions. Introducing a rigid-lid assumption (nondiver- 
gent flow), a stream function q•(x, y, t) can be intro- 
duced, and we can write 

u = -%/h (3) 

v- O/x/h, (4) 

where h(x) is the still water depth. By cross differenti- 
ating and eliminating xl, an equation for the conserva- 
tion of potential vorticity is derived' 

or 

Dt h - O, (6) 

where in the linear theory it is understood that only 
linear terms of (6) are retained. Vx/h represents the 
background potential vorticity due to the shear in the 
longshore current, and II/h is the potential vorticity of 
the disturbance, so it can be seen that (6) represents a 
conservation of total potential vorticity. The form (5) is 
more informative from the point of view of hydrody- 
namic stability; if the right-hand side of this equation is 
set to zero, a wave equation results, which describes the 
advection of neutral disturbances (disturbances neither 
growing nor decaying) by the current V. So it is therefore 

the (nonzero) right-hand side of (5) (the coupling be- 
tween perturbation velocity and the background poten- 
tial vorticity gradient) that can lead to instability. 

The method of normal modes is then used to write q• 
as 

q• = d)(x)e i(ky-•øt) (7) 

so that (5) becomes 

(V- c)(0" - (h'/h)O' - k20) = h(V'/h)'O, (8) 

where the prime denotes differentiation with respect to 
x, which is analogous to the Rayleigh equation [see 
Drazin and Reid, 1981]. Here c = o•/k, and if as is usual, 
k is assumed real, then the eigenvalue problem (8) (with 
boundary conditions 0(0) = 0(•) = 0) gives, in general, 
a complex value for o• = o•r + io•i, so that (7) is more 
informatively written as 

qi = d)(x)ei(ky-•ørt)e •ø't. (9) 

Therefore o•r corresponds to the frequency of the mode 
(and c,= o•/k corresponds to a phase velocity), and 
corresponds to a growth (or decay) rate (if • 0). If for a 
given k, o•i > 0, then the mode is deemed unstable (it 
grows without bound); otherwise the mode is said to be 
stable. 

The model of Bowen and Holman [1989] uses a very 
simplified, piecewise longshore current profile (on con- 
stant depth) (Figure 4). The complex frequency o• can 
then be obtained as a function of k by matching solutions 
in the three regions. The result is a quadratic expression 
in o•: 

ao• 2 q- bo• + c - 0, (10) 
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Figure 4. The longshore current profile of Bowen and Hol- 
man [1989]. 
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where a, b, and c are real. This yields three regions in k 
space: two in which the roots of (10) are real and a 
central region in which there are complex conjugate 
roots. It is therefore only in this latter region that un- 
stable modes can exist, and its size (i.e., the width of the 
domain of values of k (klowe r < k < kupper) such that to 
is complex) depends primarily on the size of the offshore 
facing or back-shear in the current profile (represented 
here by 8; see Figure 4) (see Figure 5). Within this range 
there is a roughly central wavenumber for which the 
predicted growth rate is a maximum. This unstable 
mode, q•(x, y, t; k - kFGM) , is often referred to as the 
fastest growing mode (FGM). (It should, more informa- 
tively, be referred to as the fastest growing wavelength 
(number), since it is merely one point of a continuum of 
wavenumbers on an instability curve, which itself can be 
taken to represent one mode. Other modes (separate 
instability curves) can exist, especially for barred beach- 
es.) Since its growth rate is the largest, according to 
linear theory it will eventually dominate over other 
modes. The growth rate of the FGM, and those of all 
other modes, will also increase with increasing back- 
shear. Bowen and Holman [1989], however, found that 
the frequency of these motions remains fairly constant, 
being related primarily to the longshore current 
strength. 

The FGM possesses a wavelength of about 250 m and 
a period of about 750 s [Bowen and Holman, 1989]. For 
this wavelength the stream function is reconstructed 
(from equation (7)) and is shown in Figure 6, along with 
the total velocity field. The meandering of the current 
due to the shear waves is apparent, and the whole 
pattern propagates in the direction of the longshore 
current. 

For the parameter values shown in Figure 4, unstable 
wavenumbers exist in a region 190 < X < 435 m (where 
X = 2,r/k). The corresponding range of periods is about 
550-1000 s. Therefore the waves propagate with a ve- 
locity between one quarter to one half the peak long- 
shore current velocity Vma x. 

Bowen and Holman [1989] estimate rough scales for 
the growth rate of the FGM of between 0.1 and 0.2 times 
the maximum back-shear, with frequencies about 0.07 
times this back-shear value. Similar inviscid calculations, 
but for more realistic V(x) profiles, show similar results 
(Falquds and Iranzo [1994] find FGM growth rates of 
between 0.06 and 0.15 times the back-shear, with fre- 
quencies of 0.08-0.1 times). While the predicted inviscid 
frequencies are largely insensitive to dissipative effects, 
the growth rates are strongly affected by the introduc- 
tion of dissipation. 

2.1. Realistic Conditions and the Effects 

of Dissipation 
The main limitations of this linear model (similar 

models have been presented by Dodd and Thornton 
[1990] and Deguchi et al. [1992]) are that it does not 
consider dissipative effects and that the highly simplified 
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Figure 5. Frequency-wavenumber plots of the shear instabil- 
ity for the geometry shown in Figure 4. Top panel shows 
components, and lower panel shows imaginary components. 
Wave motions for which to i > 0 (•i•n > 0 in the figure) are 
unstable. From Bowen and Holman [1989]. 

form for the longshore current gives a limited span of 
unstable wavenumbers. Observations tend to show insta- 

bilities at lower frequencies (wavenumbers), and more 
realistic beach and longshore current profiles (h(x) and 
V(x)) give a larger range of unstable wavenumbers, 
stretching, in the absence of dissipative mechanisms, 
over a region 0 < k < kuppe r (see Figure 7). Dissipation 
tends to reduce growth rates fairly uniformly over the 
range of unstable wavenumbers, in effect pulling the 
growth rate curve down so that once again a region klowe r 
< k < kuppe r appears (see Figure 7). 

Dodd and Thornton [1990] also examine a piecewise 
longshore current and beach profile, though one slightly 
more realistic than that of Bowen and Holman [1989]. 
They obtain results similar to those of the earlier au- 
thors, indicating (as noted by Falquds and Iranzo [1994]) 
that a nonzero depth at the shoreline is not crucial in 
obtaining realistic to - k curves (i.e., one with (0, 0)to - 
k intercepts), but that it is rather the piecewise nature of 
the profiles that lends them this slightly unrealistic qual- 
ity (compared with more realistic profiles). 

Within the surf zone, dissipative mechanisms are 
clearly important, even though shear wave motions oc- 
cur at timescales and length scales very different from 
surface gravity waves. The two main dissipative mecha- 
nisms are bed shear stress, which in the steady state has 
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Figure 6. (left) Stream function pattern for one wavelength of a shear wave. (right) Total velocity pattern 
for one wavelength of a shear wave. The shear wave has been scaled so that its peak magnitude equals the peak 
alongshore current Vo. From Bowen and Holman [1989]. 

the effect of balancing the mean current itself, and some 
form of momentum diffusion (eddy viscosity), which acts 
to smooth out the flow in the cross-shore direction. 

Their absence from the Bowen and Holman [1989] 
model leads to a prediction of instability of the current 
for any conditions, which does not tally with observa- 
tions. 

The inclusion of bed shear stress and lateral diffusion 

terms in (1) and (2) gives us 

ut + Vuy = -g•x- • + *• (11) 

vt + Vxlt + Vvy = -g'qy- 'rb2 + 'rot2, (12) 

where 'rbi are the linearized components of the bed shear 
stress, which are typically parameterized through a fric- 
tion coefficient, ca; and 'rdi are similar components of 
the momentum diffusion term, represented through an 
eddy viscosity coefficient v. 

Dodd et al. [1992] introduced bottom friction into the 
modeling and analyzed realistic longshore current pro- 
files obtained from two different sites. Their comparison 
of theory and observation strongly reinforces the hy- 
pothesis of Bowen and Holman [1989]. Dodd et al. [1992; 
see also Dodd et al., 1990] perform a detailed compari- 
son between observations made during SUPERDUCK 
and predictions provided by linear stability theory. They 
use measured beach profiles for 4 days of that experi- 
ment, along with the measured V(x) profiles. (Because 
these profiles consisted of only between three and six 
points, the profiles were constructed by using the model 

of Whitford and Thornton [1996], which was calibrated 
using the measured data, and one profile was generated 
for each measurement, since measurements were se- 
quential.) Overall they found good correlation between 

II 

Figure 7. Depiction of growth rate curves. Curve I indicates 
simplified, piecewise V and h profiles, without dissipation. 
Curve II indicates realistic, smooth V and h profiles, without 
dissipation. Curve III indicates realistic, smooth V and h pro- 
files, with dissipation. 
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Figure 8. Correlation between predicted (modeled) and observed cyclic wavenumber (m -•) for (a) 15 
October, (b) 16 October, (c) 17 October, and (d) 18 October at SUPERDUCK. Observed peak cyclic 
wavenumbers from cross-shore velocity f - K spectra are shown by asterisks, and those from alongshore 
velocity f - K spectra are shown by circles. Reprinted from Dodd et al. [1992] with permission from the 
American Meteorological Society. 

the observed and computed unstable wavenumbers (see 
Figure 8) and good agreement between observations and 
theory on the overall range of unstable wavenumbers 
(over which range shear wave motions are observed) and 
on the phase speed of the shear waves. They also com- 
pare the observed variance densities of the alongshore 
and cross-shore velocity components with the calculated 
growth rates as a function of the predicted frequency for 
each day. Although there is no quantitative comparison 
to be made thereby, because the growth rates are dimen- 
sionally different from the variances, the overall func- 
tional dependence and frequency range of the growth 
rates is reasonably close to the observed variances, par- 
ticularly for the cross-shore velocity components, which 

indicates that even though observations are most likely 
of finite amplitude shear waves, the most energetic 
wavelengths correspond roughly to those of the FGM. 
They note that the predicted growth rates are likely to 
provide a spinup time during which the shear waves 
achieve some sort of finite amplitude, and they find that 
for most days this time was between 300 and 400 s, which 
translates into a distance of about 250-350 m: 1-2.5 

wavelengths. In other words, the growth rate is substan- 
tial and the assumption of linearity is limited, a fact 
previously noted by Bowen and Holman [1989] (see also 
section 3). 

In their analysis of the measured profiles, Doddet al. 
[1992] note the presence of two distinct unstable modes 
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(instability dispersion curves). They find that the largest 
growth rates are associated with the unstable mode that 
has a maximum close to the bar crest, which is associated 
with the extremum in potential vorticity there. In fact, 
linear instabilities may be associated with any local ex- 
tremum in the background potential vorticity, whether 
on the back-shear or the front (shore facing) one [Dodd 
et al., 1992; Putrevu and Svendsen, 1992] (see also section 
2.2). 

Putrevu and Svendsen [1992] subsequently undertook 
a parametric investigation into the effect of different 
beach profiles (horizontal, plane, equilibrium, and 
barred) and the position of the longshore current max- 
imum on the linear stability of the current. They confirm 
the speculation of Bowen and Holman [1989] and the 
findings of Dodd et al. [1992] that the bar significantly 
destabilizes the current. They also note that on a barred 
beach more than one unstable mode may exist. In par- 
ticular, they show that one of these modes is similar in 
00 - k space and in eigenfunction structure to that on a 
plane beach. This mode is most energetic seaward of the 
breakpoint. Typically, however, a second unstable mode 
can also be excited. This mode will have a different 

signature in 00 - k space (although the dispersion rela- 
tion will still be linear), and importantly, will be most 
energetic at or shoreward of the breakpoint; in effect, it 
will be trapped by the bar [see also Dodd et al., 1992]. It 
is this mode that is associated with growth rates larger 
than those for the plane beach (for identical V(x)) for 
smaller wavelengths and which is believed to be partic- 
ularly prone to excitation over the barred beach and may 
in part explain why barred beaches may show more 
evidence of shear waves than plane ones. The other 
reason is the larger offshore shear associated with the 
mean longshore current. They also find that the position 
of the bar crest relative to the current is the main arbiter 

of whether or not the "bar-trapped" mode is excited or 
not. The actual beach slope has very little effect on the 
stability of the current. (It is important, however, to keep 
in mind that the study of Putrevu and Svendsen [1992] is 
a parametric one. In other words, they imposed current 
profiles on a bathymetry, which would not necessarily be 
those resulting from a given bottom profile and any 
realistic wave condition.) Putrevu and Svendsen [1992] 
find that the phase speed of the shear waves is about 
0.5 Vma x ß 

The effect of bottom shear stress on the shear waves 

was examined in more detail by Dodd [1994]. The effect 
of this dissipation is twofold: to reduce the longshore 
current strength, and therefore the shear, and to directly 
damp instabilities. Dodd [1994] investigated this by con- 
sidering consistent values of the bottom friction coeffi- 
cient both for the longshore current profile and for the 
instabilities. The effect of friction on the stability curves 
is to reduce the span of unstable wavenumbers and the 
growth rates. There are other bottom friction effects, 
however, linked to the curvature of the flow, which act to 
destabilize the current. It was also shown that a global 

cutoff frequency could exist, below which no linear in- 
stability can develop. This is because as the bottom 
friction coefficient ca is decreased, thus increasing the 
tendency to instability, the lower limit of the unstable 
band of wavenumbers klowe r --> 0, thus allowing lower 
frequencies to become linearly unstable. However, as ca 
-• 0, the longshore current V(x) increases uniformly, 
and since the frequency of the instabilities cr V(x), there 
may be a frequency below which no instability can exist, 
depending on the relative rates. It was found that such 
periods exist (at 580 and 458 s for the two profiles 
examined by Dodd [1994]). Such a cutoff, however, has 
not been observed in the field, although resolution at 
such low frequencies is usually poor. Shrira et al. [1997] 
have since provided a theoretical explanation of this, 
based on the emergence of different types of instabili- 
ties; see section 3. Examining two different V(x) pro- 
files, Dodd [1994] also shows that destabilization occurs 
for very similar values of the current back-shear. 

How the term % is linearized affects the form of the 
resulting stability equation, but Dodd [1994] found that 
the differences, most obviously due to linearizations 
based on a weak or strong longshore current [Liu and 
Dalrymple, 1978], are not crucial. In fact, its effect can 
most simply be incorporated into (8) as 

(V- c - itx/kh)(d)" - (h'/h)d)' - k2q>) = h(V'/h)'d), 

(13) 

in which its effects on growth rates c ik are plainly ap- 
preciated. The effect of a nonconstant friction coeffi- 
cient •x = •x(c,•; x) has also been examined [see Dodd 
and Falqu•s, 1996] and has been found to be qualita- 
tively similar to the constant coefficient case. 

The validity of the rigid-lid assumption implicit in (3) 
and (4) has been examined in detail [Falqu•s and Iranzo, 
1994]. This assumption is based on a local Froude num- 
ber, F = Vo/••-o << 1, where V0 and h0 are repre- 
sentative local values. Physically, this condition states 
that shear wave motions, whose phase velocity scales 
with the current strength, may be decoupled (to a first 
approximation) from shallow-water surface gravity mo- 
tions, as they possess much slower intrinsic velocities. 
For a Froude number F < 0.6, which condition pertains 
for most natural beaches, growth rates need only be 
corrected by less than 12% (shown by Falqu•s and Iranzo 
[1994] by comparing solutions with and without the 
imposed rigid lid). This correction, interestingly, is in the 
form of a stabilization (decrease in growth rates), which, 
in line with previous authors [see Dodd and Thornton, 
1990; Putrevu and Svendsen, 1992], they ascribe to the 
increasing interaction of shear wave and gravity wave 
modes as F increases, resulting in energy being fed into 
gravity modes. 

The study of Falqu•s and Iranzo [1994] was the first to 
consider the effect of lateral momentum diffusion (eddy 
viscosity) on the shear instabilities. They find that it, too, 
damps the shear waves. They also noticed, however, that 



38, 4 / REVIEWS OF GEOPHYSICS Dodd et al.' ALONGSHORE-CURRENT SHEAR WAVES ß 445 

the damping induced by an eddy viscosity is highly de- 
pendent on the cross-shore position Xma x of the long- 
shore current maximum Vmax. Falquds et al. [1994] in- 
vestigate this further, introducing a nonconstant eddy 
viscosity coefficient v(x) and note that initially an in- 
crease in eddy viscosity could increase growth rates. This 
happens if the eddy viscosity profile has its maximum 
around xmax and a rapid decay offshore. One explanation 
of this can be seen by noting that the gradient in the 
diffusion coefficient results in wave-propagating terms 
(VxO•c,), which act to propagate disturbances. In such 
circumstances they conclude that the damping effect is 
actually initially outweighed by an effect of the noncon- 
stant viscosity coefficient (resulting in a destabilization), 
although further increases in v always ultimately damp 
instabilities. Caballerfa et al. [1997] subsequently pre- 
sented a simplified model to illustrate this effect and 
came to the same conclusions, and Putrevu et al. [1998] 
look at a similar problem and come largely to the same 
conclusion. Putrevu et al. [1998] examine the less realistic 
Bowen and Holman [1989] profile but more interestingly, 
note that the argument of Lin [1967] may explain the 
apparent destabilization even without an eddy viscosity 
gradient. (Lin [1967] notes that phase changes in velocity 
components induced by the introduction of viscosity act 
to extract energy from the mean flow (here the long- 
shore current). Putrevu et al. [1998] show that the intro- 
duction of eddy viscosity within their simplified system 
increases the size of the energy production/extraction 
term in the energy equation for the perturbed motions.) 
More recent work on more realistic current profiles 
[Dodd and Iranzo, 1999] appears tentatively to concur. 

Note also that with the inclusion of eddy viscosity, the 
Rayleigh-type equation (13) is transformed into one of 
Orr-Sommerfeld type. Other, nonlinear studies have re- 
vealed a purely or at least an overwhelming damping 
effect of eddy viscosity, whether they used a constant 
eddy viscosity coefficient [Deigaard et al., 1994] or a 
cross-shore varying one [Ozkan-Haller and Kirby, 1999]. 
The conclusion seems to be that at least for realistic 

conditions, eddy viscosity provides only damping, as 
would be expected. 

Predictions of phase speeds, Cr, by linear models 
largely fall into a range 0.25 < Cr/Vmax < 0.8, with more 
realistic profiles tending to give estimates toward the 
higher end of this range. The observations of Oltman- 
Shay et al. [1989] of phase velocity were made with 
respect to a mean current at one location (i.e., bar 
trough). Although it is not clear whether Vmax is situated 
in the trough for all the days they examined, it is known 
that the longshore current maximum was located over 
the bar for most of the days of SUPERDUCK. A simple 
estimate of observed phase speeds relative to Vm•x then 
gives cr/Vmax • 0.55, which is consistent with those 
estimates from linear theory [see Falquds and Iranzo, 
1994]. (The range of values of Cr/Vma x given by Falquds 
and Iranzo [1994] for the study of Doddet al. [1992] 
(0.6-0.9) is perhaps a little high. By studying Figure 6 of 

Dodd et al. [1992] (October 16, 1986), a value of Cr/ 
Vm•x • 0.7 can be calculated. Estimates from Dodd et 
al.'s Figures 7-10 are more difficult to make because of 
the representation of the data in those figures.) Dissipa- 
tion was found to have little effect on the phase speed or 
frequencies; Falquds and Iranzo [1994] find a decrease of 
less than 9% in frequencies due to the presence of 
dissipation. The nonlinear study of Ozkan-Haller and 
Kirby [1999] also found that eddy viscosity does not seem 
to affect phase velocities; see section 3.2. 

Falquds et al. [1994] also developed stability parame- 
ters based on both bottom friction and eddy viscosity. 
The idea was to provide crude predictions, based on 
estimated values for ca and v, that would indicate 
whether or not a particular longshore current was likely 
to exhibit instability, even if direct measurements of 
shear waves were not available (see section 4). 

2.2. Necessary Conditions for Instability 
As in the classical stability theory [see Drazin and 

Reid, 1981], there are a number of theorems that can be 
proved, which demonstrate necessary conditions for a 
flow to be unstable. 

Bowen and Holman [1989] note that a necessary con- 
dition for instabilities to grow is that there must be a 
local extremum in potential vorticity, V•c/h. Dodd and 
Thornton [1990] also show that a necessary condition for 
instabilities to develop is that 0 < Cr < Vmax, again in 
line with results from classical stability theory. They also 
demonstrate analytically that motions can be expected to 
be nondispersive to leading order. Putrevu and Svendsen 
[1992] prove the equivalent result to Fj0rtoft's theorem: 
(V•c/h)x(V - Vs) < 0 in some part of the domain for an 
instability to exist, where V s is the longshore current 
value at a location where an extremum in potential 
vorticity exists ((V•c/h)•c = 0). Falqu•s and Iranzo [1994] 
prove the analogous result to Howard's semicircle the- 
orem [see Howard, 1961; Drazin and Reid, 1981] but with 
the inclusion of both nonconstant depth and a free 
surface (no rigid-lid assumption). They also derive an 
analytical estimate for phase speed of neutral shear 
waves: The phase speed of the neutral wave Cne = 
V(xs) = Vs, where Xs is the cross-shore position of the 
aforementioned extremum in potential vorticity. This 
estimate only applies to neutral (neither growing nor 
decaying) waves, but it is reasonably robust: For a plane 
beach this estimate exceeds the computed one by 13%, 
and for a barred beach the estimate exceeds the com- 

puted one by 30%. 
It is also straightforward to show that a necessary 

condition for the instabilities to develop (as opposed to 
decay) is that the cross-shore gradient of the horizontal 
Reynolds stresses be nonzero, specifically that the Reyn- 
old's stresses must be negatively correlated with the 
longshore current shear [Dodd and Thornton, 1990]. This 
has important consequences for mixing of momentum in 
the nearshore region (see section 3). 
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2.3. Spatial Instabilities 
Until now, the only linear theory considered has been 

the temporal instability theory, in which k is assumed 
real and to is complex. However, it is also possible to take 
to as being real and find the complex k = k• + ik• from 
the eigenvalue problem, i.e., 

tp(x, y, t) = 4)(x)e'(arY-•t)e -a'y. (14) 

These modes are referred to as spatial modes, because 
they grow in space (for a fixed time). These modes are 
also sometimes thought to be more physically realistic 
than temporal modes (for instance, if instabilities grow 
from a specific point in space [see Reniers et al., 1997]); 
however, the mathematical theory is more complicated. 
Nevertheless, it is important to consider them in these 
situations. Fortunately, Gaster [1962] has considered the 
problem of the connection between spatial and temporal 
modes and has developed relations that may be used, in 
some circumstances, to convert predictions from one 
into the other. Dodd and Falqu•s [1996] solve the spatial 
stability problem for realistic longshore current profiles 
(one on a plane beach and one on a barred beach) and 
show that the Gaster relations may indeed be used with 
a high degree of accuracy for shear waves. (The Bowen 
and Holman [1989] solution, however, is singular in the 
spatial problem, and so the relations are inapplicable 
here.) Significantly, the barred beach case examined by 
Dodd and Falqu•s [1996] is that of the first successful 
experimental study of these motions [see Reniers et al., 
1994, 1997]. 

In Appendix A we give a brief resume of the standard 
numerical methods used in solving the linear problem. 
We also outline the main numerical approaches to the 
fully nonlinear problem, the physical interpretations and 
implications of which we discuss next. 

3. NONLINEAR THEORY AND MIXING BY SHEAR 

WAVES 

Linear theory is necessarily limited by the assump- 
tions underpinning it, namely, that motions are in some 
sense of small amplitude. However, the e-folding times 
predicted by linear theory (Bowen and Holman [1989] 
obtain about 300 s for a wave of period 753 s; Falqu•s 
and Iranzo [1994] obtain a time roughly equal to the 
wave period) indicate that the assumption of linearity 
will not remain valid for long. Furthermore, observa- 
tions of shear waves are surely overwhelmingly of fully 
developed flows in which finite amplitude effects are of 
importance. 

3.1. Weakly Nonlinear Theories 
Some progress has been made by using weakly non- 

linear theory, in which the behavior of shear waves close 
to criticality may be examined. Dodd and Thornton 
[1992] used a weakly nonlinear approach (and a Landau 

equation [Drazin and Reid, 1981]) to describe the early 
evolution of shear waves. They found that the instability 
was indeed characterized as being supercritical (i.e., an 
instability will only develop when dissipation is de- 
creased, or the shear increased, above a critical value). 
Numerical work [Falquds et al., 1994] confirmed these 
analytical results. While important, this analytical work 
is limited by the fact that it only considers the evolution 
of one wavenumber and its higher harmonics. In reality, 
we have a continuum of unstable wavenumbers of which 

kFG M is just the "first among equals" [Drazin and Reid, 
1981]. This analysis was therefore subsequently extended 
by Feddersen [1998] to Ginzburg-Landau theory, which 
allows the development of a wave packet, in which there 
is a single, central mode rather than strictly a single one. 
Once again, it was shown that the instability is super- 
critical. Comparisons made by Feddersen [1998] of these 
weakly nonlinear disturbances with similar numerical 
ones (generated by the model of Allen et al. [1996]; see 
section 3.2) also show quantitative agreement. 

A somewhat different approach has been taken by 
Shrira et al. [1997]. Considering the theory of resonant 
triad interactions, they show that so-called explosive 
instabilities of the longshore current may occur ("explo- 
sive" in the sense that interacting waves grow without 
bound in a finite time). They analyze the model of 
Bowen and Holman [1989] and identify qualitatively dif- 
ferent regions of instability, which they characterize as 
being (1) linear, (2) nonlinear-S, and (3) nonlinear-U. 
The linear region is that considered by previous authors, 
but the nonlinear regimes are new to this field. Shrira et 
al. [1997] state that the role of these nonlinear processes 
is different: The U-processes, which are present for all 
sizes of back-shear in the Bowen and Holman [1989] 
model, tend to amplify the growth of already growing 
perturbations; the S-processes, on the other hand, are 
expected to be important only for small values of back- 
shear. Under these latter conditions, when the flow is 
linearly more stable, these processes are expected to 
dominate and, in principle, to provide a mechanism by 
which instabilities may grow even when a flow is linearly 
stable due to dissipation, provided initial amplitudes are 
large enough (i.e., a kind of subcritical bifurcation). In 
illustrating their proposed mechanism, Shrira et al. 
[1997] considered the profile of Bowen and Holman 
[1989], which has no dissipation. Therefore they were 
able to consider a triad of neutrally stable modes. For 
realistic longshore current profiles in the presence of 
dissipative mechanisms, linear studies will only usually 
permit triads of decaying stable modes, but in this case, 
too, explosive processes have been shown to occur 
[Dodd and Iranzo, 1999]. Two questions then immedi- 
ately pose themselves: (1) How big do such finite ampli- 
tude perturbations need to be in order for instability to 
ensue? (2) What natural mechanism could provide that 
push? Experiments with realistic current profiles and 
decaying stable triads [Dodd and Iranzo, 1999] show that 
perturbations in the longshore current, which may be 
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consistent with naturally occurring ones, can lead to 
subcritical, explosive growth. Other numerical experi- 
ments [Haller et al., 1999] show that wave groupiness can 
induce longshore current perturbations that have a spa- 
tial and temporal structure similar to linear shear insta- 
bilities of that same longshore current and that, more- 
over, the forcing scales (to, k) are similar to those of 
linear unstable modes. Work in this area continues (see 
also section 6). 

3.2. Fully Nonlinear Studies 
Weakly nonlinear analyses can only go so far. In a 

strongly nonlinear regime a fully nonlinear model must 
be used. A number of groups have independently ad- 
vanced these types of analyses to the extent that there is 
now a much better understanding of these flows. 

Falqu•s et al. [1994] confirmed the theoretical findings 
olDodd and Thornton [1992]. They examined the case of 
a plane sloping beach and included the effects of bottom 
friction and eddy viscosity coefficients (both constant). 
Using the control parameters developed in the linear 
part of their study, they showed that instability ensued 
for the same critical conditions as for the linear case. 

Although their numerical model was limited to a small 
number of Fourier modes, and by numerical instabilities, 
in the extent to which it could simulate strongly nonlin- 
ear dynamics, by examining two subharmonics of the 
wavenumber of the FGM, as well as the corresponding 
superharmonics, they were able to observe the initial 
growth of the FGM and thereafter the transfer of energy 
into other modes, particularly the first subharmonic, and 
eventually into a steady, modulated oscillation in all 
modes. Far from criticality they note that the flows are 
very different from those close to criticality, and in 
particular that for the highly nonlinear case there is a 
substantial mean component generated. They also note 
that the final amplitude of the shear waves in the highly 
nonlinear case (the simulation was run for 16 hours of 
real time) is about 20% of the longshore current maxi- 
mum, Vmax, consistent with the observations of Oltman- 
Shay et al. [1989] and Reniers et al. [1994]. 

Deigaard et al. [1994] performed a full numerical 
simulation of the nearshore dynamics on a barred beach 
[Putrevu and Svendsen, 1992], including the wave field 
and a sediment transport module, with a finite difference 
model (see section 6 for a description of their sediment 
transport predictions). In other words, the wave trans- 
formation model was run over the solution domain, 

which generated a radiation stress field, which led to the 
generation of the longshore current. This kind of numer- 
ical study is similar to a wave basin experiment (see 
section 4.2) so that a uniform longshore current is gen- 
erated at the upstream boundary, which then becomes 
unstable within the model domain (see Damgaard [1993] 
for a more detailed description of these experiments). 
The current exits the domain using a simple extrapola- 
tion boundary condition. Deigaard et al. reported nu- 
merical boundary effects, which limited the useful length 

of the model domain. The longshore current grew over 
about 2000 s of real time, but even before the end of this 
"ramping-up" period, oscillations very similar to those 
observed had developed (wavelength 190 m; period 
200 s; phase velocity about 55% of Vmax)-A series of 
experiments was performed, allowing variations in wave 
conditions, depth over the bar and bottom friction, as 
well as numerical parameters. The kinematics were a 
fairly robust feature of each of these experiments. No- 
tably, for a plane beach, which was also examined in 
their study, no shear waves could be observed. They also 
examined the effect of alongshore topographical varia- 
tions on the shear waves (see section 5). Finally, they 
investigated the effect of shear waves on cross-shore 
momentum exchange, which they found to be induced by 
the shear waves at the bar location and offshore of the 

bar (consistent with the sediment transport predictions); 
further inshore, momentum transfer was very small. 
These exchanges, and the overall vorticity field, have 
been examined in more detail in other nonlinear numer- 

ical modeling studies, which we examine next. 
Almost from their discovery, shear waves have excited 

the curiosity of scientists interested in investigating 
cross-shore momentum exchanges and, generally, the 
induced mixing of momentum in the nearshore region. 
This is because in certain areas of modeling, a deficiency 
has been known for some time. This is most notable in 

longshore current modeling, in which the cross-shore 
profile of a longshore current on a plane beach can be 
accurately modeled using theory stemming back to the 
theoretical models of Bowen [1969], Thornton [1970], 
and Longuet-Higgins [1970a, 1970b] and refinements 
therefrom [see, e.g., Thornton and Guza, 1986; Larson 
and Krauss, 1991]. These models have been shown to be 
accurate in predicting the cross-shore structure of the 
longshore current on a plane beach with random waves. 
(The inclusion of dispersive mixing [Svendsen and Pu- 
trevu, 1994], however, is important on a plane beach 
subject to monochromatic wave incidence.) However, 
over a barred beach, models consistently predict two 
peaks in the profile, due to waves breaking first on the 
bar and then on the shore face. Observations during the 
DELILAH field experiment, however, tend to show a 
single peak, usually somewhere in between those pre- 
dicted by numerical models. (Observations from SU- 
PERDUCK on October 16 and 18 were an exception to 
this in that they show a peak on or seaward of the bar 
[see Dodd et al., 1992].) Lateral diffusion of momentum 
(diffusive mixing), which is included in some of these 
models, fails to account for this. In more recent work, 
Svendsen and Putrevu [1994] analyze current dispersion 
due to the nonuniformity over depth of the wave-gener- 
ated currents. They note that this gives rise to additional 
terms in the depth-averaged momentum equations, 
which alter the longshore current profile (dispersive 
mixing). Comparison between the laboratory data of 
Visser [1984b] (monochromatic waves on a 1:20 plane 
beach) and the longshore current as modeled including 
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the dispersion effects reveals good agreement. However, 
later work [Putrevu and Svendsen, 1997] reveals that 
mixing is not sufficient to explain the longshore current 
profile on a barred beach. Therefore this appears only to 
answer part of the question. 

Bowen and Holman [1989] noted the potential for 
shear waves to provide an efficient mechanism for cross- 
shore momentum transport. Furthermore, shear waves 
are thought overwhelmingly to occur on barred beaches. 
It is straightforward to derive an energy equation de- 
scribing this mixing process [Dodd and Thornton, 1990]. 
Putrevu and Svendsen [1992] went further and estimated 
the order of magnitude of this mixing term by a scale 
analysis. Putrevu et al. [1998] use a similar approach to 
examine the effect of eddy viscosity (see section 2.1). 
They found that within the surf zone it could indeed be 
large enough, although outside it did not seem to pro- 
vide enough mixing to explain laboratory observations. 
Church et al. [1992] undertook a linear stability analysis 
of DELILAH data (see section 4.1) to determine ampli- 
tudes of the velocity components due to the shear waves. 
They did this by calibrating the computed energy density 
of oscillations (from linear theory) against the observed 
densities, to compare magnitudes of the cross-shore 
radiation stress gradients due to the Thornton and Guza 
[1983] model with the analogous terms due to shear 
waves. They also found that mixing by shear waves can 
be very large. 

Allen et al. [1996] performed a fully nonlinear numer- 
ical study with a finite difference model. They adopt an 
approach similar to Falqu•s et al. [1994] in that they 
assume the mean momentum balance to be automati- 

cally satisfied (and therefore not present in the model 
equations); that is, the current (potential vorticity) field 
is decoupled from the wave field. This approach is sig- 
nificantly different from that of Deigaard et al. [1994]; 
their relative merits are discussed in Appendix A. Unlike 
Falqu•s et al. [1994], they consider a plane beach. They 
perform a parametric study of the effect of varying 
dissipation (here bottom friction, parameterized 
through a term •) in their model on the flows. 

They conduct three sets of experiments, examining 
progressively larger (alongshore) model domains to see 
what boundary effects are present. The control param- 
eter • is then varied, where this variation is expressed as 
a deviation, A O = Oc - •, from critical conditions 
(where • = Oc implies neutral stability, i.e., distur- 
bances neither growing nor decaying), in order to exam- 
ine different stability regimes in each flow. (The param- 
eter • also contains the parameterized effects of 
variations in the (plane) beach slope and, implicitly, of 
altering the wave conditions (forcing). Thus decreasing 
• (destabilizing the flow) is equivalent to decreasing the 
bottom friction or increasing either the beach slope or 
the longshore current peak (for constant back-shear).) 

They also confirm that at near-critical conditions 
(small AO), regular disturbances equilibrate with a 
phase speed of the shear waves close to that predicted by 

linear theory. This was a generally robust feature of their 
experiments. For these near-critical experiments the to- 
tal mean longshore current develops such that the mean 
profile V(x), which was originally only just unstable (i.e., 
near-critical), becomes only just stable; that is, the effect 
of the shear waves is to stabilize the flow, at least in a 
linear sense, which has also been noted by other authors 
[Slinn et al., 1998; Ozkan-Haller and Kirby, 1999]. How- 
ever, they still find differences due presumably to do- 
main length effects in the longest domain length exper- 
iments. 

For larger A Q the resulting flows are highly depen- 
dent on the domain length. The smallest-scale experi- 
ments reveal that a sequence of bifurcations on the route 
to turbulence (T -• 2T -• 4T -• 6T, where T repre- 
sents the initial period of the disturbance), before tur- 
bulence, or at least irregular oscillations, are arrived at, 
which, as Allen et al. [1996] point out, is different from 
the Feigenbaum scenario of period doubling bifurca- 
tions. On the other hand, the nature of these experi- 
ments (the numerical model domain length set equal to 
the wavelength XF•M of the most unstable mode) pre- 
vented subharmonic transitions. In fact, the develop- 
ment of large-scale (i.e., with alongshore length scales 
substantially greater than those predicted by linear the- 
ory), finite amplitude disturbances, which also propagate 
more slowly than linear waves, is a robust feature of the 
more realistic experiments, particularly those on a 
barred beach [see Slinn et al., 1998; Ozkan-Haller and 
Kirby, 1999]. It would seem that subharmonic transitions 
are therefore important to these types of flows. As AQ is 
increased further, the flows become more irregular. A 
number of different disturbances at different length 
scales coexist, with the smaller-amplitude disturbances 
propagating faster than the larger ones. In fact, the 
smaller-amplitude ones are formed in between larger 
ones and tend to merge with them when they catch up. 
The overall width of the mean longshore current in- 
creases with increasing instability. Spectral analysis of 
the most realistic model runs appears to indicate that the 
observations of Oltman-Shay et al. [1989] are at least not 
of weakly nonlinear waves, although it is difficult to be 
more certain than this, not least because Allen et al. 
[1996] only examine a plane beach. 

Slinn et al. [1998] extend the study of Allen et al. 
[1996] to look at a barred beach. Their study reveals 
qualitative differences between (numerical) finite ampli- 
tude shear waves on barred beaches and those on plane 
beaches. They examine two barred beach profiles based 
on measured beach profiles from SUPERDUCK. (Slinn 
et al. [1998] actually use an analytical profile that closely 
resembles those measured during SUPERDUCK and 
DELILAH.) The resulting longshore current profile 
without shear waves is a twin-peak profile, with one peak 
in V(x) over the bar and another at the shore. Their 
parametric study reveals that in more nonlinear regimes 
(larger A Q) energy is spread to higher wavenumbers and 
not primarily lower ones, as found by Allen et al. [1996] 
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for a plane beach. (Slinn et al. [1998] use a Q identical to 
that of Allen et al. [1996]. In some of their figures 
reproduced here, however, they give bottom friction in 
terms of a dimensional coefficient Ix (m s-•), which is 
the same parameter as that present in (13); they do not 
use an equivalent to c a. Ozkan-Haller and Kirby [1999] 
use an identical dimensional coefficient Ix and relate it to 
ca (cf in their paper) by Ix = (2/sr)caUo, where U0 is the 
amplitude of the horizontal orbital velocity of the inci- 
dent waves.) It is not clear what the primary reason is for 
this qualitative difference, although the presence of the 
bar, according to Putrevu and Svendsen [1992], tends to 
confine linear disturbances and may favor smaller-scale 
disturbances. It is notable, however, that their numerical 
model does not include the effects of eddy viscosity [see 
Ozkan-Haller and Kirby, 1999]. 

Slinn et al. [1998] identify four separate regimes of 
longshore shear flow: (1) weakly nonlinear; (2) fluctuat- 
ing vorticity waves, comprising mostly distinct vortices 
propagating alongshore at nearly constant phase speed, 
but which occasionally coalesce; (3) shedding of vortex 
pairs, where vortex pairs of opposite signs break away 
and propagate offshore; and (4) turbulent shear flow. 
Spectral analysis also points to a more nonlinear (or at 
least not weakly nonlinear) regime as being most remi- 
niscent of observations. This change in the flow as it 
moves into a gradually more unstable regime is illus- 
trated in Plate 1, which shows snapshots of vorticity 
associated with the disturbances on two different barred 

beaches, the first, beach 1, chosen so as to be represen- 
tative of the bathymetry during SUPERDUCK, and the 
second, beach 2, similarly representing conditions during 
DELILAH. The corresponding co - k plots are given in 
Figure 9 and Figure 10, respectively. The simulations of 
Slinn et al. [1998] in more stable regimes tend to show 
two rows of vortices, one positive (nearer the shore) and 
one negative (on the back-shear of the mean current), 
but in some circumstances with one row dominating, the 
other being more of a vortex sheet (compare the simu- 
lations in the top and bottom panels of Plate 1). The two 
rows of vortices appear to be associated with separate 
potential vorticity extrema, corresponding to shoreward 
(positive) and seaward (negative) facing shears of the 
longshore current, about which positive and negative 
vorticity, respectively, is exchanged. This behavior can 
also be observed in plane beach simulations [see Allen et 
al., 1996; Ozkan-Haller and Kirby, 1999] when the as- 
sumed longshore current profile also possesses two such 
extrema. In a large eddy simulation, Sinding et al. [1995] 
also reported observing two rows of vortices on a barred 
beach, each with opposite rotations, like those in the 
simulations shown here. On a plane beach, in contrast, 
the shear waves are associated with a single row, located 
offshore of the position of Vma x. It is not known, how- 
ever, what kind of current profile their simulations cor- 
responded to. 

$linn et al. [1998] also found that shear waves exten- 
sively "fill in" the velocity deficit originally present in the 

longshore current profile. In other words, they provide a 
potent source of momentum mixing, as thought by ear- 
lier authors. They also note that a subsequent linear 
stability analysis of mean weakly nonlinear profiles 
(which implicitly include equilibrated shear waves) re- 
veals that they have been stabilized, as was also found by 
Allen et al. [1996]. A similar linear analysis of mean flows 
derived from strongly nonlinear flows showed good 
agreement with propagation velocities and alongshore 
wavelengths obtained from running a nonlinear instabil- 
ity simulation of the initial (unmixed) profile [see Dodd 
et al., 1992], implying, again, that the observations made 
by Oltman-Shay et al. [1989] are most likely of fully 
nonlinear shear waves, although a detailed comparison 
of observations and numerical simulations was still lack- 

ing at this point. 
At SUPERDUCK it was observed that the peak in 

the longshore current profile was mostly situated over 
the bar, rather than over the trough, as is sometimes 
observed. This variability in the maximum of V(x) has 
been noted previously [Sallenger and Howd, 1989]. Con- 
ducting investigations into the effect of the relative po- 
sition of the peak is therefore relevant [Putrevu and 
Svendsen, 1992], although, of course, in the presence of 
shear waves the observed profile will be "mixed" already. 
Ozkan-Haller and Kirby [1999] (using a numerical model 
developed earlier [see Ozkan and Kirby, 1995; Ozkan- 
Hallet and Kirby, 1996]) perform a numerical simulation 
of shear waves including the effects of bottom friction 
and lateral momentum mixing, like Falquds and Iranzo 
[1994], but also incorporating the dispersive effect stud- 
ied by Svendsen and Putrevu [1994] in a simplified form. 
They also incorporate the time-dependent movement of 
the free surface into their simulations. Their approach is 
similar to that of Dodd et al. [1992] in that they examine 
field measurements directly (measurements from 3 days 
from SUPERDUCK), so this work directly addresses the 
aforementioned gap. Instead of varying the dissipation 
parameters to examine their effect, they calibrate model 
parameters against observations. To do this, they first fix 
their mixing coefficient (M) (see Ozkan-Haller and Kirby 
[1999] to see how this dimensionless coefficient relates 
to v) and vary the bottom friction coefficient (ca) in 
order to see which value best reproduces the observed 
propagation velocities of the shear waves from those 
days. They find that a value of ca between 0.002 and 
0.0035 gives the best fit. Their generated time series of 
alongshore and cross-shore velocities, however, are no- 
ticeably different from those recorded and show an 
intermittent character that was not evident from the 

original time series, and as well are of longer period. The 
overall behavior for all simulated days was of a type 
characterized as being turbulent shear flow by Slinn et al. 
[1998]. 

They then do the same, holding ca constant and 
varying M. The effect of increasing M on the time series 
is to significantly decrease the high-frequency content of 
the signals, but the propagation speed is not strongly 
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Plate 1. Contour plots of vorticity •(x, y, t) (s -j) fields at (top) t = 15.3 hours for experiments on beach 
1 and (bottom) t = 10 hours for experiments on beach 2, with different values of IX (m s-Z). The blue contours 
indicate positive vorticity (counterclockwise rotation), the yellow and red regions represent negative vorticity, 
and the green background regions have near-zero vorticity. After Slinn et al. [1998]. 
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dependent on eddy viscosity. Increased mixing also 
strongly affects the tendency of the mean flow to shed 
vortices, so that as M is increased, the overall length 
scales of the disturbances increase (i.e., there is a fre- 

quency downshift). This favoring of lower frequencies on 
a barred beach is a robust feature of all these numerical 

simulations. The effect of varying eddy viscosity is shown 
very clearly in Plate 2, in which simulations based on 1 
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Figure 10. Alongshore frequency-wavenumber (to - k) spectra for (top) the cross-shore velocity and 
(bottom) alongshore velocity from experiments on beach 2, for (a) Ix = 0.00369, (b) Ix = 0.00256, (c) Ix = 
0.00142, and (d) Ix = 0.00085 (m s-h). The spectra are calculated over an 18-hour portion of the experiments 
(t - 2-20 hours) at a location on the seaward facing side of the bar. Contour levels are 10 -•, 10 ø, and 10 • 
s -2. After Slinn et al. [1998]. 
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Plate 2. Contour plots of vorticity (l/s) at t = 5 hours, for bottom friction coefficient ca = 0.003 and 
representing conditions on October 18, for different values of eddy viscosity coefficient M. From Ozkan-Haller 
and Kirby [1999]. 

day at SUPERDUCK are shown. Results of simulations 
for all 3 days of SUPERDUCK examined by Ozkan- 
Hallet and Kirby [1999] are summarized in Figure 11, in 
which the simulated and recorded spectra are shown. 
Here a value of M = 0.25 has been used, but it should 
be noted [Ozkan-Haller and Kirby, 1999] that this does 
not represent a "best fit," partly because measurements 
during SUPERDUCK were primarily from the trough of 
the barred beach. At that location the effect of varying 
M on the wavenumber-frequency spectrum was small, 
thus making it difficult to obtain a best fit. 

An important, if slightly disappointing, feature of 
these studies [see Slinn et al., 1998; Ozkan-Haller and 
Kirby, 1999] is that although shear waves are an impor- 
tant source of mixing, they do not appear to provide all 
the missing mixing. In particular, shear waves do not 
appear able to explain the shift in the position of I/ma x 
from the bar to the trough, which is frequently observed. 
Analysis of results from the laboratory investigation of 
Reniers et al. [1997; see also Reniers and Battjes, 1996], 
although revealing the expected buildup of shear wave 
intensity in the downstream direction, with the eventual 

cross-shore momentum flux being something like that 
predicted by Church et al. [1992] (though in this case the 
contribution in the trough seems to be considerably 
less), also failed to show significant changes in the mean 
longshore flow due to shear wave mixing (see section 4 
for a description of this experiment). However, two 
longshore current peaks have been observed during lab- 
oratory dye experiments [Reniers and Battjes, 1997a], and 
it appears that such "dual-peak" currents can also be 
observed in the field when a mean alongshore pressure 
gradient is absent (A. J. Reniers et al., Effects of along- 
shore nonuniformities on longshore currents measured 
in the field, submitted to Journal of Geophysical Re- 
search, 1999) (see also Sallenger and Howd [1989] and 
section 6). 

Ozkan-Haller and Kirby [1999] also observe that the 
final mean longshore current profiles (including instabil- 
ities) obtained for three different values of M (including 
M - 0) were very similar, although in the absence of 
mixing there was a marked increase in the kinetic energy 
of the perturbations. The effect of the shear waves in this 
case was strongly to mix the alongshore momentum, 
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Figure 11. Frequency-cyclic wavenumber spectra S(f, k) (m 3 s -•) for measured and computed longshore 
velocity at 35 m for (left column) October 15, (middle column) October 16, and (right column) October 18. 
The estimated shear wave velocity (data, ½est -- 0.83 m s -• for October 15; ½est = 0.83 m s -• for October 16; 
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equation for the "best fit" dispersion (dashed lines) line is noted above each plot. Contour levels plotted are 
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reducing the longshore current peak over the bar and 
increasing that in the trough. 

The complicated vortical structures generated in the 
simulations of Slinn et al. [1998] and Ozkan-Haller and 
Kirby [1999] can be seen in Plates 1 and 2. The detailed 
dynamics of these vortices are illustrated further in Plate 
3. Here vorticity is shown as a function of the alongshore 
coordinate (y) and time at one cross-shore location for 
about 5 hours of one simulation from October 18 at 

SUPERDUCK. The vortex interactions are evident and 

consist primarily of a smaller, faster vortex catching up 
with a larger, slower one. As the smaller vortex collides 
with the larger one, it immediately becomes larger and 
slows down, whereas the initially larger, more coherent 
structure loses most of its energy and speeds up. The 
smaller, faster vortices in Plate 3 mostly possess negative 
vorticity, opposite to the larger structures, although 
other simulations have similar collisions where both 

vortices have the same rotation. This process is de- 

scribed in detail by Ozkan-Haller and Kirby [1999]. To 
the observer the result is a large coherent vortex, which 
undergoes a small phase shift (as the collision occurs). In 
effect, the vortices exchange identities, and when the 
next small, fast vortex encounters the large one, identi- 
ties are similarly exchanged. The whole process is rem- 
iniscent of a group velocity, with the large, coherent 
vortical structures mostly propagating at fairly constant 
velocities but with individual, faster vortices being more 
intermittent in character. This was also noted byAllen et 
al. [1996], who remarked that in a regime between that 
of finite amplitude, equilibrated waves (which do not 
collide) and a more irregular regime like that depicted in 
Plate 3, wave group-like structures were even more 
evident. 

This group-like structure, in which different vortices 
can possess different speeds, may seem to contradict the 
nondispersive character of the observations. However, it 
is important to note that most of the larger vortices are 
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stable structures and mostly propagate at the same 
speed; in contrast, the smaller, faster disturbances are 
ephemeral (see Plates 3 and 4). 

This process provides a mechanism by which the 
length scale of shear instabilities may increase; vortex 
interactions produce one large structure, with the 
smaller vortex either decaying or colliding with another 
larger structure. The main structure of the resulting flow 
is provided by the large eddies. The simulations of/lllen 
et al. [1996] and Ozkan-Haller and Kirby [1999] on a 
plane beach (see Figures 8 and 16 of/lllen et al. [1996] 
and Plate 4 of the present paper) seem to agree on the 
vortex dynamics, although Ozkan-Haller and Kirby [1999] 
note that some of the smaller vortices disappear. The 
simulations of Ozkan-Haller and Kirby [1999] on a barred 
beach show a much more complicated picture, depend- 
ing on the amount of eddy viscosity included (compare 
Plate 3 with Figure 23 of Ozkan-Haller and Kirby [1999]). 
Essentially, though, the interactions are similar. 

These complicated vortex dynamics were also the 
subject of speculation as to the generation of vortical, 
eddy-type motions in the surf zone by other means 
[Peregrine, 1995, 1998a]. Work in this area is discussed in 
section 5. 

4. FIELD OBSERVATIONS, EXPERIMENTAL 
INVESTIGATIONS, AND CONDITIONS LEADING 
TO THE FORMATION OF SHEAR WAVES 

4.1. Field Observations 

The first clear evidence of the existence of shear 

waves was given by Oltman-Shay et al. [1989] (see Figure 
2 and section 1). Further evidence from the same site has 
subsequently been presented [Dodd et al., 1992]. Subse- 
quent field campaigns from the same location (DELI- 
LAH [Crowson et al., 1988]; DUCK'94 [Birkemeier and 
Thornton, 1994]; and Sandy Duck) have also revealed 
abundant evidence of these motions. However, evidence 
from other sites worldwide has been less forthcoming. 
Dodd et al. [1992] investigated the possible observation 
of these motions at Leadbetter Beach, California. They 
examined motions observed during the Nearshore Sed- 
iment Transport Study (NSTS) of 1980, but comparisons 
of theoretical predictions and observations were less 
conclusive because the observed motions were less co- 

herent than those seen at Duck. However, this relative 
lack of coherence is consistent with the smaller current 

shear observed there. Subsequently, Oltman-Shay and 
Howd [1993] have reanalyzed the data from Leadbetter 
Beach and have shown convincing evidence of shear 
waves at this site. They show even clearer evidence of 
such motions from observations made at the Torry Pines 
field site (also in California) from the same study. Both 
beaches are notably different from the one at the Duck 
site, in that they have steeper offshore profiles and are 
planar (i.e., they have no surf zone bars). The clearer 
evidence from the Torry Pines site perhaps reflects the 
shallower surf zone slope there (relative to Leadbetter 

Beach), although the implied offshore shear is no 
greater, because the cross-shore extent of the longshore 
current is much larger [see Oltman-Shay and Howd, 
1993, Figure 3]. 

Other, preliminary evidence from the Trabucador 
Bar off the Spanish coast near Barcelona perhaps indi- 
cates the presence of shear waves there [Falqu•s et al., 
1994], but no more than this. Falqu•s et al. [1994] present 
a stability diagram based on linear theory including both 
bottom friction and eddy viscosity. This figure (see Fig- 
ure 12) indicates the "position" of various field sites and 
laboratory setups in this regime. Interestingly, the anal- 
ysis ofFalqu•s et al. [1994] predicts instability at both the 
SUPERDUCK and Trabucador Bar sites but stability at 
Leadbetter Beach. Observations of rip currents, made at 
La Jolla, California [Smith and Largier, 1995], also indi- 
cate the possible occurrence of instabilities at this site. 

4.2. Laboratory Experiments 
The relevance of shear instabilities to laboratory ex- 

periments was assessed by Putrevu and Svendsen [1992]. 
They identified typical length scales of O (8 m) and 
timescales O (20 s) for shear waves based on the earlier 
experiment of l/isser [1984b]. In addition, they estimated 
the temporal growth rate of the shear instabilities, con- 
cluding that in the Visser experiment dissipative effects 
were dominant and therefore suppressed the occurrence 
of shear instabilities. 

A second assessment was made by BrOker et al. [1994], 
who scaled the numerical results of Deigaard et al. [1994] 
to laboratory conditions. They concluded that the length 
of the basin should be about 50-100 m, if an rms wave 
height of 10 cm were considered, before shear instabil- 
ities would become apparent. 

In the spring of 1994, Reniers et al. [1994] performed 
laboratory experiments in a multidirectional wave basin 
40 m long by 25 rn wide (see Figure 13) to examine the 
generation, growth, and equilibrium conditions of shear 
instabilities under controlled conditions. On the basis of 

previous investigations the bottom profile was optimized 
and conditions were selected that were considered most 

conducive to the generation of shear instabilities. 
The experiments were conducted with unidirectional 

monochromatic and random waves with an incidence 

angle of 30 ø . Recirculation of the longshore current was 
provided for by a pump system in order to develop a 
realistic uniform base flow with a shear structure similar 

to that in the field [Visser, 1984a]. Different incident 
wave heights, wave periods, and water levels, as well as a 
barred and nonbarred concrete profile, were used to 
assess their effect on the shear instabilities [see Reniers et 
al., 1997, Table 2]. To look for shear instabilities, spec- 
tral analyses in the frequency and frequency-wavenum- 
ber domain of the current velocity time series obtained 
with the current meters in the spatially lagged longshore 
arrays were performed. An example of anf-ky spectrum, 
obtained for a test with random waves, is shown in 

Figure 14 (note that here ky -= k). The area in between 
the zero-mode edge wave dispersion curves represents 
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printed from Falqu& et al. [1994] with permission from the 
American Society of Civil Engineers. 

energy density associated with gravity waves. The ob- 
served shear instability energy density is clearly outside 
this domain. For regular wave conditions the energy 
density within the gravity wave domain was negligible. 

Shear instabilities occurred in all the cases where a 
barred profile was used. The mixing associated with the 
presence of shear instabilities is shown in Figure 14, in 
which the momentum flux R(xi) at a cross-shore loca- 
tion in a single transect is shown (R = ph(xi) {u(xi, t), 
v(xi, t)}), where p is the water density and angle brack- 
ets represent a time average. The buildup downstream is 
evident. For tests with a plane profile, shear instabilities 
were not detected. 

The occurrence of strong vortical motions is apparent 
from a sequence of snapshots of the surface elevation 
(see Plate 5). Starting at the upper left panel, we see that 
after passing the bar crest, waves stop breaking in the 
trough and propagate farther toward the shoreline, 
showing curved wave crests due to bottom refraction. 
Given the decreasing depth from trough to water line, a 
convex curvature is expected, which is indeed apparent. 
A few seconds later a local disturbance is present, show- 
ing concave instead of convex wave crests (upper right 
panel of Plate 5), where current refraction due to the 
presence of shear instabilities takes precedence over 
bottom refraction. Further in time this oscillation prop- 
agates downstream, thereby increasing in magnitude, 
displaying an increased interaction with the incident 
wave crests. 

5. OTHER CAUSES AND INTERPRETATIONS 
OF VERY LOW FREQUENCY SURF ZONE 
CURRENT FLUCTUATIONS 

Prior to the discovery of shear waves, infragravity 
motions were thought primarily to be a result of wave 
groupiness [see, e.g., Mase and Iwagaki, 1986]. However, 
once infragravity energy was generated, it could reside in 

•.X 
mobile carriage 

l\ ':'::' ::'-': 
pipeline pump 

I 33 m I 

Y 

Figure 13. Layout of experiment, including position of current meters in upstream and downstream 
alongshore arrays, denoted by markers. From Reniers [1999]. 
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Figure 14. (left) The f - ky spectrum of alongshore velocity for test SO014 (water depth 55 cm; wave height 
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Estimated wave-breaking induced lateral mixing is given as a reference (dashed line). From Reniers [1999]. 

different types of motions. One of the most investigated 
has been edge waves [see Eckart, 1951; Huntley and 
Bowen, 1973; Huntley et al., 1981; Oltman-Shay and 
Guza, 1987; Ursell, 1952], which are trapped gravity 
modes. In fact, it was the stark difference between the 
kinematics of shear waves and edge waves that first 
alerted scientists to this new phenomenon (see section 
1). Recently, Kirby et al. [1999] have examined the ex- 
change of energy between edge and shear waves. Low- 
frequency energy can also exist in so-called leaky (non- 
trapped) modes [see, e.g., Suhayda, 1974]. Another 
possible source of low-frequency energy generation 
linked to the wave field has been given by Shemer et al. 
[1991], who propose a mechanism stemming from a 
resonant triad interaction between a wave field and its 

two most unstable sidebands, which then exhibits a slow- 
time modulation, and Tang and Dalrymple [1989], who 
examine the effect of intersecting wave trains, which can 
lead to an alongshore, group-scale modulation of radia- 
tion stress field. All these mechanisms rely on the infra- 
gravity energy being linked to the wave field, with it 
being subsequently transferred to the surf zone by some 
mechanism [see, e.g., Symonds et al., 1982; Sch•iffer, 
1993]. 

An important distinction between these and shear 
wave motions is that the former are forced phenomena, 
whereas the latter are free. A discussion of these types of 
different motions in the context of morphodynamical 
instabilities is given by N. Dodd et al. (The use of 
stability methods for understanding the morphodynami- 
cal behavior of coastal systems, submitted to Journal of 
Coastal Research, 2000). 

More recently, however, the interest in nearshore 
vortical motions has led to an interest in the direct 

generation of these motions, particularly by the long- 

shore current shedding eddies. Bed topography is rarely 
uniform alongshore, except on megatidal beaches, and 
one result of this is that any significant kink, bump, or 
hollow can be a source for eddy shedding when a rea- 
sonably coherent current passes by; precisely this effect 
was noted in the numerical model investigation by San- 
cho and Svendsen [1999; see also Slinn et al., 2000]. 

Deigaard et al. [1994] had earlier investigated impos- 
ing alongshore periodic bed perturbations on a shear 
wave simulation. They discovered that imposing a peri- 
odic perturbation on the bar (400 m wavelength) led to 
the complete suppression of any shear waves when the 
perturbation amplitude reached 0.4 m (on an unper- 
turbed bar crest depth of 1.5 m). In contrast, Sancho and 
Svendsen [1999] find that a periodic rip channel in a 
longshore bar acts as a source of destabilization so that 
shear instabilities are observed sooner, although the 
average dynamics are unaffected. The rip channels of 
Sancho and Svendsen [1999] are 10% deeper than the 
unperturbed depth on the bar crest (rip channels of 
Deigaard et al. [1994] have a corresponding depth of 27% 
of the unperturbed depth). However, it appears that it is 
the form of the alongshore perturbations that is the 
cause of the differences, with sinusoidal perturbations of 
Deigaard et al. [1994], in effect, causing the longshore 
current to become topographically controlled, so no 
longer prone to instability. In contrast, Sancho and 
Svendsen [1999] use a nonsinusoidal perturbation, in 
which the rip channels behave much more like isolated 
channels. In fact, Sancho and Svendsen [1999] also in- 
vestigate nonperiodic disturbances and find little differ- 
ence between the two. Slinn et al. [2000] examine these 
effects and also conclude that alongshore variability can 
be an important factor for shear wave dynamics. In a 
study on the mean longshore current, Putrevu et al. 
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Plate 5. Snapshots with an interval of approximately 4 s (clockwise starting in the upper left panel) of the 
experimental setup and wave field during test SA243 (regular waves; water depth 55 cm; wave height 8.0 cm; 
period 1.2 s). From Reniers [1999]. 

[1995] show that deviations of about 10% from along- 
shore homogeneity can lead to differences of up to 30% 
in (steady) longshore current predictions. This seems to 
agree with the findings from the shear wave studies. 

Another source of eddies is the edges of breakers [see 
Peregrine, 1998b]. Breakers are, in reality, of finite 
length, or alternatively they may have gaps within them. 
There are two reasons for this: (1) The incident waves do 
not have infinite crests (this cause is rather irregular), 
and (2) refraction and diffraction can concentrate or 
diffuse wave energy, leading to enhanced or reduced 
breaking. This is moderately regular since much refrac- 
tion and diffraction is due to bottom topography, which 
changes only slowly (in terms of the usual measurements 
of currents), if at all. Interestingly, this latter mechanism 
directly links the wave field to the generation of vorticity 
in the surf zone. 

Finally, flows across the beach due to streams or exits 
from lagoons can also act as sources of vorticity. These 
are generally rather obvious but can be expected to be 
liable to break up into eddies (see the jet flow photo- 
graphs of Dracos et al., 1992]). Dodd and Falqu•s [1996] 
also noted this possibility and cited, in particular, coast- 
line interruptions as being possible sources of shear 
instabilities. 

6. FUTURE WORK 

So far only Deigaard et al. [1994] have examined the 
capacity for shear waves to transport sediment. They 
find that instabilities actually reduce longshore transport 
just shoreward of the bar crest (i.e., at the peak of the 
longshore transport in the absence of shear waves) by 
about 17%. The presence of the shear waves also in- 
duces a cross-shore sediment transport, the effect of 
which is primarily to remove material from the shore- 
ward face of the bar, depositing it both farther offshore 
and on the bar crest. They find a cross-shore sediment 
transport rate of 1 m 3 m -• h -1, which is substantial 
compared with other contributions. Further work on this 
aspect and particularly on the capacity of eddies (vorti- 
ces) to transport suspended sediment or dissolved ma- 
terial would seem important. 

On the numerical side, recent computational work by 
Allen et al. [1996], Slinn et al. [1998], and Ozkan-Haller 
and Kirby [1999] shows frequent development of eddies 
and interesting behavior of eddies in the nearshore en- 
vironment. This work should be further developed to 
gain greater understanding of eddy creation and growth 
and of the behavior of isolated eddies, pairs of eddies, 
and collections of eddies in the beach environment. 
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Once eddies have formed, they move by advection in the 
current field and by the effect of their "image" in the 
topography. This latter effect makes eddies tend to fol- 
low bed contours. This is not well proven or docu- 
mented, but for a plane beach there is a family of these 
eddy-type solutions, of which Hill's spherical vortex 
[Lamb, 1932] is one limit [see Peregrine, 1995, 1998a]. 
This implies that if there is some moderately regular very 
low frequency fluctuation in a velocity measurement at a 
point, then one should look "upstream" and along bed 
contours to see if there is a likely source of eddies. 
Furthermore, eddies can be expected to have a long life 
in the surf zone on a gently sloping beach. This nonlinear 
numerical modeling approach eventually needs to be 
extended to include feedback onto the wave field. 

Work on the effect of alongshore nonuniformity has 
shown that important dynamics can be missed by assum- 
ing alongshore homogeneity [Sancho and Svendsen, 
1999; Slinn et al., 2000], even though at least to a first 
approximation the assumption is certainly reasonable. 
Nevertheless, this area is still relatively unexplored, and 
it also seems important that mean alongshore gradients 
(albeit very small ones) should be investigated. Such 
gradients may indeed account for some "anomalous" 
mean longshore current profiles (in that the position of 
Vmax may not be where it is expected), and the shear 
instability climate may be different in such cases, where 
the profile is not wholly determined by the wave forcing. 

On the theoretical side, there would appear to be a 
number of areas still ripe for exploration, notably further 
investigation of growth by resonance and subcritical 
bifurcations [Shrira et al., 1997] and of energy exchanges 
between shear waves and other forms of nearshore mo- 

tions (e.g., edge waves) [Kirby et al., 1999]. 
Perhaps the biggest challenge, however, is to measure 

velocities over the whole surf zone at once, preferably in 
such a way that the incident wave motions can be sepa- 
rated out, in other words, to obtain the kind of synoptic 
view of surf zone currents and structures presently pro- 
vided by numerical models. The impressive recent work 
on video imaging [Holman, 1993] is, at present, of com- 
paratively little use for giving a picture of the surf zone 
circulation. Acoustic Doppler techniques can work 
where there is little air entrainment and perhaps could 
be tried on the laboratory scale. Overall future develop- 
ments should lead to more detailed knowledge and a 
better understanding of the coherent structures of the 
surf zone. 

APPENDIX A: NUMERICAL METHODS 

Two different classes of problems are considered 
here: (1) linear stability analysis and (2) nonlinear tem- 
poral evolution. 

A1. Linear Problem 

The linear stability analysis solves numerically the 
eigenvalue problem defined by (8) or its various exten- 
sions and counterparts. It reduces to determining the 
eigenvalues and eigenfunctions given a value for k (for 
the spatial stability problem the roles of to and k are 
reversed). If the rigid-lid assumption is applied, only one 
equation need be solved (an equation like (8) for poten- 
tial vorticity). Three different techniques have so far 
been used: a finite difference discretization, a spectral 
discretization, and a shooting method. 

Finite difference schemes and spectral methods con- 
sider the discretized eigenvalue problem as a system of 
algebraic equations A• = toB•, where the boundary 
conditions are introduced as a part of the system. Both 
techniques simultaneously find the n - n bc eigenfunc- 
tions and eigenvalues, where n is the number of finite 
difference nodes (spectral method collocation points) 
and n bc is the number of boundary conditions. In both 
methods, therefore, the number of eigenfunctions/values 
is proportional to the accuracy (as opposed to the order) 
of the discretization, so it is important to distinguish 
physical and numerical (or spurious) eigenmodes. For- 
tunately, this is typically easy to do, not least because the 
physically important modes are usually those with the 
largest growth rate, and can be achieved simply by in- 
creasing the number of nodes (points) and noting the 
convergence (or otherwise) of the eigenvalues. The ad- 
vantage of the spectral method over the finite difference 
method is the smaller number of points usually needed 
(compared with finite difference nodes) because they 
can be tailored to suit the problem in hand [see Falqu•s 
and Iranzo, 1994; Ozkan-Haller and Kirby, 1997b]; how- 
ever, finite difference methods are usually more robust 
and easier to program. The finite difference discretiza- 
tion is achieved by central differencing; see Dodd et al. 
[1992] (second-order accuracy) and Putrevu and Svend- 
sen [1992] (fourth-order) among others. 

Spectral schemes for these problems are more diverse 
[see Boyd, 1987; Canuto et al., 1987]. Falqu•s and Iranzo 
[1994; see also Iranzo and Falqu•s, 1992] use a domain 
decomposition technique, where the rational Chebyshev 
collocation scheme [Boyd, 1987] and common Cheby- 
shev techniques for finite intervals [Canuto et al., 1987] 
are combined in order to reach the highest resolution at 
the peak and at the sea face of the mean velocity profile. 
The integration domain [0, c•) is cut into two parts: 
[0, L•) and [L•, c•). Then Chebyshev collocation is used 
in the finite part and rational Chebyshev is used in the 
infinite one. Since a system of second-order ordinary 
differential equations is considered, the continuity of the 
solution 3(x) and its derivative d3(x)/dx has to be 
imposed at the matching point x = L•. Both intervals 
are mapped onto the interval [-1, 1), and the differen- 
tial equation is discretized at Gauss-Lobatto nodes. A 
similar approach is taken by Ozkan-Haller and Kirby 
[1997a] (although they solve the nonlinear problem; see 
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below). The Chebyshev collocation calculations can be 
carried out efficiently using a fast Fourier transform. 

Although finite difference or spectral methods are 
frequently adequate, neither is accurate compared with 
shooting methods. Dodd et al. [1992] used these methods 
to provide highly accurate estimates for eigenvalues/ 
functions [see also Falqu•s and Iranzo, 1994]. A draw- 
back is that they usually require a good estimate of the 
eigenvalue before convergence can be achieved. Once 
an eigenvalue has been identified, however, local Taylor 
approximations can be used to estimate neighboring 
values, and highly accurate estimates for dispersion 
curves are thus produced; spectral/finite difference 
methods often fail to do either for small values of k or 

for values of k such that o• i = 0. Another problem is that 
they are sensitive to discontinuities in the coefficients of 
the equations (i.e., in the longshore current or depth 
profile, or their first- or second-order derivatives) [see 
Dodd et al., 1992]. Therefore cubic splines or some other 
method of constructing smooth profiles must be used. 
These methods require the second-order (or if eddy 
viscosity is included, fourth-order) ordinary differential 
equation (ODE) to be rewritten as a system of first order 
ODEs [see Press et al., 1992]. Note that both spectral and 
shooting methods have also been used to solve the 
spatial stability problem [see Dodd and Falqu•s, 1996]. 

A2. Nonlinear Evolution 

Fully nonlinear shear wave models fall under the 
much wider heading of partial differential equation solv- 
ers. Therefore we do not attempt to give this topic any 
more than a cursory treatment. Because of the complex- 
ity and differences of the models and the different prob- 
lems so far solved, it is impossible to judge one against 
the other. 

Spatial discretization of the momentum and mass 
conservation equations has been achieved by either fi- 
nite difference [Allen et al., 1996; Slinn et al., 1998] or 
spectral methods [Falqu•s et al., 1994; Ozkan-Haller and 
Kirby, 1996, 1999]. However, the full nonlinear problem 
introduces a decision about how to represent the along- 
shore dependence, and because of the qualitative differ- 
ence between alongshore and cross-shore directions, this 
varies somewhat. Ozkan-Haller and Kirby [1997a], who 
describe the details of the approaches used in other 
studies of theirs, use alongshore Fourier decomposition 
and cross-shore Chebyshev representation and go fur- 
ther and relax the rigid-lid assumption and allow for a 
moving shoreline (although in their shear wave compu- 
tations [Ozkan and Kirby, 1995; Ozkan-Haller and Kirby, 
1996, 1999] they do not include the moving shoreline). 
They achieve this by two coordinate transformations: the 
first from the physical domain with the moving boundary 
at one edge, to a fixed domain, and the second from a 
semi-infinite to a finite domain. The sensitivity of the 
spectral method to boundary conditions [Canuto et al., 
1987] is circumvented by use of the characteristic form 

for the partial differential equations, as is usual in wave 
and shock modeling codes. 

Other models, based on combining existing hydrody- 
namical software, have also been used successfully [see 
Damgaard, 1993; Deigaard et al., 1994; Reniers and Bat- 
tjes, 1997b], as have large eddy simulation models [Nad- 
aoka and Yagi, 1993; Sinding et al., 1995; Yagi and Nad- 
aoka, 1997]. 

The aforementioned two approaches are periodic by 
implication because of the Fourier decomposition. Allen 
et al. [1996] and Slinn et al. [1998] solve the full nonlinear 
problem with the rigid lid imposed using finite difference 
methods. They impose periodic boundary conditions and 
experiment numerically for any domain dependence. 
They also introduce a biharmonic diffusion term into the 
momentum equations to damp numerical instabilities. 
Ozkan-Haller and Kirby [1997a] deal with numerical in- 
stabilities by a high-order filtering technique [see Sha- 
piro, 1970]. 

For the time integration, codes seem predominantly 
to have made use of predictor approaches (Allen et al. 
[1996] and Ozkan-Haller and Kirby [1997a] for Adams- 
Bashforth second and third order, respectively). These 
approaches have all the advantages (explicit; stable for 
nonstiff systems (note that no corrector steps are appar- 
ently included in these approaches)) and disadvantages 
(multi-time-level) traditionally associated with these 
methods [see Press et al., 1992]. Falqu•s et al. [1994] use 
a semi-implicit Euler scheme, with the nonlinear terms 
therefore being represented at the old time level. Being 
semi-implicit it is thought to be highly stable. 

A3. Modeling Approaches: Coupling With the Wave 
Field 

In the nonlinear shear wave studies discussed in sec- 

tion 3, there are two different types of approaches, aside 
from differences in numerical schemes, etc. One is to 
decouple the potential vorticity field from the wave field 
that originally generates it. This approach is taken by 
Falqu•s et al. [1994],Allen et al. [1996], Slinn et al. [1998], 
and Ozkan-Haller and Kirby [1999]. The other approach 
is to retain the coupling. This approach has so far been 
fully implemented only by Deigaard et al. [1994]. 

In the first approach the equations being solved nu- 
merically are the mean continuity and the two momen- 
tum equations, whether or not the rigid-lid assumption is 
imposed [see Allen et al., 1996; Slinn et al., 1998; Ozkan- 
Haller and Kirby, 1999] or the potential vorticity equa- 
tion alone [see Falqu•s et al., 1994]. The attraction of this 
approach is that it allows a more efficient and more 
transparent investigation than the "black-box" type of 
approach used by Deigaard et al. [1994]. The disadvan- 
tage is that even though the wave fields used to generate 
the alongshore current may be realistic and consistent 
with observations (both Slinn et al. [1998] and Ozkan- 
Haller and Kirby [1999] go to great lengths to generate 
physically realistic V(x) profiles for each bathymetry 
being examined), there will nevertheless be no feedback 
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onto the wave field. The effect of this feedback can be 

seen clearly in Plate 5. These "vorticity" models (which 
include the large eddy simulations of Nadaoka and Yagi 
[1993], Yagi and Nadaoka [1997], and Sinding et al. 
[1995]) can then be "tweaked" to examine the effect of, 
say, reducing or increasing dissipation while retaining 
the same longshore current profile. (Dodd [1994] exam- 
ined differences between linear stability predictions 
from coupled and decoupled models (coupled only via 
bottom friction).) This ability can be very important, 
because it can give insight into the effect of bottom 
friction or eddy viscosity. On the other hand, nonphysi- 
cal results, or at least results that would not be observed 
in the field, can sometimes then be generated. For in- 
stance, the vorticity models can easily be tuned to gen- 
erate shear waves on a plane beach, simply by reducing 
dissipation. The model of Deigaard et al. [1994], in con- 
trast, did not show such instabilities on a plane beach. 
Observations tend to tally with there being reduced 
shear wave activity on plane beaches, although shear 
waves have since been observed on plane beaches [Olt- 
man-Shay and Howd, 1993]. The black-box or full ap- 
proach can therefore provide a more complete picture. 
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