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ABSTRACT

Ian A. Nienhueser: Discontinuous Galerkin methods and higher-order
temporal approximations for modeling saturated groundwater flow

(Under the Direction of Cass T. Miller)

Challenges persist in the accurate and efficient solution of groundwater flow equa-

tions for heterogeneous aquifers. Low-order approximations in both space and

time have dominated traditional approaches for modeling saturated flow. Com-

parisons of either a higher-order spatial or temporal approximation with its low-

order counterpart have shown significantly improved accuracy and efficiency for

higher-order methods. Recently, discontinuous Galerkin methods have been in-

vestigated since they readily produce higher-order spatial approximations while

still conserving mass locally. Furthermore, they achieve this without requiring

the approximation of additional unknowns, such as hydraulic head gradients,

as is done with mixed finite element methods. In this work, we apply the dis-

continuous Galerkin finite element method with an adaptive higher-order time

discretization to single-phase groundwater flow in heterogeneous porous media.

We compare these results to the standard Bubnov Galerkin finite element method

coupled with an adaptive higher-order temporal approximation method on three

test problems of varying heterogeneity, while varying spatial and temporal or-

der. We found substantial efficiency and accuracy are achieved by combining

two high-order methods in comparison to high-order, low-order and low-order,

low-order couplings. We also demonstrated that when coupled with an adap-

tive higher-order temporal method, discontinuous Galerkin method is capable of

high-order L2 norm h convergence rates as with the non locally mass conserva-

tive Bubnov Galerkin method, at a computational expense comparable to that

of Bubnov Galerkin.
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Notation

Roman Letters

Be
`,j value in [B] associated ` and j DOFs on element e

[B] stiffness and coupling matrix

B(·, ·) stiffness and coupling bilinear operator

f source function

F residual function

FΩe
mapping function from the reference element to the element e

Hm Sobolev space

J jacobian

ke spatail order on element e

k set of all ke

K hydraulic conductivity

{L} right hand side vector

L(·) right hand side operator

[M ] mass matrix

M(·, ·) mass bilinear operator

ni global norm

ne
i local norm

N number of elements over the domain

Ps spatial order

Pt temporal order

Pke
polynomial subset of Hm of order ≤ ke

Pk set of all Pke

q mass flux

qb q boundary value



s time step index

Ss specific storage

t time

t0 t initial value

tcpu CPU time

T temporal domain limit

u hydraulic head

û u analytic or dense grid solution

ũ u discrete approximation

u0 u initial value

ub u boundary value

ue
` DOF ` on element e

v test function

x spatial location

xi Ωi ∩ Ωi+1

w test function

y DAE dependent variable vector

y0 y initial value

y′ y temporal derivative

y′0 y′ initial value

Greek Letters

α FLCBDF coefficient

Γ boundary of Ω

ΓD Dirichlet boundary of Ω

Γe
D ΓD ∪ Ωe

ΓN Neumann boundary of Ω

Γe
N ΓN ∪ Ωe

Γint set of inter-element boundaries

Γe
int Γint ∪ Ωe

εa absolute tolerance for DAE integrator

εL2 L2 error norm
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εr relative tolerance for DAE integrator

η total number of DOF

τh partition of Ω

φ basis function

φ̂ basis function on reference element

φe
` basis function of order ` on element e

Ω spatial domain

Ω̂ reference element

Ωe element e

Abbreviations

BE backward Euler

BDF backward difference formula

BG Bubnov Galerkin

BGPtPs
Bubnov Galerkin approximation of temporal order Pt and spatail order
Ps

CN Crank-Nicolson

CPU central processing unit

CV control volume

DG discontinuous Galerkin

DGPtPs
discontinuous Galerkin approximation of temporal order Pt and spatail
order Ps

DAE differential algebraic equation

FD finite difference

FE finite element

FEM finite element method

FLCBDF fixed leading coefficient backward difference formula

IVP initial value problem

MFEM mixed finite element method

MHFEM mixed hybrid finite element method

MOL method of lines

ODE ordinary differential equation

OC orthogonal collocation
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PDE partial differential equation

SGFE saturated groundwater flow equation
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Chapter 1

Introduction

Groundwater chemical transport models are used everyday by practitioners

and researchers of a wide range of fields to assess and predict effects of aquifer

contamination in terms of human health, environmental health and legal obliga-

tion. These chemical transport models rely of groundwater flow models, which

solve the partial differential equation (PDE) that describes saturated groundwa-

ter flow.

Most frequently this equation is solved with low-order temporal approxi-

mations combined with either finite difference (FD) or the standard Bubnov

Galerkin (BG) finite element method (FEM) in space. The FD method [65, 49,

69, 52] is capable of maintaining a local mass balance and providing a basis to

compute accurate pathlines on a structured grid that is irregularly spaced. The

standard BG FEM [12, 63, 47, 54] achieves approximations on unstructured ir-

regular grids, allowing it to fit irregular domains naturally. BG FEM also allows

for straight forward local refinement of h, gird spacing and p, order, but the

results contain discontinuities in the velocity vectors across element faces. These

discontinuities result in inaccurate pathlines [28] and elemental mass imbalance

[70, 31], while the accuracy of both are essential for chemical transport models

[26].

Several methods have been developed to overcome these obstacles. The most



promising include, the mixed finite element method (MFEM) [14, 3, 16, 15, 27,

7, 70, 20, 28, 31, 56] and the discontinuous Galerkin (DG) finite element method

[18, 19, 4, 59, 61, 62, 4, 6, 41]. Both of these methods achieve local mass balance

and accurate path lines on an irregular grid. To accomplish this, the MFEM

requires the solution of flux as a variable in addition to the usual hydraulic head,

while DG does not [58]. In addition DG is capable of high-order convergence

rates and is well suited for adaption [58].

Research has shown substantial improvements in accuracy and efficiency can

be achieved by using higher-order solution methods in either space or time in

comparison to low-order methods when coupled with low-order methods in the

remaining dimension [52, 31, 62]. Further improvements have been found by

using higher-order methods in both space and time [24, 60].

This study serves as a preliminary analysis of the benefits achieved by com-

bining the higher-order DG spatial method with higher-order adaptive BDF in

time. To our knowledge this study represents a first for this coupling. We will

also draw comparisons to adaptive BDF’s with standard BG FEM. For our DG

method we chose the well suited formulation by Oden, Babuska, et al in [58].
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Chapter 2

Background

2.1 Model Formulation

The saturated groundwater flow equation (SGFE) is the partial differential

equation that results from the substitution of Darcy’s law into a simple mass

balance equation. Through laboratory experiments Henry Darcy found the em-

pirical relationship that the volumetric rate of flow through a sand column was

proportional to the area of the column and the loss in hydraulic head across the

column and inversely proportional to the length of the column in [25].

Hydraulic conductivity is the proportionality coefficient in Darcy’s law. SGFE

also requires specific storage as a parameter to account for the elasticity of the

porous medium under hydraulic pressure. The values of both these parameters

can be determined through laboratory experiments or by one of a number of

mathematical approximations.

The SGFE is well established. It is routinely used to accomplish successful

groundwater flow modeling [36]. However, challenges persist in field scale param-

eter determination and in the development of accurate and efficient numerical

solution methods.



2.2 Spatial Discretization

Spatial methods of approximation that have been used to solve the elliptic

and parabolic equations such as SGFE include FD, orthogonal collocation (OC),

OC on finite elements (FE), BG FEM, MFEM and DG FEM.

The FD method produces approximations on a structured grid with irregular

spacing. The resulting solution displays accurate velocity fields and local mass

balance. FD was used extensively in 1978 by Crittenden and Weber in there

models of fixed bed adsorbers [67, 22, 23, 21]. Due to its mass conservation

and ease of implementation FD is still used in the majority of saturated flow

modeling done today, as it is the basis of the popular MODFLOW package. For

these reasons as well as grid spacing adaptability and the lack of need for higher-

order with non-smooth solutions, FD is still at the leading edge of unsaturated

flow research [52].

Villadsen and Stewert developed OC in 1967 [66]. OC is a special case of

the method of weighted residuals developed by Finlayson in 1972 [33] and is

capable of producing high-order approximations to the solution of PDE’s on a

structured regular grid. It was applied to the elliptic terms of packed bed analysis

by Finlayson [34] in 1971 and by Crittenden in 1980 [24]. OC was extended to

OC on FE by Carey and Finlayson in 1975 [11] and by Chang and Finlayson

to OC on FE for elliptic equations in [13]. OC on FE allows for variable grid

spacing at high-orders. Carey and Finlayson noted similar results to those of

FEM.

FEM was developed independently and in parallel by a number of researchers

of various fields. Douglas developed a mathematical foundation for the FEM in

1972 [46]. FEM has been and continues to be used in a wide array of fields

ranging from flow modeling to structural engineering. Over the years FEM has

become a large class of methods that continues to grow. Those most applied to

groundwater flow include BG FEM, control volume (CV) FEM, MFEM and DG

4



FEM. BG is capable of high-order convergence rates on unstructured variable

grids with PDE parameters that vary continuously over the domain or discretely

between elements. However, as noted earlier, the application of BG to ground-

water flow results in elemental mass imbalance [70, 31] and inaccurate velocity

fields, [28] while precise mass balance and velocity fields are required for accurate

contaminant transport modeling [26]. Attempts to overcome these shortcomings

has resulted in CV FEM [35, 69], MFEM [14, 3, 16, 15, 27, 7, 70], DG FEM

[18, 19, 4, 59, 61, 62, 4, 6, 41] and the post-processing of pressure fields obtained

by BG [20, 28]. MFEM has been found to have advantages over the CV FEM

[28] and BG [57, 43].

MFEM is a collection of methods that overcome these mass balance errors by

enforcing mass balance across element boundaries through the solution of flux in

addition to the usual hydraulic head. However, the standard MFEM produces

a symmetric, indefinite linear system that can be poorly conditioned and as a

result, difficult to solve [42, 10, 8]. The mixed hybrid FEM (MHFEM) results in a

positive definite linear system through the use of additional Lagrange multipliers,

which represent the average pressure on the element face [10, 14]. MHFEM is

capable of producing second-order convergence rates on irregular unstructured

grids, while maintaining local mass balance and an accurate flow field. Because

of these abilities, MFEMs continues to be researched within the groundwater

field for both saturated [14, 29, 2, 45, 14, 1, 17, 71, 31] and unsaturated [3, 16,

15, 27, 8, 44, 56] flow.

The DG method includes a class of FEMs sharing the commonality of Leg-

endre polynomial basis functions that are discontinuous between elements. DG

has been used to solve a number of hyperbolic [18, 19, 4] as well as elliptic and

parabolic [59, 61, 62, 4, 6, 41] problems. Oden, Babuska, et al developed the DG

method for diffusion problems in 1998 [58], based on the formulations of Wheeler

in 1978 [68]. This method can deliver high-order accuracy, exhibits local mass

conservation and is well suited for adaption. Two papers have covered the ap-
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plication of DG to saturated groundwater flow simulation [62, 6]. Both achieve

local mass balance and high-order convergence rates and are based on the DG

formulations found in [58, 5]. Riviere and Wheeler [62] demonstrate solutions

based on continuous and discontinuous parameterizations in two and three spa-

tial dimensions, while Bastian and Reichenberger [6] present a multigrid method

applied to the DG method in two dimensions. DG is an active area of research.

2.3 Temporal Discretizations

In 1969 Gear developed a method for the automated integration of stiff or-

dinary differential equation (ODE’s) in [37], an extension of his earlier work

in 1967 [38]. This method is capable of sixth-order convergence rates. When

the differential-algebraic equations (DAE) resulting from the application of the

MOL coupling method are converted to ODE’s they often lose their algebraic

constraints, become more stiff and/or lose their sparseness, obviously decreasing

their viability and adding to the computational expense of solution [9, 53, 64].

As a result directly solving this DAE system is often more accurate and efficient.

In 1971 Gear produced the BDF method for the solution of DAE [39], which

remains the basis for many of the DAE solvers of today. The BDF discretizes the

temporal domain of DAE systems with the use of Lagrange polynomials. This

integration produces an algebraic system that can be solved by one of the publicly

available solvers. Adaptive DAE solvers can produce high-order approximations

to a level of accuracy determined by user provided error tolerances [50]. There

are many efficient DAE solvers currently available, while this continues as an

active area of research [9].
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2.4 Coupling

The MOL has been used extensively as a coupling mechanism for more than

20 years [24, 60, 51, 30, 32]. It allows for PDE systems to be converted to

systems of DAEs by maintaining a continuous temporal domain and discretizing

the spatial domain with the use of a spatial discretization method. The temporal

domain is maintained in a continuous fashion through a variable representation

of the temporal solution derivative. The temporal domain of the resulting DAE

system is then discretized [50].

After Crittenden and Weber’s extensive work with the use of low-order FD

coupled with second-order CN in the modeling of adsorbate concentrations in the

effluent of fixed-bed granular activated carbon reactors [67, 22, 21, 23] and similar

models by Finlayson with OC in 1971 [34], Crittenden, Wong, et al combined

high-order OC [66] with Gear’s sixth-order solver for stiff ODE’s [37] in 1980

[24], through this use of the MOL. While high-order in both space and time, this

model was limited to one spatial dimension, as well as to a spatial grid and PDE

parameters that were uniform throughout the domain.

In 1988 Pedit and Miller combined BG FEM with Gear’s ODE solver [40] to

examine the effect of varying spatial order between one and twelve on a fixed

number of nodes [60]. They modeled the competitive sorption of solutes on

solids in a completely mixed batch reactor in the radial spatial dimension of the

spherical coordinate system. There findings showed that with high-order in time,

error can be reduced by increasing spatial order.

Kees and Miller combined their adaptive high-order MOL DAE solver [50]

with FD to solve Richards’ equation and the two-phase flow equation in one

spatial dimension while analyzing several model formulations for there mass con-

servation abilities in 2002 [51]. This study showed that the temporally adaptive

high-order integration method provide substantial efficiency improvements over

first-order methods for a wide range of parameterizations, while maintaining an
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accurate local mass balance with the mass-pressure form of Richards equation

and the saturation-pressure form of the two phase flow equation.

Farthing, Kees, et al coupled the mass conservative three-dimensional low-

order MHFEM with the same MOL DAE solver to solve the SGFE and conducted

comparisons to CN and adaptive CN in 2002 [30]. They found this to be a

generally successful coupling without excessive overhead and that computational

savings were gained by using the DAE solver over the use of CN and adaptive

CN.

In 2002 Farthing, Kees, et al successfully solved the pressure form and a

mass conservative form of Richards’ equation by coupling MHFEM and the en-

hanced cell-centered difference MFEM with Kees’s MOL DAE solver in two spa-

tial dimensions, while comparing temporal orders [32]. The adaptive high-order

temporal method showed to be more efficient than adaptive first-order for all

cases tested, even when then spatial discretization dominated the computational

expense.

As a whole, these and other studies show that substantial improvements in

computational expense and accuracy are gained across a wide array of problems

by increasing order in space or time or both.
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Chapter 3

Approach

3.1 Introduction

We have combined the DG method in space with an adaptive higher-order

MOL in time to solve the time dependent SGFE in one spatial dimension. This

chapter covers a description of the problem formulation, spatial approximation,

temporal approximation, linear system solution methods, a high level algorithm,

and other implementation details.

3.2 Problem Formulation

The one dimensional SGFE solved in this study stems from the substitution

of Darcy’s law into a simple mass balance equation, where through the applica-

tion of a representative elementary control volume, mass is replaced by such a

volume multiplied by media porosity and fluid density, while making appropriate

assumptions. Slightly compressible flow has been assumed, meaning the spatial

derivative of the fluid density is insignificant relative to its temporal derivative.

We have also assumed that the temporal temperature fluctuation and chemical

constituent concentration are small and thus have an insignificant effect on the



fluid density. Under these conditions the SGFE takes the form

Ss

∂u

∂t
= −

∂q

∂x
+ f in Ω× [0, T ] (3.1)

with

q = −K
∂u

∂x
(3.2)

where q is fluid mass flux, u is hydraulic head, K is hydraulic conductivity, SS is

specific storage accounting for the compressibility on the fluid and media under

pressure, f is a source function, Ω ⊂ <1 is the spatial domain and [0,T] is the

temporal domain. Further detail on this derivation is available in groundwater

textbooks, including [36].

The initial and boundary conditions considered include

u(x ∈ Ω, t = 0) = u0 (3.3)

u(x ∈ ΓD, t ∈ [0, T ]) = ub (3.4)

q(x ∈ ΓN , t ∈ [0, T ]) = qb (3.5)

where u0 is an initial condition function, ub and qb are boundary condition func-

tions, Γ is the boundary of Ω, ΓD ∪ ΓN = {x1, xN} and ∅ = ΓD ∩ ΓN .

3.3 Spatial Approximation

3.3.1 Variational Formula Derivation

Following from [6, 58, 5], let τh be a partition of Ω into N elements Ωe =

(xe, xe+1). ni is a unit outward vector on {x1, xN} that is also arbitrarily chosen

to point toward the element with lower index on interior points Γint located at

the element edges.
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The DG method approximates weak solutions in finite-dimensional subspaces

of the broken Sobolev space

Hm(τh) = {v ∈ L2(Ω) : v|Ωe
∈ Hm(Ωe)∀Ωe ∈ τh} (3.6)

where m ≥ 1. So the functions may be discontinuous at element boundaries.

It is also useful to define inter-element jumps and averages of a function

v ∈ Hm(τh) as,

[v](xi) = v(xi)|Ωe
− v(xi)|Ωf

, e > f, xi = Ωe ∩ Ωf , (3.7)

and

〈v〉(xi) =
ni

2
(v(xi)|Ωe

+ v(xi)|Ωf
), xi = Ωe ∩ Ωf , (3.8)

From these definitions, for functions v, w ∈ Hm(τh), we can see the identity

[vw](xi) = ([v]〈w〉+ 〈v〉[w])(xi), (3.9)

Starting from the SGFE 3.1, for v ∈ Hm(τh) we have,

∫

Ω

v
∂q

∂x
dx+

∫

Ω

vSs

∂u

∂t
dx =

∫

Ω

vfdx. (3.10)

Breaking this integration into a sum of elemental integrations,

∑

Ωe∈τh

∫

Ωe

v
∂q

∂x
dx+

∑

Ωe∈τh

∫

Ωe

vSs

∂u

∂t
dx =

∑

Ωe∈τh

∫

Ωe

vfdx. (3.11)

Applying Green’s theorem,

−
∑

Ωe∈τh

∫

Ωe

q
∂v

∂x
dx+

∑

Ωe∈τh

{(vq)(xe+1)|Ωe
− (vq)(xe)|Ωe

} (3.12)

+
∑

Ωe∈τh

∫

Ωe

vSs

∂u

∂t
dx =

∑

Ωe∈τh

∫

Ωe

vfdx.

Noting that,

∑

Ωe∈τh

{(vq)(xe+1)|Ωe
− (vq)(xe)|Ωe

} (3.13)

=
∑

xi∈Γint

[vqni](xi) +
∑

xi∈ΓD

(vqni)(xi) +
∑

xi∈ΓN

(vqb)(xi),

11



where

[vqni](xi) = ([v]〈qni〉+ 〈v〉[qni])(xi), (3.14)

while (〈v〉[qni])(xi) is the flux jump between to elements, which if q is the solution,

must be zero. So,

[vqni](xi) = ([v]〈qni〉)(xi). (3.15)

Substituting Darcy’s law 3.2 into our weak formulation 3.12, while applying 3.13

and 3.15 we get,

∑

Ωe∈τh

∫

Ωe

K
∂u

∂x

∂v

∂x
dx−

∑

xi∈Γint

(

[v]

〈

K
∂u

∂x
ni

〉)

(xi)−
∑

xi∈ΓD

(

vK
∂u

∂x
ni

)

(xi)(3.16)

+
∑

xi∈ΓN

(vqb)(xi),+
∑

Ωe∈τh

∫

Ωe

vSs

∂u

∂t
dx =

∑

Ωe∈τh

∫

Ωe

vfdx.

The weak continuity of the solution at element boundaries requires that

∑

xi∈Γint

(〈

K
∂v

∂x
ni

〉

[u]

)

(xi) = 0 (3.17)

and

∑

xi∈ΓD

(

K
∂v

∂x
ni

)

(u− ub)(xi) = 0. (3.18)

These requirements are added as penalty terms to the weak formulation 3.16,

which when restructured becomes:

find u ∈ Hm(τh) such that B(v, u)+M

(

v,
∂u

∂t

)

= L(v), ∀v ∈ Hm(τh),

(3.19)

where

B(v, u) =
∑

Ωe∈τh

∫

Ωe

K
∂u

∂x

∂v

∂x
dx (3.20)

+
∑

xi∈Γint

(〈

K
∂v

∂x
ni

〉

[u]− [v]

〈

K
∂u

∂x
ni

〉)

(xi),

+
∑

xi∈ΓD

(

K
∂v

∂x
niu− vK

∂u

∂x
ni

)

(xi)
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M

(

v,
∂u

∂t

)

=
∑

Ωe∈τh

∫

Ωe

Ssv
∂u

∂t
dx, (3.21)

L(v) =
∑

Ωe∈τh

∫

Ωe

vfdx+
∑

xi∈ΓD

(

K
∂v

∂x
niub

)

(xi)−
∑

xi∈ΓN

(vqb) (xi), (3.22)

The same steps of derivation can also be applied to the initial condition to obtain,

ue(0) =
∑

Ωe∈τh

∫

Ωe

u0vdx. (3.23)

3.3.2 Discrete Formula Derivation

In the discrete formulation, the Sobolev spaceHm(Ωe) is replaced by Pke
(Ωe) ⊂

Hm(Ωe), consisting of polynomials of degree ke on Ωe. Stability of the method

was proven for ke >= 2 by Oden, Babuska, et al [58]. These polynomials are

produced through the mapping of polynomials on a reference element,

Pke
(Ωe) =

{

φ | φ = φ̂ ◦ F−1Ωe
, φ̂ ∈ Pke

(Ω̂)
}

(3.24)

where FΩe
: Ω̂→ Ωe is a mapping from the reference element to the element Ωe.

We chose to let Pke
(Ωe) be the set of, the commonly used, Legendre polynomials

up to order ke. Our discrete solution space becomes,

Pk(τh) =
∏

Ωe∈τh

Pke
(Ωe) (3.25)

where vector k consists of elements ke. Let

η = CardPk(τh). (3.26)

From the variational formula the discrete formulation used in this work is

obtained by letting

v =
∑

Ωe∈τh

ke
∑

`=0

φe
`(x) (3.27)

and by replacing u with ũ,

ũ =
∑

Ωe∈τh

ke
∑

j=0

ue
j(t)φ

e
j(x) (3.28)
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with φe
` and φe

j ∈ Pke
(Ωe), where ke + 1 is the number of degrees of freedom

(DOF) ue
j on Ωe. It is also useful to recognize that

〈

K
∂φe

`

∂x
ni

〉

= K
ni

2

dφe
`

dx
(xi)|Ωe (3.29)

and

[φe
` ](xi) = nin

e
iφ

e
`(xi)|Ωe, (3.30)

where ne
i is the outward unit normal to the end point xi of Ωe. With these

substitutions and simplification the discrete formulation becomes

find ue
j such that B(φe

` , φ
e
j){u

e
j}+M(φe

` , φ
e
j)

{

due
j

dt

}

= L(φe
`), (3.31)

∀φe
` and φe

j ∈ Pk(τh),

where

B(φe
` , φ

e
j) =

∫

Ωe

K
dφe

`

dx

dφe
j

dx
dx+

∑

xi∈Γ
e
D

Kni

(

dφe
`

dx
φe
j − φe

`

dφe
j

dx

)

(xi) (3.32)

+
∑

xi∈Γ
e
int

K
nin

e
i

2

(

dφe
`

dx
φe
j − φe

`

dφe
j

dx

)

(xi),

M(φe
`, φ

e
j) = −

∫

Ωe

Ssφ
e
`φ

e
jdx, (3.33)

L(φe
`) = −

∫

Ωe

fφe
`dx+

∑

xi∈Γ
e
D

Kniub

dφe
`

dx
(xi) +

∑

xi∈Γ
e
N

qbφ
e
`(xi), (3.34)

and the initial DOF are obtained by

ue
`(0) =

2`+ 1

2

∫

Ωe

u0φ
e
`dx (3.35)

Γe
D = ΓD ∪ Ωe, Γ

e
N = ΓN ∪ Ωe and Γe

int = Γint ∪ Ωe.

3.4 Temporal Approximation

We used an adaptive fixed leading coefficient backward difference formula

(FLCBDF) MOL for time integration [50]. This section will cover the aspects of

14



this method that pertain to its implementation with DG. Further details on this

method are available in the literature [9, 50, 48].

Implementation of this solver requires providing a description of the initial

value problem (IVP) to be solved. This description includes the DAE system,

initial values and an optional Jacobian. In the most general case this DAE takes

the form of the nonlinear fully implicit vector function

F (t,y,y′) = 0 (3.36)

where t ∈ <1,y,y′ ∈ <η, and F : <2η+1 → <η. In the case of the solution sought

in this study F , commonly called the residual function, takes the form

F

(

t, {ue
j},

{

due
j

dt

})

= [B]{ue
j}+ [M ]

{

due
j

dt

}

− {L} = 0 (3.37)

where [B] consists of values Be
`,j , which result from the global application of the

bilinear B(φe
` , φ

e
j) such that Be

`,j = B(φe
` , φ

e
j) ∀φ

e
`, φ

e
j ∈ Pk(τh) and likewise for

[M ] and {L}. The initial values required include t0, y0 and y′
0
. For our study

y0 = {ue
j(0)}. Approximate values are sufficient for y′

0
, which we set to the

elementwise division of {b} by {m} where

{bej} = −[B]{ue
j}+ {L} (3.38)

and {m} holds the row summations of [M ]. Generally, with time ts at the

temporal step s, the Jacobian

[Js] = αs

[

∂Fs

∂y′

]

+

[

∂Fs

∂y

]

(3.39)

where

αs =
1

ts − ts−1

kt
∑

j=1

1

j
(3.40)

and kt is the order of the temporal approximation. In the case of the linear

system solved in this study, the Jacobian simply becomes

[Js] = αs[M ] + [B]. (3.41)
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With this IVP the DAE solver can produce the solution and its first temporal

derivative at a finite number of times on the interval [t0, T ].

These values are obtained by taking time steps as described by this algorithm

[50]:

1. form an explicit prediction to the solution of the DAE by extrapolating

from the solution history, with a Lagrange polynomial of suitable order

2. form a corrector equation for the unknown solution vector yn+1 using a

Lagrange polynomial of suitable order that terminates at the unknown

solution point

3. if possible, define the value of the corrector equation by algebraically solving

it, requiring that it satisfy Equation 3.36 to an appropriate error tolerance,

otherwise reduce step-size and/or order and retry the step

4. update the solution history

5. estimate the allowable step-size and order of the solution method for the

next step

6. output solution information if desired after performing any necessary in-

terpolation

The user can control the temporal error of this solution method by setting the

absolute and relative tolerances represented by εa and εr. Guidelines for setting

these values are setting εa to a solution value that is considered insignificant and

setting εr = 10−m−1 for m significant digits of the solution ũ [9]. Since most

the computation required by this method is spent solving the algebraic systems

produced, the choice of solution method for these systems greatly effects the

performance of the DAE solver.
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3.5 Linear System Solution Method

Since the PDE we are solving is linear, the algebraic system solved in step

3 of the DAE algorithm discussed in Section 3.4 is a linear system. With the

application of DG in one spatial dimension, this linear system has an asymmetric

block-diagonal structure. We choose banded LU decomposition for the solution

of this system, since it is the most efficient method for such systems [55].

3.6 Algorithm

The algorithm we have used to solve the saturated groundwater flow equation

using DG method in space and adaptive MOL in time is as follows:

1. based on input, construct the matrices and vectors which constitute the

DG system and set the initial values

2. calculate the solution while stepping through time until reaching a time at

which solution output is requested

3. output results

4. continue until the last solution sought is reached

3.7 Implementation Details

The temporal solver used [9] was developed in C++ with wrappers built

around Fortran code. The DG method was implemented in C++. All numerical

simulations were run in a single treaded manner on machines operating with

RedHat Linux 7.2 with two 1.6 GHz AMD Athlon processors and 1 GB of RAM.

All code was compiled with g++/gcc/g77 version 2.96.
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Chapter 4

Results and Discussion

4.1 Introduction

In this chapter, we first present the test problems used to evaluate our solution

method. This is followed by a description of the work and error measures. Lastly,

we present and discuss the results of this evaluation.

4.2 Test Problems

We chose three problems to test our solution method, P1, P2 and P3. P1

is a simple smooth homogeneous problem, allowing for tests under ideal condi-

tions; its solution is displayed in Figure 4.1. P2 is a problem with continuous

but spatially variable conditions; its solution is shown in Figure 4.2. P3 is a

difficult problem based on a highly variable discrete conductivity field; its solu-

tion is shown in Figure 4.3. The parameters used to describe these problems are

displayed in Table 4.1. We solved P1 and P3 using both DG and BG, while only

DG was run on P2.
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Figure 4.1: P1 solution over the domain.
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Figure 4.2: P2 solution over the domain.
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Figure 4.3: P3 solution over the domain.

Table 4.1: Test Problem Parameters.

Variable P1 P2 P3

u0 sin(πx) sin(4πx) sin(4πx)

ubl 0 0 0

ubr 0 0 1

K 1 2 + cos(4πx) see Table 4.2

Ss 1 2 + sin(4πx) 1

f 0 16π2e−16π
2tsin(4πx) 0

(2cos(4πx)− sin(4πx))

Ω [0, 1] [0, 1] [0, 1]

T 0.1 0.01 0.04

4.3 Error and Work Measures

We used the L2 norm to measure the error of our numerical solutions. The

L2 norms were calculated as
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Table 4.2: Spatial distribution of K for P3.

x K

(0,0.125) 0.001

(0.125,0.25) 1

(0.25,0.375) 0.01

(0.375,0.5) 0.5

(0.5,0.625) 0.0005

(0.625,0.75) 0.05

(0.75,0.875) 0.5

(0.875,1) 1

εL2 =

√

√

√

√

∫

Ω

(u− û)2dΩ at t = T (4.1)

where for P1 and P2 û is the analytic solution and for P3 û is a dense grid solution,

since we lack an analytic solution. This dense grid solution was calculated with

the parameters give in Table 4.3, where Ps is the spatial approximation order, Pt

is the temporal approximation order, and as was defined in Section 3.3.1, N is

the number of elements across the domain. N is lower for BG than for DG due

to computational expense limitations. All the L2 norms were calculated using

Radau numerical quadrature integration.

We used CPU time tcpu to measure computational work, using the ANSI C

clock library. The CPU time reported here includes all the time required to run

the code as described in Section 3.6, excluding time required for the output of

results.
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Table 4.3: P3 Dense Grid Solution Parameters

Variable DG method BG method

εa 10−14 10−14

εr 10−14 10−14

Ps 7 7

Pt 5 5

N 16384 4096

4.4 Numerical Comparisons

4.4.1 Preliminaries and Notation

For each of the test problems, we developed plots displaying the L2 norm

spatial h convergence rates and of work in comparison to error. In both forms of

plots, each line represents a series of runs at the orders indicated in the legend.

Each point on these lines represents a run at a different spatial grid spacing h.

All the h values are also listed in the legend. Each line starts at the first h value

listed, with each of the later points being a single progression down the list.

The h convergence rates plots consist of two sub-plots. The upper panel

displays log10(εL2) as a function of log10(1/h), at a temporal order of five and

various spatial orders, in the format described previously in this subsection. The

slope of these lines is the h convergence rate achieved. The lower panel displays

these convergence rates as a function of h.

The work versus error plots consist of four sub-plots, each displaying approx-

imations of a different spatial order. These are plots of log10(εL2) as a function

of log10(tcpu), for various temporal orders, in the format described earlier in this

subsection.

The parameters used to make these plots are displayed in Table 4.4.
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Table 4.4: Plot Parameters

variable h convergence plots work error plots

εa 10−14 10−13

εr 10−14 10−13

Pt 5* 2* - 5*

(*Pt values reported are the maximum value allowed under adaptive conditions)

We introduce the notion DGPtPs
, which represents a Pt temporal order and

Ps spatial order approximation using the DG in space and adaptive higher-order

FLCBDF in time. BGPtPs
indicates the same for approximations using BG is

space and FLCBDF in time. We will use the term efficiency to refer to a measure

of reduction in the CPU time required to achieve the same level of error.

4.4.2 Findings

We were able to achieve expected L2 norm spatial h convergence rates for P1

with both DG and BG, see Figure 4.4. With DG this means optimal convergence

rates for odd spatial orders and suboptimal for even. BG holds to optimal rates

at even and odd orders. As a result BG has higher convergence rates on even

orders than does DG. These rates were found on grids as course as two and four

elements over the domain and up to a spatial order of eight. For orders greater

than eight on the same course grid, error became dominated by the temporal

error near the εa and εr values of 10−14, as the error failed to decrease with

further spatial grid refinement. This lack of further error reduction near εa and

εr, was found across a wide range of spatial orders, spatial grid spacings and

temporal error tolerances.

With P1, we found significant improvements in accuracy and efficiency were

gained by increasing temporal and spatial order, with both DG and BG, see

Figure 4.5. For DG we found as much as seven orders of magnitude decrease in
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error and three orders of magnitude decrease in CPU time, when comparingDG22

with DG57. Where this notation was defined in Section 4.4.1. While substantial

improvements in these measures are also seen when both spatial and temporal

orders are high in comparison to either of the possible low-order, high-order

combinations. These incremental increases in efficiency with increases in order

are somewhat diminished between higher-orders. BG’s higher h convergence rate

at the second spatial order, in comparison to DG, gives it an obvious advantage

in the work error analysis as well. Aside from that order, across most spatial and

temporal orders the results for DG and BG are comparable, while BG slightly

out performs.

Continuing with the analysis of P1 in Figure 4.5, the CPU times for high-

orders appear rather erratic. While we can only speculate at the source of this

erratic nature, perhaps latency in data transfer with memory or hard disk, we

can note the same behavior has been seen by others using this solver and that

it has a low amplitude, which only appears to be of significance in comparison

to the overall CPU time at short CPU times, on this log scale. With the coarser

spatial grids, increases in the number of elements do not increase CPU time and

in some cases, even result in a decrease in CPU time. This tread is due to a

combination of the dominance of overall computational expense by non-scaling

overhead operations and poor performance of the adaptive temporal integrater

for approximations of low spatial order on course spatial grids, resulting in a

greater number of time steps. The dominance of overall error by temporal error

near the εa and εr values is the cause of the apparent lack of error reduction below

these values with further increases in spatial order and spatial grid refinement.

This temporal error is slightly greater at large CPU times, which correlate closely

to the number of temporal integration steps for a given order coupling, as the

error tolerances are applied at each step.

Beyond non-scaling overhead operations we expect that the computational

expense would scale 1
2
ηPs for DG and ηPs for BG. As this is scaling rate for the

25



LU decomposition solution of the linear systems solved in these approximations.

While the solution of these linear systems dominates our computational effort.

Given the nearly constant h convergence rate we saw for P1 in Figure 4.4 and

fixed spatial order associated with each line in Figure 4.5 we would expect the

lines in the later plot to be linear. However, the lines in this plot are effected

by the earlier explained lack in CPU time increase for increases in spatial grid

refinement on coarse grids and the dominance temporal error on fine grids with

high spatial order, which can both lead to an overall curvilinear appearance. For

the lower temporal order couples the increase in temporal error with increases in

the number of temporal steps explained earlier could also add to this curvilinear

appearance. These treads are better illustrated with the less erratic CPU times

of P2 in Figure 4.7.

The DG solutions of the more heterogeneous yet continuous P2 test problem

has more error than that of P1 in comparing the same spatial order and grid

densities, see Figure 4.6. This increase in error is more pronounced on the coarser

grids, likely due to a lack of polynomial fit to larger period portions of sinusoidal

curves. This reasoning could also be used to explain the non-ideal h convergence

rates found on the coarser grids. The expected convergence rates are reached or

approached on the denser grids.

In looking at Figure 4.7, we can see that DG solutions of P2 in comparison to

those of P1 have larger errors across all spatial orders, temporal orders and grid

densities. The improvements gained by increasing spatial and temporal order are

slightly less than that found under the idea conditions of P1 but still substantial,

with a seven order of magnitude decrease in error and a 2.5 order of magnitude

decrease in CPU time, when comparing DG57 to DG22. As with P1, the time

savings and/or accuracy improvement of high-order, high-order couplings are

significant in comparison to either of the high-order, low-order couplings. The

lack of or even negative scaling of CPU time with spatial grid density on coarse

grids as noted with P1 is apparent with P2. As is the temporal error dominance
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for fine grids with higher order. These trends are more obvious with P2, since

the CPU times for P2 are larger than the erratic CPU time fluctuations seen in

P1.

It can be seen in Table 4.2 that the discrete conductivity field on which P3

is based varies by about 3.3 orders of magnitude. The error in the DG and BG

solutions of P3 are significantly greater than those for the earlier test problems

across all orders and grid densities, see Figure 4.8. Near ideal h convergence

rates were achieved by DG and BG on grids of 256 elements and greater for

most spatial orders. Ideal convergence rates were reached on grids as dense as 64

elements with DG for problems based on conductivity fields that varied by two

orders of magnitude. A conductivity field varying by seven orders of magnitude

holds a convergence rates of about 0.8 across all spatial orders for grids as dense

as 256 with DG.

For P3, we find that the DG and BG solutions computed with high-order in

both space and time show large savings in CPU time and reductions in error

when compared to solutions with a low-order in either space or time or both.

The DG solution of P3 yielded a four order of magnitude reduction in error and

a two order of magnitude reduction in computation when comparing DG22 to

DG57. In the before mentioned case of a conductivity field that varied over seven

orders of magnitude, we found a two order of magnitude decrease in CPU time

at most levels of error, again comparing DG22 to DG57.

In comparing DG to BG for solutions of P3, BG is slightly more efficient

across most spatial and temporal orders. However, runs with a larger number of

elements, across all spatial orders with equal convergence rates, BG requires less

computational effort at lower temporal orders, but as temporal order increases

this difference decreases and at a temporal order of five DG out performs BG.

This trend is likely caused by a better temporal integration performance with

DG, under these conditions. The lack of scaling of CPU time with grid density

of coarse grids seen in P1 and P2 is apparent here as well. However, it does not
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result in similar near vertical lines on this region, since the h convergence rates

are low on these coarse grid. Near linear scaling is visible for high spatial orders.

With all of our test problems we have seen that large reductions in computa-

tion and error can be achieved by increasing temporal order when spatial order

is low. We have also seen these improvements when increasing spatial order

while temporal order is low. We found that error and computation can be sub-

stantially reduced below that found with these couplings by using high-orders in

both time and space. Further more, we have demonstrated that when combined

with adaptive higher-order MOL the mass conservative DG method is capable

of high-order h convergence rates as with the non locally mass conservative BG

and at a computational expense comparable to that of BG.
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Chapter 5

Conclusions

• DG methods yield locally mass conservative approximations, can be easily

extended to higher-order spatial approximations, and do not require the

solution of additional unknowns for spatial derivatives as is required for

mixed finite element methods.

• This is the first known extension of DG with a DAEMOL approach yielding

higher-order approximations in space and time.

• Resulting approximations for a parabolic diffusion equation are robust and

numerically efficient compared to standard low-order methods

• The methods explored may be extended to higher dimensions, fully adap-

tive approaches, and nonlinear problems.
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