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In this work, the large-wave simulation (LWS) method is adapted for application in spilling wave breaking
over a constant slope beach. According to LWS, large scales of velocities, pressure and free-surface elevation
are numerically resolved, while the corresponding unresolved scale effects are taken into consideration by a
subgrid scale (SGS) model for wave and eddy stresses. The model may be not fully applicable in very shallow
water, close to the shoreline, where the unresolved, turbulent, free-surface oscillation is of the same order
with the water depth. Time integration of the Euler equations is achieved by a two-stage fractional scheme,
combined with a hybrid scheme for spatial discretization, consisting of finite difference and pseudospectral
approximation methods. Model parameters are calibrated by comparison to available experimental data of
free-surface elevation and velocities in the surf zone for cross-shore incoming waves. The action of the wave
SGS stresses in the outer coastal and surf zones initiates breaking and generates appropriate vorticity, in the
form of an eddy structure (surface roller), at the breaking wavefront. At incipient breaking, both advection
and gravity contribute to the vorticity flux at the free surface, while only after the full development of the
surface roller, the effect of advection becomes stronger. The SGS model is also utilized to simulate
propagation, refraction and breaking of oblique incoming waves. The gradual breaking and dissipation of
wave crestlines and the surface roller structure along the breaking wavefront are automatically captured
without any empirical input, such as data for the roller shape or the wave propagation angle at breaking.
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1. Introduction

Coastal engineering problems, i.e., sediment transport, coastal
erosion, coastal protection, coastal structures, are directly associated
with wave transformation and breaking on a beach slope. Wave
transformation is a particularly complicated process in the surf zone,
between the breaking point and the shore, and is characterizedmainly
by wave dissipation and secondary by refraction (Battjes, 1988;
Peregrine, 1983).

Spilling wave breaking in the surf zone is a subject that has been
studied by both numerical simulation (Bradford, 2000; Briganti et al.,
2004; Christensen, 2006; Christensen and Deigaard, 2001; Dimas and
Dimakopoulos, 2009; Karambas and Koutitas, 1992; Lin and Liu, 1998;
Madsen et al., 1997; Musumeci et al., 2005; Schäffer et al., 1993;
Torres-Freyermuth et al., 2007; Veeramony and Svendsen, 2000;
Watanabe et al., 2005) and physical modeling (de Serio and Mossa,
2006; Huang et al., 2009; Longo, 2009; Ting and Kirby, 1994, 1996).
The intermittent flow,which develops under the collapsingwavefront
just after breaking, leads to the formation of a vortex structure, usually
called “surface roller”. In the literature, methods for the numerical
simulation of spilling breakers are divided into two categories
according to the treatment of the surface roller: (a) the introduction
of the surface-roller dynamics effect on the flow by means of an
empirical model, often called surface roller (SR) model, and (b) the
full simulation of the resolved surface roller flow by a turbulence
model.

According to the SR model, incipient breaking is defined by an
empirical criterion, such as a critical breaking wavefront slope (Dimas
and Dimakopoulos, 2009; Schäffer et al., 1993), a critical vertical
velocity at the free surface (Kennedy et al., 2000) or a critical Froude
number (Okamoto and Basco, 2006). Subsequently, the surface roller
is sized by an empirical method (Duncan, 1983; Schäffer et al., 1993),
and the introduction of the roller effect on the flow is realized either
with appropriate free-surface dynamic boundary conditions (Cointe
and Tulin, 1994) or with additional terms in the momentum equation
(Briganti et al., 2004; Madsen et al., 1997; Schäffer et al., 1993;
Veeramony and Svendsen, 2000). The SRmodel can be combinedwith
Boussinesq (Briganti et al., 2004; Madsen et al., 1997; Schäffer et al.,
1993; Veeramony and Svendsen, 2000) or Euler (Dimas and
Dimakopoulos, 2009) equations to produce very good results for
two-dimensional breakingwhen incomingwaves are propagating at a
right angle to the shoreline without refraction, but it cannot be easily
extended to three-dimensional breaking when incoming waves
are propagating obliquely to the shoreline with refraction, since it
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requires additional empirical parameters to identify wave direction at
breaking and spanwise distribution of the surface roller.

The full simulation of the resolved surface roller flow is achieved
by adopting an appropriate turbulence model, as direct numerical
simulation (DNS) of turbulence still demands excessive computa-
tional resources for large-scale flows. The two most common
turbulence modeling methods, i.e., the Reynolds-Averaged Navier–
Stokes (RANS) equations, where all turbulent scales are treated by a
closure model, and the large-eddy simulation (LES), where the large
scales of turbulence are resolved while the effect of unresolved scales
is modeled, have been used to simulate wave breaking.

For the case of two-dimensional turbulent flow during spilling
breaking, RANS models have been applied (Bradford, 2000; Lin and
Liu, 1998; Torres-Freyermuth et al., 2007) where the free surface is
captured by Volume of Fluid (VOF) method (Hirt and Nichols, 1981).
Vorticity and turbulent kinetic energy results indicate the formation
and evolution of the surface roller in the surf zone. However, despite
the diversity of turbulence closure models used, in the case of spilling
breaking, comparisons with experimental data demonstrate that
RANS models underestimate breaking wave height and overestimate
wave dissipation in the outer surf zone. According to Bradford (2000),
discretization options and boundary conditions seem to play a more
important role than the type of turbulence closure model.

LES requires more computational resources than RANS, but it is
expected to better capture the dynamics of spilling breakers, since large
vortical structures are directly resolved. Zhao et al. (2004) and Hieu et al.
(2004) compromised between low computational cost and full LES by
introducing SGS models for two-dimensional flow. In both studies, VOF
method is used for the free surface treatment, while turbulence is
accounted for by a multiscale SGS kinetic energy model in Zhao et al.
(2004) and by a Smagorinskymodel in Hieu et al. (2004).Wave height in
the surf zone is overestimated in Zhao et al. (2004), while the
corresponding results in Hieu et al. (2004) show excellent agreement
with experimental data. In the latter study, it is concluded that the effect
of trapped air bubbles on wave energy dissipation during breaking is not
negligible andcontributes greatly to the excellent predictions. It shouldbe
noted though that the effect of two-dimensional (cylindrical) bubbles,
considered inHieu et al. (2004), onwavebreaking anddissipationmaybe
totally different than the one of three-dimensional (spherical) bubbles.

In Christensen and Deigaard (2001), fully three-dimensional LES of
the surf zone dynamics over constant slope beach is performed for
cross-shore wave propagation. The free surface is computed by a
Marker and Cell (MAC) method (Harlow and Welch, 1965), while the
Smagorinsky model is used for the SGS stresses. The effect of subgrid
free-surface fluctuations is suppressed by MAC. Results show that
spilling breakers develop over a beach of slope 1/20 where the larger
eddy formation is a roller at the wave front with horizontal length
scale equal to 1/3 of the water depth at breaking. Turbulent kinetic
energy is produced at the surface roller, spanwise eddies are shed at
the breaker wake and turbulent kinetic energy is diffused towards the
bed. Results of free-surface elevation and wave height, at breaking
and in the surf zone, are not compared to any experimental data.

In Watanabe et al. (2005), an SGS model based on renormalization
group theory (RNG) and VOF computation for the free surface are
employed to performLES of cross-shorewave propagation andbreaking
over constant slopebeach. The effect of subgrid free-surfacefluctuations
is not resolved by VOF. The emphasis is on the identification of coherent
structures of vortices, and it is observed that, during spilling breaking
over beach of constant slope 1/20, spanwise vortex filaments are shed
behind the primary roller structure and are stretched to counter-
rotating streamwise eddies that descend obliquely to the bed. Results of
free-surface elevation andwave height, at breaking and in the surf zone,
are not compared to any experimental data.

In Christensen (2006), Smagorinsky and k-equation SGS models are
used to perform LES of cross-shorewave propagation and breaking over
constant slope beach. The VOF method is employed for the free surface
computation but the effect of subgrid free-surface fluctuations is not
resolved. Spilling breaker results, over beach of constant slope 1/35,
capture turbulence production, wave dissipation and undertow flux in
the surf zone but, by comparison to available experimental data (Ting
and Kirby, 1994, 1996), water depth, wave crest elevation and wave
height at breaking, and wave dissipation and turbulent mixing in the
surf zone are overpredicted. These discrepancies are attributed to the
relatively coarse grid.

Three-dimensional simulations of breaking waves with refraction
are usually performed based on depth-integrated equations. Recently,
Choi and Yoon (2009) introduced the numerical wave generation
model of Lin and Liu (1999) in the commercial software Fluent and
performed three-dimensional RANS simulations of wave breaking
without and with refraction over beach of constant slope 1/34.26. The
results in Choi and Yoon (2009) include reasonable wave setup, wave
height and longshore current distributions in the surf zone and are
compared to experimental data for cross-shore wave propagation.

The objective of this work is to present and apply a numerical model
on the simulation of three-dimensional wave propagation with
refraction and spilling breaking over beach of arbitrary bed shape. The
model is based on the large-wave simulation (LWS) formulation, which
was originally developed for two-dimensional, deep-water breaking
(Dimas and Fialkowski, 2000) and is adapted here for application to
three-dimensional, coastal breaking. LWS is basedon thedecomposition
of flow scales, related to velocity, pressure and free-surface elevation,
into resolved (large) and subgrid (small) scales. In LWS, the effect of SGS
velocity and pressure fluctuations is treated according to LES formula-
tion, while the effect of SGS free-surface fluctuations is also introduced
in the flow equations by using a boundary-fitted transformation. The
latter is in contrast to pure LES where the particular (MAC or VOF) free
surface treatment does not allow for the effect of SGS free-surface
fluctuations during breaking to be accounted for. Another advantage of
LWS is that no special boundary conditions are required to incorporate
breaking generated turbulence (Brocchini and Peregrine, 2001a,2001b),
since SGS free-surface fluctuations are included in the flow equations.

The desirable characteristics of LWS for three-dimensional breaking
are: (a) automatic activation of breaking model at incipient breaking
without additional information about wave direction, (b) prediction of
surface roller formation after breaking and wave dissipation in the surf
zone, and (c) no use of free surface treatment methods like MAC and
VOF that are expensive for three-dimensional simulations. Initially, it is
desired to study the net effect of the breaking model without the effect
of bed resistance, therefore, SGS terms are introduced in the Euler
equations. In the next three sections, the LWS formulation, the SGS
stressmodel and thenumerical solution schemearepresented, followed
by results and conclusions.

2. LWS formulation

The formulation is based on the three-dimensional Euler equations
of incompressible flow and the fully nonlinear free-surface boundary
conditions. First, a σ-type coordinate transformation is applied to the
governing equations to get a time-independent flow domain, and,
subsequently, a filtering operation is performed to obtain the
equations for the resolved scales.

For three-dimensional flow, the continuity equation is

∂uj

∂xj
= 0 ð1Þ

and the Euler equations, in conservative form, are

∂ui

∂t +
∂ uiuj

� �
∂xj

= − ∂p
∂xi

ð2Þ
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where i, j=1,2,3 hereafter, t is the time variable, xi are the coordinates
(x1 is in the cross-shore direction, x2 is in the longshore direction, and
x3 is in the vertical direction, where x3=0 is the still water level, as
shown in Fig. 1), ui are the velocity components and p is the dynamic
pressure. All variables have been rendered dimensionless with respect
to inflow depth dI, gravitational acceleration g and fluid density ρ.

Neglecting surface tension effect, the nonlinear kinematic and
dynamic boundary conditions at the free surface, x3=η(x1,x2, t),
respectively, are

u3 =
dη
dt

=
∂η
∂t + uk

∂η
∂xk

p =
η
F2

ð3Þ

where k=1,2 hereafter, η is the free-surface elevation and F = UI =
ffiffiffiffiffiffiffi
gdI

p
is the Froude number at inflow. In the present work, velocities are
rendered dimensionless by UI =

ffiffiffiffiffiffiffi
gdI

p
, therefore, F=1. The non-

penetration boundary condition at the bottom, x3=−d(x1,x2), is

u3 + uk
∂d
∂xk

= 0 ð4Þ

where d is the water depth.
Since the free-surface elevation, η, is function of time, the flow

domain is time-dependent. A boundary-fitted transformation is
introduced to obtain a time-independent computational domain and
facilitate filtering of the flow equations according to the LWS
formulation (Dimas and Fialkowski, 2000). The transformed co-
ordinates are

s1 = x1 s2 = x2 s3 =
2x3 + d−η

d + η
ð5Þ

so that x3∈ [−d(x1,x2),η(x1,x2, t)] is mapped into s3∈ [−1,+1]. The
form of the above transformation implies that it cannot be applied on
plunging wave breaking.

Application of transformation (5) on Eqs. (1) and (2) results into
the transformed flow equations

∂uk

∂sk
+

2
d + η

∂u3

∂s3
− 2

d + η
rk
∂uk

∂s3
= 0 ð6Þ

and

∂ui

∂t −1 + s3
d + η

∂η
∂t

∂ui

∂s3
+

∂ uiukð Þ
∂sk

+

2
d + η

∂ uiu3ð Þ
∂s3

− 2
d + η

rk
∂ uiukð Þ
∂s3

= Ri

ð7Þ
Fig. 1. Typical computational domain of coastal flow induced by wave propagation.
where

Rk = − ∂p
∂sk

+
2

d + η
rk

∂p
∂s3

R3 = − 2
d + η

∂p
∂s3

ð8Þ

and

rk =
1 + s3

2
∂η
∂sk

−1−s3
2

∂d
∂sk

ð9Þ

is a parameter that varies linearly, with respect to s3, between ∂d/∂sk,
at s3=−1, and ∂η/∂sk, at s3=1.

After the transformation, boundary conditions (3) and (4) are
applied at s3=1 (free surface) and s3=−1 (bottom), respectively,
and become

u3 =
∂η
∂t + rkuk p =

η
F2

ð10Þ

and

u3 + rkuk = 0 ð11Þ

The decomposition of flow variables in resolved (large) and
subgrid (small) scales is achieved by a volume filtering operation for
velocities and pressure, as in LES, and a surface filtering operation for
the free-surface elevation, which is exclusive to LWS. Therefore, each
flow variable, f, is decomposed into resolved, f , and subgrid, f′, scales
(see Fig. 2 for η).

Application of the filtering operation on Eqs. (6) and (7) results
into the governing equations for the resolved scales. The filtering
procedure takes into account the following:

i. 2= d + ηð Þ≃2 = d + ηð Þ and, subsequently, 2f = d + ηð Þ =
2f = d + ηð Þ since |η′|bb |d+η|. This assumption may not be
satisfied in very shallow water close to the shoreline.

ii. ui ∂η=∂sj
� �

−ui ∂η= ∂sj
� �

≃0 as shown in Dimas and Fialkowski
(2000).

iii. s3 f = s3 f when a cut-off Chebyshev filter is used in the vertical
direction (Dimakopoulos, 2009).

The resulting continuity and Euler equations for the resolved
scales, respectively, are

∂uk

∂sk
+

2
d + η

∂u3

∂s3
− 2
d + η

rk
∂uk

∂s3
= 0 ð12Þ

and

∂ui

∂t −1 + s3
d + η

∂η
∂t

∂ui

∂s3
+

∂ uiukð Þ
∂sk

+
2

d + η
∂ uiu3ð Þ
∂s3

− 2
d + η

rk
∂ uiukð Þ
∂s3

= Ri−
∂τik
∂sk

− 2
d + η

∂τi3
∂s3

+
1 + s3
d + η

∂τηi3
∂s3

− 1−s3
d + η

∂τik
∂s3

∂d
∂sk

ð13Þ

where

Rk = − ∂p
∂sk

+
2

d + η
rk

∂p
∂s3

R3 = − 2
d + η

∂p
∂s3

ð14Þ
Fig. 2. Free surface decomposition for a spilling breaker.
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and

rk =
1 + s3

2
∂η
∂sk

−1−s3
2

∂d
∂sk

ð15Þ

while

τij = uiuj−uiuj ð16Þ

are the eddy SGS stresses, as in LES, and

τηi3 = uiuk
∂η
∂sk

−uiuk
∂η
∂sk

+ ui
∂η
∂t−ui

∂η
∂t + p

∂η
∂si

−p
∂η
∂si

ð17Þ

are the wave SGS stresses, which are exclusive to LWS. The eddy SGS
stresses, τij, correspond to the effect of the unresolved velocity scales,
while the wave SGS stresses, τij

η, represent the combined effect of
unresolved free surface and velocity scales. The wave SGS stresses have
non-zero values onlywhen j=3, therefore, they act on the s1−s2 plane.

Accordingly, the filtered boundary conditions at the free surface
(s3=1) and the bottom (s3=−1), respectively, become

u3 =
∂η
∂t + rkuk p =

η
F2

ð18Þ

and

u3 + rkuk = 0 ð19Þ

The inverse application of transformation (5) on Eqs. (12) and (13)
gives the corresponding governing equations for the resolved flow
scales in physical coordinates

∂uj

∂xj
= 0 ð20Þ

∂ui

∂t +
∂ uiuj

� �
∂xj

= − ∂p
∂xi

−
∂τij
∂xj

+
x3 + d
d + η

∂
∂x3

τηi3−τik
∂η
∂xk

� �
ð21Þ

It is, therefore, deduced that the SGS free surface effect cannot be
obtained by direct filtering of the flow equations without the
boundary transformation step.

3. SGS model

In the present work, Smagorinsky eddy viscosity models (Rogallo
and Moin, 1984) are used for the computation of the eddy and wave
SGS stresses in Eq. (13).

In particular, the model for the eddy SGS stresses is

τij = −2ντSij = −2C2Δ2 jS jSij ð22Þ

where C is the model parameter, Δ=(Δ1Δ2Δ3)1/3 is the smallest
resolved scale based on the grid size Δi, Sij is the strain-rate tensor of
resolved scales

Sij =
1
2

∂ui

∂sj
+

∂uj

∂si

 !
ð23Þ

and jS j =
ffiffiffiffiffiffiffiffiffiffi
SijSij

q
is its magnitude.

The model for the wave SGS stresses, based on the one presented
in Dimas and Fialkowski (2000), is

τηij = −2vτS
η
ij = −2 Cη� �2Δ2 jSη jSηij ð24Þ
where C η is the model parameter and Sij
η is a modified strain-rate

tensor of resolved scales

Sηij = δ3jSik
∂η
∂sk

				
				 ð25Þ

where δij is the Kronecker delta, and the absolute value of the free
surface slope ensures the model invariance on the wave propagation
direction.

The value of parameter C=0.1 is set according to the usual
practice in LES, while the value of parameter Cη will be set after model
calibration with experimental data according to the procedure
described in the calibration section.

4. Numerical implementation

A two-stage, fractional time-step scheme is used for the temporal
discretization of the flow equations, while a hybrid scheme, consisting
of central finite differences in s1 and pseudospectral methods in s2
(Fourier) and s3 (Chebyshev), is used for the spatial discretization.

First, a transformed velocity, vi, is defined

v1 = u1 v2 = u2 v3 = u3−rkuk ð26Þ

and introduced to Eqs. (12) and (13), which written in rotational
form, respectively, become

∂Tj vj +
2

d + η
vk

∂rk
∂s3

ð27Þ

and

∂vi
∂t = �ijmvjζm + Ai + Ti + ∂Ti Π ð28Þ

where �ijm is the alternating unit tensor (also called the permutation
or the Levi-Civita tensor),

∂T1 =
∂
∂s1

∂T2 =
∂
∂s2

∂T3 =
2

d + η
∂
∂s3

ð29Þ

is a modified gradient operator,

ζi = �ijm∂
T
j vm ð30Þ

is the transformed vorticity, Ti are the SGS terms of Eq. (13),

Ak =
1 + s3
d + η

∂η
∂t

∂uk

∂s3
+

2
d + η

rk
∂p
∂s3

ð31Þ

A3 =
1 + s3
d + η

∂η
∂t

∂u3

∂s3
−∂ rkvkð Þ

∂t −vj∂
T
j rkvkð Þ ð32Þ

are the remaining nonlinear terms of Eq. (13) and

Π = p +
1
2
vjvj ð33Þ

is the transformed dynamic pressure head. The flow equations are
expressed in rotational form, which ensures that the numerical
application of pseudospectral approximation in the spatial discretiza-
tion is not unconditionally unstable (Gotlieb and Orszag, 1977).

The boundary conditions (18) and (19), at the free surface (s3=1)
and the bottom (s3=−1), respectively, become

v3 =
∂η
∂t Π =

η
F2

+
1
2
vjvj ð34Þ
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and

v3 = 0 ð35Þ

At the first stage of the fractional time-step, the nonlinear and the
SGS terms of Eq. (28) are treated by an explicit scheme

v̂i−vni
Δt

= �ijmvjζm + Ai + Ti

h in ð36Þ

to obtain the intermediate velocity, v̂i, while at the second stage of the
time-step, the pressure head terms of Eq. (28) are treated by an
implicit scheme

vn+1
i −v̂i
Δt

= − ∂Ti Π
h in+1 ð37Þ

to update the velocity. Substitution of Eq. (37) into Eq. (27) results in a
generalized Poisson equation for the pressure head, which is written
in the form

∂2Π
∂s21

+
∂2Π
∂s22

+
4
d2

∂2Π
∂s23

= − 2
d + η

∂rk
∂s3

∂Π
∂sk

+
4
d2

− 4
d + ηð Þ2

 !
∂2Π
∂s23

+
1
Δt

∂Tj v̂j +
2

d + η
v̂k

∂rk
∂s3

� �
= G ð38Þ

to facilitate its numerical solution by an iterative scheme. After the
computation of v̂i at the first stage of the time-step, pressure head, Π,
is computed by Eq. (38) and substituted into Eq. (37) to obtain
velocity, vn+1

i , at the next time-step. The free-surface elevation is
obtained by the kinematic free-surface boundary condition (34) using
an implicit scheme since the velocity field is updated.

In the present work, wave propagation over constant slope beach
is simulated, and a sketch of the corresponding computational domain
is shown in Fig. 3. Second-order Stokeswaves of period T and heightHI

are generated at the inflow boundary, s1=0, where thewater depth is
dI. A region of length LI and constant depth dI, after the inflow
boundary, is followed by the region of bed of constant slope tanβ and
then a region of length LE and constant depth dE, before the outflow
boundary. The formulation allows the outflow depth dE to be small but
nonzero. An absorption zone of length LAbLE is placed just upstream of
the outflow boundary, as in Dimas and Dimakopoulos (2009), to
ensure that waves are exiting without reflections, while periodic
conditions are applied at the lateral boundaries in s2.
L

Inflow domain

Constant-slope bed

Outflow domain
Absorption Zone

L

Fig. 3. Computational domain for simulation of waves over constant slope beach. The
domain consists of a constant depth inflow region, a constant slope region and a
constant depth outflow region where the absorption zone is placed.
According to the hybrid scheme for the spatial discretization, each
resolved flow variable, f , is approximated as

f l s2; s3; tð Þ = ∑
M =2−1

m=−M =2
∑
N

n=0

⌣
f l;mn tð Þexp −2πi

ms2
L2

� �
Tn s3ð Þ ð39Þ

where
⌣
f l;mn is the Fourier–Chebyshev transformation of f l, l∈ [0,L] is

the index and L is the number of finite-differences nodes, L1=LΔ1 is
the length of the computational domain in s1,M is themaximumorder
of Fourier modes, L2=MΔ2 is the length of the computational domain
in s2, Tn is the Chebyshev polynomial of order n∈ [0,N] and N is the
maximum order of Chebyshev polynomials. The transformations
(forward and inverse) between physical and spectral space are
performed by a Fast Fourier Transform algorithm (Press et al., 1992).

The application of discretization (39) on Eq. (38) results in the
following discrete equation for the Fourier–Chebyshev transforma-
tion of pressure head

⌣
Πl+1;mn−2

⌣
Πl;mn +

⌣
Πl−1;mn

Δ2
1

− 2πm
L2

� �2 ⌣
Πl;mn +

+
4
d2

1
cn

∑
N

p=n + 2
p p2−n2
� �⌣

Πl;mp =
⌣
Gl;mn

ð40Þ

where p+n is even, c0=2 and cn=1 for nN0. Boundary conditions
are treated by the tau method.

In the resulting system, C½ � × ⌣
Π
h i

=
⌣
G
h i

, matrix [C] consists of M

band submatrices due to the decoupling of the Fourier modes. Each
subsystem, Cm½ � × ⌣

Πm

h i
=

⌣
Gm

h i
, is solved using an iterative general-

ized Gauss–Seidel method, since elements of
⌣
G
h i

depend on elements
of

⌣
Π
h i

according to Eq. (38). Each complex matrix [Cm] is band
diagonal with order (L+1)(N+1)×(L+1)(N+1) and bandwidth
2N+3, and is LU-decomposed once at computation start. The
existence of independent subsystems favors the parallelization of
the numerical solution procedure, which was realized using OpenMP
directives (Hermanns, 2002). The serial version of the software
requires approximately 6.5 ⋅10−6sec, per grid node and time-step,
while the scalability factor of the parallelization is 0.75−0.85 on a 4
CPU Intel® Xeon® machine.

5. Results

5.1. Validation

The accuracy of the numerical scheme and the efficiency of the
wave absorption zone were validated in Dimas and Dimakopoulos
(2009) for non-breaking, cross-shore, wave propagation including
comparison to corresponding results in Grilli and Horrillo (1997). The
comparison is repeated here, since a direct pressure head solver of
Eq. (38) was used in Dimas and Dimakopoulos (2009), while an
iterative solver is used in the present application. Non-breakingwaves
of cross-shore propagation, period T=5.5, inflow wave height
HI=0.06 and inflow wavelength λI=4.32 over a constant slope
beach (tanβ=1/50) are simulated. The numerical parameters are:
L1=80, LI=5, LE=30, LA=10, dE=0.1, Δ1=0.02, N=32 and
Δt=0.001. The time evolution of the free-surface elevation, at four
locations with corresponding water depths of d=0.45, d=0.30,
d=0.20 and d=0.15, is shown in Fig. 4 and results are compared to
the ones shown in Fig. 8 of Grilli and Horrillo (1997). The data in Grilli
and Horrillo (1997) are presented shifted in time by an interval of 72.5
in order to compensate for the different initiation of the wave
propagation and transition to the fully-developed state by the two
computations. The agreement is excellent.
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Fig. 4. Time evolution of free-surface elevation for wave propagation over beach of
slope tanβ=1/50: (a) d=0.45, (b) d=0.30, (c) d=0.20, (d) d=0.15. Symbols
correspond to the results in Grilli and Horrillo (1997).

Fig. 5. Refracted crestlines of linear waves over beach of slope 1/50, which starts at
x1=10, for φI=30°.

Fig. 6. Free-surface elevation at several time instants, during shoaling and in the surf
zone, over beach of slope 1/35, which starts at x1=15, for C η=0.4. Symbols correspond
to experimental data of the free-surface elevation envelope (Ting and Kirby, 1994).
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Fig. 7. Wave height distribution, during shoaling and in the surf zone, over beach of
slope 1/35, for C η=0.3 (dashed line), C η=04 (solid line) and C η=0.8 (dash–dot line).
Symbols correspond to experimental data (Ting and Kirby, 1994).
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Oblique wave propagation to the shore is validated by comparison
to Snell's law for the refraction of linear waves. Non-breaking waves
over constant slope beach (tanβ=1/50) are simulated where the
dimensionless wave parameters at inflow are: T=9.366, λI=8.66,
HI=0.001 and angle of incidence φI=30°. The numerical parameters
are: L1=70, LI=10, LE=20, LA=16, dE=0.1, Δ1=0.1, N=32,
M=16, Δ2=1.08 and Δt=0.01. Refraction of wave crestlines is
shown in Fig. 5 where the numerical prediction of the refraction angle,
φ, is within ±1% of Snell's law.

5.2. LWS calibration

The calibration of the wave SGS model parameter, Cη, is achieved
by comparison of free-surface elevation and velocity results to
available experimental data (Ting and Kirby, 1994; Ting and Kirby,
1996) of cross-shore wave propagation and breaking over beach of
constant slope tanβ=1/35. Three different values of the wave SGS
model parameter are considered: Cη=0.3, 0.4 and 0.8.

The dimensional flow parameters in Ting and Kirby (1994) are
dI=0.4 m, T=2 s and HI=0.125 m, which correspond to wave height
Ho=0.1271 m and wavelength λo=6.245 m at deep water. In our
case, the same incoming wave is examined, but larger inflow depth
dI=0.7 m is considered, since second-order Stokes wave is imposed
at inflow, and the corresponding inflowwave height is HI=0.1175 m.
In dimensionless form, at inflow, the wave period is T=7.487, which
corresponds to wavelength λI=6.605, and the wave height is
HI=0.168. The Irribaren number, ξo = tanβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λo =Ho

p
= 0:2, corre-

sponds to medium strength spilling breaker. The computational
domain overall length is L1=72, the inflow length is LI=15, the
outflow length and depth are LE=23.05 and dE=0.03, respectively,
and the absorption zone length is LA=15. The numerical parameters
are: Δ1=0.04, N=64, M=32, Δ2=0.02 and Δt=0.0001. The
smallest resolved scale is set by Δ=(Δ1Δ2Δ3)1/3 where Δ3=2/N is
the average spacing of the Chebyshev collocation points.

In Fig. 6, snapshots of the resolved free-surface elevation, at several
time instants after 20 wave periods, are presented for Cη=0.4, and
compared to experimental data of maximum (crest) and minimum
(trough) values of free-surface elevation (Ting and Kirby, 1994). The
comparison shows that the LWS predicts accurately the incipient
breaking parameters (wave height and depth) and thewave dissipation
rate in the outer surf zone, while it overestimates the wave dissipation
rate in the inner surf zone. In Fig. 7, the distribution of wave height is
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Fig. 9. Envelope of normalized SGS stresses, [τ′,τ′ η]=[τ,τη]/(ρgdbtanβ), during
shoaling and in the surf zone, over beach of slope 1/35, for φI=0°: (a) wave SGS
stresses τ13

η (solid lines) and τ33
η (dashed lines), and (b) eddy SGS stresses τ13 (solid Fig.

lines), τ11 (dashed lines) and τ33 (dash–dot lines).
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presented, during shoaling and in the surf zone, for the three different
values of the wave SGS model parameter, Cη=0.3, 0.4 and 0.8, and
compared to corresponding experimental data (Ting and Kirby, 1994).
During shoaling, the LWS prediction ofmonotonicwave height increase
is typical of other numerical studies (Christensen, 2006; Hieu et al.,
2004; Zhao et al., 2004), as well. For SGS parameter Cη=0.4, the
predicted breaking wave height (Hb=0.233) and depth (db=0.28) are
in excellent agreement with the experimental data. For Cη=0.3 and
Cη=0.8, LWS results of breakingwave height deviate from experimen-
tal data by+3% (Hb=0.240) and−2% (Hb=0.229), respectively, while
breaking depth is underpredicted by 7.7% (db=0.26) for Cη=0.3. In the
outer surf zone (d/dbN0.75), wave dissipation is better captured for
Cη=0.8, while in the inner surf zone, wave dissipation is better
predicted for Cη=0.3. The best balanced behavior is achieved for
Cη=0.4.

The normalized, zero-mean, phase-averaged flow velocity com-
ponents, defined as U′i = Ui−Uimð Þ=

ffiffiffiffiffiffiffiffi
gdb

p
where Ui is the phase-

averaged velocity and Uim is the mean velocity, are shown in Fig. 8 at
d/db=0.775 (x1=42.67), which corresponds to the second measure-
ment location of Ting and Kirby (1996) in the surf zone. In our
computations, averaging starts 10 wave periods after the first
breaking wave and lasts for 4 periods. The LWS results agree very
well with the experimental data.

In LWS, wave breaking and dissipation in the surf zone are
anticipated to be generated by the combined action of wave and eddy
SGS stresses. In Fig. 9, the envelope of the SGS stress components in x1
and x3, during shoaling and in the surf zone, is shown; the SGS stress
components in x2 are not shown since they are much weaker. In LWS,
the growth and action of the SGS stresses depend physically on the
flow state and are accomplished automatically without empirical
criteria or additional parameters. It is observed that themost active, at
inducingwave breaking and causingwave dissipation in the surf zone,
are the wave SGS stresses and, especially, the τ13

η component. The
wave SGS stresses become substantial during shoaling at d/db≃1.2,
reach their maximum strength in the surf zone at d/db≃0.8 (about
a

b

U
U

t/T

t/T

Fig. 8. Normalized, zero-mean, phase-averaged velocity, U′i = Ui−Uimð Þ=
ffiffiffiffiffiffiffiffi
gdb

p
, over

beach of slope 1/35, at d/db=0.775, for Cη=0.4: (a) horizontal and (b) vertical
component. Lines correspond to LWS results and symbols to experimental data (Ting
and Kirby, 1994) at three different depths along x3: (i) x3/d=0.26 (solid line and
diamonds), (ii) x3/d=0.53 (dashed line and triangles) and (iii) x3/d=0.72 (dot–dash
line and squares).
0.3T after breaking) and become small again for d/db≤0.4. Typical
instantaneous contours of the dominant wave SGS stress, τ13

η , at a
cross-section (x2=0.32) in the surf zone, are shown in Fig. 10. The
three snapshots correspond to incipient breaking, and 0.3T and T after
breaking. The particular SGS stress component develops in the vicinity
of the breaking wavefront and its distribution along x3 exhibits a
maximum at the free surface where the effect of SGS free-surface
undulations is strongest.

Typical snapshots of the spanwise vorticity component, ω2, at a
cross-section (x2=0.32) in the surf zone, are shown in Fig. 11.
Vorticity production emanates at the breaking wavefront (crest at
x1=40.2 in Fig. 11a). At time 0.3T after breaking, the vorticity
distribution in Fig. 11c indicates the full development of the surface
roller underneath the breaking wavefront where d/db=0.8 (crest at
x1=42.2). This transition time, from incipient breaking to a fully-
developed surface roller, is in agreement to the corresponding time,
from incipient breaking to a fully-turbulent wave crest, according to
Duncan et al. (1999). The same value (0.3T) is also used, as a roller
growth time parameter, in Dimas and Dimakopoulos (2009) with
successful results. It is also apparent that the roller formation is
directly related to the growth of the wave SGS stresses in the interval
1≥d/db≥0.8. Downstream of the fully-developed roller, there is a
Fig. 10.Wave SGS stress τ13
η , at a cross-section (x2=0.32) in the surf zone, over beach of

slope 1/35, for φI=0°. Wave crests correspond to incipient breaking, and 0.3T and T
after breaking. Contours are at equal intervals of 0.004 from 0 to 0.012.



Fig. 13. Snapshot of free-surface elevation in the surf zone over beach of slope 1/35,
which starts at x1=20, for φi=30°.
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Fig. 11. Spanwise vorticity, at a cross-section (x2=0.32) in the surf zone, over beach of
slope 1/35, for φi=0°. Snapshot (a) corresponds to incipient breaking and (c) to time
0.3T after breaking.
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negative secondary vortex, which was also observed in Dabiri and
Gharib (1997), and the ratio of peak vorticity magnitude in the roller
to the one in the secondary vortex is about equal to 14.
38 39 40 41 42
-1

-0.5

0

0.5
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Fig. 12. Contribution to vorticity flux, at a cross-section (x2=0.32) in the surf zone, over
beach of slope 1/35, for φi=0°, by the advection (I+II) and gravity (III) terms of
Eq. (41) at incipient breaking (same as in Fig. 11a).
According to Rood (1994), the flux of vorticityω2 (in our notation),
at the free surface, is

1
R

∂ω2

∂r

� �
r=0

=
∂us

∂t|{z}
I

+ us
∂us

∂s|fflffl{zfflffl}
II

+
cosθ
F2|ffl{zffl}
III

ð41Þ

where R is the Reynolds number, r and s are the curvilinear
coordinates perpendicular (outwards) and tangent (in the wave
propagation direction) to the free surface, respectively, us is the
velocity component along s, and θ is the angle between the free
surface and the gravity direction. According to Eq. (41), the flux of
vorticity is due to the sum of the advection (I+II) and the gravity (III)
terms. For steady spilling breakers and weak hydraulic jumps, where
∂us/∂ t≈0, the experimental results in Dabiri and Gharib (1997) and
Misra et al. (2008) indicate that the dominant mechanism for vorticity
flux at the free surface is the convective term II (flow deceleration) of
Eq. (41). In our unsteady breakers, though, term I is nonzero. A typical
snapshot of the distribution, in the surf zone, of the advection (I+II)
and the gravity (III) terms of Eq. (41), at incipient breaking, is shown
in Fig. 12. Apparently, at incipient breaking, advection and gravity
contribute equally to the vorticity flux, and only later, after the roller
has been fully-developed, the contribution by the advection term
becomes stronger. Therefore, steady spilling breakers and weak
hydraulic jumps do not present a good description of unsteady
breaking early in the process but only after the surface roller has been
fully developed in the inner surf zone.

After the development of the roller, its peak vorticity magnitude
remains more or less constant and the breaker moves like a bore
(Fig. 11d–e) till it reaches a depth of d/db≃0.5. This behavior was also
reported inWatanabe and Mori (2008). During that phase, vorticity is
advected in the wake of the surface roller and diffused, by turbulence,
towards the bed. The weaker vorticity in the wake of past surface
rollers remains for more than a wave period in the surf zone, thus
interacting with subsequent breaking waves. Close to the bed, our
model predicts a weak vorticity presence, due to the absence of no-
slip condition, while in other studies (Briganti et al., 2004) the
vorticity there is negligible.
Fig. 14. Propagation angle variation, during shoaling and in the surf zone, over beach of
slope 1/35, for φI=30°, by LWS (solid line) and Snell's law (dashed line).
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Fig. 15. Wave height distribution, during shoaling and in the surf zone, over beach of
slope 1/35, for φI=0° (dashed line) and φI=30° (solid line). Incoming waves have
identical height and period.
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5.3. Oblique breaking waves

Three-dimensional simulation of spilling breaking over constant slope
beach (tanβ=1/35) is also performed for oblique wave propagation to
the shoreline. Inflow incidence angle is φI=30°, which corresponds to
φo=42.4° in deep water. All other inflow wave and numerical
parameters, including the model parameters C=0.1 and Cη=0.4, are
as in the calibration case for φI=0o, with the exceptions of M=64
and Δ2=0.206 in the spanwise direction, and inflow length, LI=20.
Fig. 16. Plan view of free-surface elevation (grayscale) and isosurface (red) of the
magnitude of the wave SGS stresses, ((τ13

η )2+(τ23
η )2+(τ33

η )2)1/2=0.0005, in the surf
zone over beach of slope 1/35, for φI=30°. Breaking point is at x1=46.25.
The spanwise width of the computational domain is equal to one
spanwise wavelength to facilitate the use of periodic boundary
conditions in x2.

Typical instantaneous free-surface elevation is shown in Fig. 13
where the spanwise width of the snapshot includes three wave-
lengths, by exploiting the periodicity in x2, for clarity of the exposition.
The simultaneous nonlinear refraction and shoaling of waves is
observed, as well as the gradual breaking of wave crestlines when
they reach breaking depth. The variation of the propagation angle, due
to refraction and breaking, is shown in Fig. 14. The spanwise-averaged
angle is computed at the zeroing of the free-surface elevation
upstream of the wave crest, and compared to Snell's law. During
shoaling, the angle predicted by the nonlinear simulation is larger
than the one of linear theory, while in the surf zone, the angle does
not decrease beyond its value at breaking. The distribution of
spanwise-averaged wave height, due to refraction and shoaling in
the outer zone and dissipation in the surf zone, is shown in Fig. 15.
As expected, the breaking wave height, Hb=0.21, and the breaking
depth, db=0.25, for φI=30o are smaller compared to the ones for
φI=0°.

A plan-view of the instantaneous free-surface elevation and an
isosurface of the magnitude of the wave SGS stresses is shown in
Fig. 16. Three spanwise wavelengths are shown for clarity. The
development of the wave SGS stresses at the breaking wavefront is
related to the production of vorticity and the creation of the surface
roller, and this procedure starts and evolves automatically without
empirical criteria or additional parameters. As in the cross-shore case,
the growth of the wave SGS stresses emanates just before the
breaking depth. Typical contours of the dominant wave SGS stresses,
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Fig. 17. Wave SGS stress τ13
η , at four cross-sections in the surf zone, over beach of slope

1/35, for φI=30°: (a) x2=9.909, (b) x2=6.606, (c) x2=3.303, (d) x2=0. Contours are
at equal intervals of 0.0005 from 0 to 0.007.
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τ13
η and τ23

η , at four cross-sections along x2 in the surf zone, are shown
in Figs. 17 and 18. The particular SGS stress components develop in
the vicinity of the breaking wavefront and their distribution along x3
exhibit a maximum at the free surface where the effect of SGS free-
surface undulations is strongest.

A plan-view of the instantaneous free-surface elevation and two
isosurfaces of the vorticity magnitude is shown in Fig. 19. Three
spanwise wavelengths are shown for clarity. The surface roller,
identified by the isosurface of value 10 in Fig. 19, extends for about
three spanwise wavelengths, and follows the orientation of the
breaking wave crestlines. Vorticity generation emanates at breaking
and is advected in the breaker wake mainly along the spanwise
direction as shown by the isosurface of value 6 in Fig. 19. The advected
vorticity is not dissipated during a wave period, and, therefore,
interacts with the next oncoming spilling breaker. Typical contours of
spanwise and streamwise vorticity, ω2 and ω1, respectively, at four
cross-sections along x2 in the surf zone, are shown in Figs. 20 and 21.
Spanwise vorticity is mainly clockwise, while streamwise is counter-
clockwise. It is observed that spanwise and streamwise vorticity
exhibit a similar distribution underneath the breaking wavefront.
At d/db=0.8, maximum values for ω2 and ω1 are 10.6 and −3.9,
respectively. The existence of two significant components of vorticity
is another indication that the surface roller is an oblique to the
shoreline structure. By considering the average ratio of these
components in the roller area, for d/db=0.8, the surface roller is
obliquely orientated to the shoreline at angle 20°, which is about
equal to the propagation angle in the surf zone. Vertical vorticity, ω3,
is insignificant compared to the other two components, and its
magnitude does not exceed the value of 0.5.
Fig. 19. Plan view of free-surface elevation (grayscale) and isosurfaces of the vorticity
magnitude of values 6 (blue) and 10 (red) in the surf zone over beach of slope 1/35, for
φI=30°. Breaking point is at x1=46.25.
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Fig. 18. Wave SGS stress τ23
η , at four cross-sections in the surf zone, over beach of slope

1/35, for φI=30°: (a) x2=9.909, (b) x2=6.606, (c) x2=3.303, (d) x2=0. Contours are
at equal intervals of 0.0005 from 0 to 0.0025.
6. Conclusions

A numerical model for cross-shore and oblique wave propagation
and breaking in the coastal zone was presented based on the concept
of LWS, and applied for a beach of constant slope (tanβ=1/35).
According to the method, the large scales of velocity, pressure and
free-surface elevation are resolved, while the effect of the corre-
sponding small scales is accounted for by eddy and wave SGS stress
model; herein a Smagorinsky-type eddy viscosity model. The model
may be not fully applicable in very shallowwater, where the turbulent
free-surface oscillation is of the same order with the water depth, thus
limiting its performance close to the shoreline. The model calibration
was achieved by comparison to available experimental data (Ting and
Kirby, 1994, 1996) for cross-shore spilling breaking, and the values of
the model parameters where used for oblique breaking as well. This
model is suited to spilling breakers, but a more advanced, probably
dynamic, SGS stress model will be required for plunging breakers.

For both cross-shore and oblique wave propagation in the outer
zone, breaking and dissipation in the surf zone, it was found that the
wave SGS stresses are at least one order of magnitude larger than the
eddy ones, while their development requires no empirical criteria or
additional parameters. Their action is stronger in the area under the
breaking wavefront, in accordance to the effect of SGS free-surface
undulations, and generates appropriate vorticity, which evolves into
the formation of the surface roller. At incipient breaking, both
advection and gravity contribute to the vorticity flux at the free
surface, while only after the full development of the surface roller, the
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Fig. 21. Streamwise vorticity, ω1, at four cross-sections in the surf zone, over beach of
slope 1/35, for φI=30°: (a) x2=9.909, (b) x2=6.606, (c) x2=3.303, (d) x2=0.
Contours are at equal intervals of 1 from −4 to 0.
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Fig. 20. Spanwise vorticity,ω2, at four cross-sections in the surf zone, over beach of slope
1/35, for φI=30°: (a) x2=9.909, (b) x2=6.606, (c) x2=3.303, (d) x2=0. Contours are
at equal intervals of 2 from 0 to 10.

800 A.S. Dimakopoulos, A.A. Dimas / Coastal Engineering 58 (2011) 790–801
effect of advection becomes stronger. For oblique waves, the model
captures the gradual breaking and dissipation of the wave crestlines in
the surf zone, while the advection of vorticity in the breaker wake is
mainly in the spanwise direction.
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