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Ice Motions Forced by Boundary Layer Turbulence 

R. L. DIMARCO, J.P. DUGAN, AND W. W. MARTIN 

Arete Associates, Arlington, Virginia 

The motions of ice on frozen oceans in the frequency band from 0.05 to 10.0 s -1 have typically been 
associated with surface gravity waves which were generated by distant storms in the open ocean and 
which then propagate into the ice. Evidence relating these motions to local wind forcing has been less 
direct. Data on ice motions have been obtained with tilt meters on a land-locked, frozen lake, and the 
motions are shown to be directly related to forcing by the local wind. The variance of ice surface tilt 
increased by more than 3 orders of magnitude when the mean wind speed increased by a factor of less 
than 2, even when the wind speed remained below the minimum phase speed for freely propagating 
waves. A model is presented in which ice motions result from an interaction between turbulent eddies 
in the atmosphere and the ice surface. Model predictions are shown to be consistent with the lake 
observations. 

1. INTRODUCTION 

Surface ice motion energy in the ice-covered ocean at 
frequencies below 10.0 s -1 has typically been ascribed to the 
propagation of surface gravity waves from the open ocean 
into pack ice and ice shelves [Hunkins, 1962; LeSchack and 
Haubrich, 1964; Williams and Robinson, 1981]. A number of 
studies have examined the propagation of these waves 
[Robin, 1963; Wadhams, 1973; Williams and Robinson, 
1981] and have shown that they are generated by wind 
outside the ice covered area and then propagate into the ice. 
The waves are attenuated preferentially at high frequencies, 
while the low-frequency components attenuate slowly 
enough that they are measurable at distant locations. How- 
ever, both Hunkins and LeSchack and Haubrich ascribe 
some motions to the local wind, while Bogorodskiy [1982] 
and Bates and Shapiro [1980] attribute a portion of the 
energy to ridge-building events. The evidence presented by 
Hunkins for the relation to local wind is that the level of ice 

wave energy increased considerably at times when the wind 
speed was above about 10 to 12 m s -1 . In addition, he points 
out that the minimum phase speed which occurs in the 
dispersion relation for flexural-gravity waves could account 
for a threshold wind speed for efficient (i.e., resonant) wave 
generation. The concept of wave generation above the phase 
speed minimum is further developed by Davys et al. [1985]. 
LeSchack and Haubrich also noted possible effects of local 
wind in their data, although the conclusion is only weakly 
supported by the published data. More recently, Squire 
[1986] and Crocker and Wadhams [1988] have inferred local 
wave generation by wind from strain meter data. In both 
cases, measurable ice deformations were observed at wind 
speeds well below the minimum phase speed of freely 
propagating flexural-gravity waves. These authors in both 
cases invoke the model of Mills [1972], in which the waves 
arise from an (apparent) oscillating force which translates 
downwind at the mean wind speed. This model is capable of 
producing ice motions at any wind velocity, with a signifi- 
cant increase expected when the mean wind speed exceeds 
the wave group velocity. 

This explanation of the observations is not very satisfying 
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on several counts. First, the model for the wind fluctuations 
is not based upon known facts about the surface pressure 
under the atmospheric turbulent boundary layer. For exam- 
ple, it is not clear just how the fluctuating forces are related 
to the mean wind speed either in magnitude or in frequency 
content. Second, it would be useful if the model could 
predict the level of motion, or at least the functional depen- 
dence of the level upon the wind speed or the ice structural 
parameters. 

In order to improve upon this situation, we have made 
limited measurements on an ice-covered lake to test the 

hypothesis of local generation of ice motions by the wind. 
The ice fully covered the lake, and with no boundary open to 
the sea, swell could not propagate in from distant storms. 
Also, without the large-scale compressive forces which often 
occur in pack ice, there were no ridge-building events. Thus 
any motions which were observed were most likely due to 
the local wind. The specific objective of the experiment was 
to determine the relationship between motions of the ice and 
the local wind. The observations suggest a simple model of 
the motions, which is presented in the next section. The 
instrumentation and experiment are discussed in section 3, 
and the observations are discussed in section 4. 

2. THEORY 

The modeling is directed toward the response of a floating 
ice sheet of uniform properties and infinite extent over deep 
water when it is subjected to forcing by the varying pressure 
associated with a turbulent wind. The ice is modeled in the 

familiar way as a floating, uniform, thin plate. The concep- 
tual model of the atmospheric forcing is a set of independent 
pressure fluctuations, each applying a force normal to the 
surface of the ice. It is assumed that the turbulence is 

consistent with the Taylor hypothesis [Taylor, 1938; Mizuno 
and Panofsky, 1975], in which. the turbulent eddies are 
advected downwind at the mean speed of the flow, essen- 
tially without change over some finite coherence time. In this 
case the advection speed is the mean wind speed, and we 
assume that the surface pressure fluctuations are advected 
downwind with these turbulent eddies. The degree to which 
the fluctuations are frozen with the flow has been a subject of 
considerable observational work in wind tunnel boundary 
layers [Willmarth and Wooldridge, 1962; Wills, 1970] and in 
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the atmosphere [Panofsky et al., 1974; Perry et al., 1978; 
Kristensen, 1979]. For example, Wills exhibits the two- 
dimensional spectrum of pressure fluctuations in the fre- 
quency-downwind wavenumber regime, and the dominant 
effect is the advection due to the mean wind speed in the 
tunnel. The lowest-wavenumber fluctuations in the wall 

pressure are advected at nearly the free stream velocity, 
while higher-wavenumber fluctuations are advected at the 
lower mean velocity near the wall. The temporal bandwidth 
(half power level) is less than 50% of the measured frequency 
at the peak, so the spread about the local mean speed is not 
very large. The combined results of the laboratory and the 
atmospheric measurements lead to the conclusion that there 
is a well-defined band of energy along a line in the frequency- 
wavenumber spectrum which is near the wind speed. Thus 
to a good approximation, there is a very simple relationship 
between the frequency spectrum at a point and the down- 
wind wavenumber spectrum of the pressure fluctuations. 

The equations of motion to be described in the following 
also will require the downwind component of the spatial 
structure of these pressure fluctuations, and this will be 
specified through the above relationship with the frequency 
spectrum. The frequency spectrum of the surface pressure in 
the atmospheric boundary layer has been measured over 
land [Gossard, 1960; Kimball and Lemon, 1970; Elliott, 
1972a; Grachev and Mordukhovich, 1988] and over water 
[Elliott, 1972b]. These measurements have shown that the 
spectra are well described by a power law in a frequency 
band broader than 10 -2 to 101 s -1, which is the band of 
interest to our model. Although the spectra show some 
deviations from a straight line, notably around the integral 
scale of the turbulence, a single power law is a reasonable 
descriptor over the frequency band [e.g., Gossard, 1960, 
Figure 1]. The value of the spectral exponent obtained in the 
various investigations varied generally in the range of-5/3 
to -7/3. Selecting a value in this range, we choose a spectral 
power law of to -2. 

The ice is modeled as a uniform, thin plate floating on a 
fluid of infinite depth. The equation of motion for the sheet is 
then [Nevel, 1970; Davys et al., 1985; Schulkes and Sneyd, 
1988] 

DV4• + pi h •-•-•-=p- F(x, t) (1) 
where s • is the vertical deformation of the plate, D is the 
flexural rigidity, V 4 is the biharmonic operator, Pl is the ice 
density, h is the ice thickness, p is the ambient pressure at 
the surface (z = 0), and F(x, t) is the external forcing. The 
terms on the left represent the force per unit area due to ice 
flexural rigidity and inertia of the plate. We take the flow in 
the ocean to be irrotational with velocity potential (b. By 
Bernoulli's theorem we then have 

d4, 

p = p - (2) 
Z=0 

where g is the gravitational acceleration. Including the 
assumption of continuity and the condition that the flow does 
not cross the top (z = 0) or bottom (z = H) boundaries, we 
have 

a24, 
V2(b + O--•-= 0 (3) 

04, 
- (4) 

at 

= o (5) 
Oz 

We next take the spatial and temporal Fourier transforms of 
equations (2)-(5), solve (3) for (b, subject to (4) and (5), and 
then substitute into (2), yielding 

pw2• 
P = k tanh k(H- •) - P9• (6) 

where • is the transformed deformation, w is the angular 
frequency (in units of radians per second throughout), and k 
is the horizontal wavenumber in the downwind direction. If 

we assume that the water depth is much larger than the 
wavelength of the deformations, (6) reduces to 

2 

p (7) 
k 

Taking spatial and temporal Fourier transforms of (1), and 
inserting (7), we have the algebraic expression 

[Dk 4- plhw 2 + pg- pw 2/k]• = P(k, w) (8) 

where P is the Fourier transform of the forcing function. The 
dispersion relation for freely propagating flexural-gravity 
waves is the solution of the homogeneous equation where 
the applied pressure is identically zero. The solutions of this 
homogeneous equation have been discussed a number of 
times previously [Wadhams, 1973; Bates and Shapiro, 1980; 
Davys et al., 1985], and the dispersion curve is shown 
graphically in Figure 1 for the ice parameters appropriate t•o 
our experiment. Clearly visible in Figure 1 a is a minimum in 
the phase speed. The slowest speed for all frequencies or 
wavelengths is typically referred to as the critical phase 
speed C cr, and it is the speed for the onset of resonant 
interaction between a moving load and waves generated in 
the ice [Eyre, 1977; Beltaos, 1981; Takizawa, 1985]. The 
onset of the resonance is clear from the form of (8), as 
regular solutions of the inhomogeneous equation exist only 
for forcing functions which have finite amplitudes at frequen- 
cy-wavenumber points disjoint from the solutions of the 
homogeneous equation. Thus wave generation on the ice due 
to the pressure fluctuations via the so-called Phillips mech- 
anism [Kinsman, 1965] will occur only when the wind speed 
is equal to or greater than the minimum wave phase speed 
for which we would anticipate freely propagating waves. We 
refer to the frequency which corresponds to the phase speed 
minimum as the critical frequency Wcr. At frequencies above 
the critical frequency (and hence at high wavenumbers), the 
flexural rigidity of the plate is the dominant restoring force 
for freely propagating waves, while below the critical fre- 
quency, gravity is the dominant force. At the lowest frequen- 
cies the finite lake depth causes the waves to be shallow 
water waves. 

We have included in both Figure 1 a and Figure 1 b a line 
of constant wavenumber, with kc = 1/Lc(m-i), where Lc is 
the characteristic length of the ice sheet. This is defined as 

L c = (D/p#)1/4 (9) 
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Fig. 1. Free wave dispersion relation for (a) phase speed versus 
frequency, and (b) frequency versus wavenumber, where tOcr and 
Ccr are the critical frequency and phase speed and kc and Cc are the 
characteristic wavenumber and phase speed; all of these quantities 
are defined in the text. 

range from much smaller than the ice characteristic length to 
much larger. 

Spectra of pressure fluctuations have a reasonably con- 
stant slope in the frequency band of interest for this study, 
and we use the result of Elliott [ 1972a] to parameterize the 
slope 

toXp(tO)1O•-2//, 4 or (to/U) M (10) 

where S p(w) is the spectral density function of the atmo- 
spheric pressure fluctuations, Pa is the air density, u. is the 
friction velocity, and U is the mean wind speed. Elliott finds 
M = -0.7, but we prefer to choose M = - 1, yielding an 
w -2 slope which, as we noted previously, is consistent with 
the bulk of the measured pressure data. The final result is not 
particularly sensitive to the specific value of this constant. If 
we set a proportionality constant /3 with units of inverse 
length and convert the friction velocity to measured wind 
speed via U = au., then we have 

Sp(tO) = o•4•U51oa2tO -2 (ll) 

We can use this forcing function in (8) to predict ice motion. 
Also, since the observations are of ice tilt rather than vertical 
displacement, we use •x = d•/dx = •k to change units. 
Squaring (8) and taking averages over the fluctuating parts, 
we have 

{i•2} [Dk 3 plhoo2k-1 + pgk-1 poo2k-212 "2 = - - 

Or, in terms of spectral densities, 

SEx(tO ) = Sp(to)[Dk 3- plhto2k -1 + pgk -1- pto2k-2] -2 
(13) 

Using (11) for the forcing function along with Taylor's 
hypothesis, which allows us to set k = oo/U, we have the ice 
tilt spectrum as 

SEx(tO ) = ot 413 p a2 U 5 [ O U - 3 to 4 

- p/hUoo 2 + pgU- pU2oo] -2 (14) 

and represents the distance over which the ice will respond 
to a static deformation at a point [cf. Nevel, 1970; Kerr, 
1976]. Under the conditions of this experiment the charac- 
teristic length is approximately 7.2 m. We will refer to the 
corresponding wavenumber, kc, as the characteristic wave- 
number. For wavenumbers smaller than kc the gravity term 
in (8) is greater than the flexural term, while for larger 
wavenumbers the flexural term is the larger of the two. Also 
included in the plots of Figure 1 are two lines of constant 
phase speed. One of these is the critical phase speed, which 
intersects the dispersion curve at the critical frequency. The 
other constant phase speed line passes through the point of 
intersection between the critical frequency and the charac- 
teristic wavenumber. We refer to this phase speed as the 
characteristic phase speed C c, and to the point of intersec- 
tion as the characteristic point. 

While the dispersion relation represents the homogeneous 
solution to (8), we are interested in the forced solutions. As 
was discussed previously, we assume that the ice is driven 
by the atmospheric pressure field associated with the bound- 
ary layer turbulence. The pressure is thus fluctuating over a 
broad frequency band, and length scales of the fluctuations 

Note that the only unmeasured quantities in this equation are 
the drag coefficient a and the proportionality constant /3. 
This is a result that can be tested directly with measure- 
ments. 

3. INSTRUMENTATION AND EXPERIMENT 

The primary instrumentation for the field test of the model 
consisted of a two-axis tilt meter and an anemometer. The 

tilt meters were Sundstrand QA-1400 servo accelerometers, 
mounted as an orthogonal pair with the sensitive axes in the 
horizontal. In this configuration the observed variations in 
acceleration are due primarily to the tilt of the sensors with 
respect to the direction of gravity. The signal output actually 
is proportional to the sine of the tilt angle, but for the tilts 
involved the small angle approximation is valid. The sensor 
response is essentially constant from dc to 2 kHz, but since 
we are interested in relatively low frequencies, an antialias 
filter was set at 1 Hz and the sensors were sampled at 2 Hz. 
Figure 2 is a photo of the tilt meter mounting assembly. The 
mounting frame has a span of 22 cm, and support legs are 
frozen into the top of the ice. As implemented in this 
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Fig. 2. Photograph of the tilt meter measurement platform as mounted on the ice. 

experiment, the resolution of the tilt meters was better than 
1 /zrad. 

The anemometer was a UVW Gill-type, which was 
mounted at a height of 2 m. These data were also low passed 
at 1 Hz and sampled at 2 Hz. This sensor is typically used for 
turbulence measurements in the atmospheric boundary layer 
[Busch et al., 1980], and the response time at typical wind 
speeds is about equal to the sampling interval. 

These sensors were installed on seasonal ice on Newfound 

Lake in New Hampshire during the period February 11-13, 
1987. Figure 3 is a map of the lake showing depth contours 
and the location of the instruments. This lake is surrounded 

by mountains with peaks as high as 520 m above the level of 
the lake. Both the tilt meter and the anemometer were 

aligned with one axis along the long axis of the lake. 
The ice in the vicinity of the instruments was very 

uniform, and the measured ice thickness was 32 cm. About 
half of the ice surface had no snow cover, while the other 
half was covered with random drifts of snow which were up 
to 20 cm deep but generally less than 5 cm deep. We assume 
the surface temperature of the uncovered ice to be close to 
the air temperature which ranged from -24 ø to - 13øC during 
the period, while the snow-covered ice surface would be 
several degrees warmer. An appropriate Young's modulus 

for freshwater ice under these conditions would be 9 GPa 

[Mellor, 1983]. Our calculated value for the critical speed, 
shown in Figure 1, is 10.95 m s -• with a corresponding 
critical frequency of 1.17 s -• . The characteristic length is 
7.24 m, so the characteristic wavenumber is 0.138 m -• and 
the characteristic speed is 8.47 m s -• . 

4. OBSERVATIONS 

Figure 4 shows time series of the mean wind speed and the 
tilt variance during the period of midnight to noon on 
February 13. Both quantities were calculated in nonoverlap- 
ping 10-min intervals. Wind speeds ranged from calm to 
about 10 m s -• and were generally increasing. The direction 
of the wind was within 20 ø of the long axis of the lake 
throughout the period; tilt variance is shown for the tilt 
meter aligned with that axis. The turbulence level of the 
wind (velocity variance) also increased throughout the pe- 
riod, with the rms velocity fluctuations remaining roughly 
15% of the mean level. This result is consistent with other 

observations [e.g., Eidsvik, 1985], although rms levels in our 
observations are slightly higher. 

The observed level of the tilt variance rose during the 
experiment in concert with the increase in the wind, as is 
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Fig. 3. Bathymetry in the Newfound Lake with the location of the 
measurements marked. Depths are in feet (1 foot = 0.3048 m). 
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Fig. 4. Time history from midnight to noon on February 13, 
1987, of (a) wind speed and (b) downwind tilt variance. Values 
shown are averages in nonoverlapping 10-min intervals. 

shown in Figure 4. Figure 5 shows the tilt variance plotted as 
a function of the mean wind (10-min averages). Two regions 
with apparently different relationships between the tilt vari- 
ance and the wind speed are evident in this figure; a 
lower-wind-speed region with a comparatively weak in- 
crease in tilt variance with increasing wind speed, and a 
higher-wind-speed region with a much stronger dependence 
of tilt upon mean wind. The differences in the apparent wind 
speed dependence leads us to anticipate that two distinct 
physical processes are dominant, depending upon the wind 
speed. Figure 5 also shows approximate fits to the data in the 
two regions. The lower-wind region has been fit with a U 3 
slope and the higher-wind region with a U TM slope, with the 
crossover point near a wind speed of 5.5 m s-•. These values 
were chosen from the predictions of the model, which are 
described in more detail below. 

Figure 6 shows several measured tilt spectra at different 
wind speeds along with the model predictions from (14). The 
ensemble spectra were obtained in 15-min periods from 
seven subsets of 256 points each. The amplitude of the model 
predictions was set by fixing the multiplicative constant, 

4 2 -6 -2 ß cr ]3pa = 1.2 x 10 kg 2 m , in equation (14). The drag 
coefficient and air density can be estimated for the test 

conditions. However, the value of/3, and hence the overall 
normalization of the spectra, remains arbitrary. Accord- 
ingly, we adjusted the constant to give a best fit to the data. 
Wind speeds for the model were set equal to the average 
speeds in 15-min intervals used to compute the observed 
spectra. These speeds are noted in the figure next to each 
pair of spectra. While the overall normalization is arbitrary, 
the shape of the spectra and the relative amplitudes for 
different wind speeds are determined by equation (14). There 
is good agreement between the data and the model for those 
features. 

Several regions of interest in frequency space can be noted 
by examining Figure 6 and equation (14). The spectra for low 
wind speed cases are white at low frequencies, with a 
high-frequency cutoff which apparently depends upon wind 
speed. Although the choice of a "cutoff" frequency may be 
made somewhat arbitrarily, the 3-dB points for the lowest 
wind cases, when converted to a wavenumber using the 
Taylor hypothesis and the mean wind, correspond roughly to 
the characteristic wavenumber. At the low wind speeds, the 
cutoff frequency is below the critical frequency, so the 
location of the cutoff in to-k space is controlled by the 
characteristic wavenumber. In the terms of Figure 1, the 
cutoff frequency occurs at the locus of the intersection of k c 
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Fig. 5. Downwind tilt variance versus wind speed. The straight 
lines are eyeball best fits to the data with power laws consistent with 
the model. 

with the wind speed, moving to higher frequencies with 
higher wind speeds. Examination of the relative sizes of the 
terms in (14) shows that at low wind speeds and low 
frequencies, the buoyancy term should dominate. This term 
has no frequency dependence, thus resulting in a white 
spectrum. At higher frequencies, with higher wavenumbers, 
the flexure of the plate becomes important, so the flexure 
term in (14) controls the behavior, leading to a cutoff at the 
characteristic wavenumber and an 0) -8 roll-off, as is ob- 
served in Figure 6. 

As the wind speed increases to the characteristic speed 
(but is still below the critical speed), the plate inertia and 
potential flow terms in (14) become important, and the 

response of the plate becomes more complicated. A distinct 
peak appears in the spectrum, between the buoyancy (white 
spectrum) and flexural (to -8) dominated regions. This peak 
appears at the critical frequency and, according to the 
model, will remain at the critical frequency until the wind 
reaches the critical speed. This leads to an interesting 
interpretation of Figure l a. Note that the locus of points 
representing the frequency spectrum of the wind-driven 
forcing function is along a horizontal line located at the value 
of the wind speed. As the wind speed approaches the critical 
speed, those points along the frequency spectrum in the 
vicinity of the critical frequency are closest to the dispersion 
curve. It is these parts of the spectrum which are selectively 
enhanced as shown in Figure 6. 

We now refer back to Figure 5, which compares the tilt 
variance with the average wind speed. For average wind 
speeds below C c, where the spectrum does not exhibit a 
peak, the tilt variance is contributed primarily by the gravity 
term. From (14) we see that this term has a U 3 dependence, 
which is illustrated by a straight line drawn through the 
low-wind data in Figure 5. At higher wind speeds the 
variance comes mostly from the peak in the spectrum near 
the critical frequency. The height of this peak is determined 
by the flexural term which, according to the model, has a 
U TM dependence. We may compare this with the results in 
Figure 5 and note that when the average wind is greater than 
the characteristic speed the increase in tilt variance is in 
agreement with a slope of U ]], as is shown by the line drawn 
through the high-wind data. It is important to note that this 
large increase in variance with wind speed is still driven by 
boundary layer turbulence moving at a subcritical speed. 
The wind forcing is not on the dispersion curve, and thus the 
ice motions are not due to wave generation caused by 
resonant forcing of the ice. The results in Figures 5 and 6 are 
reasonable at all measured speeds, justifying the assumption 
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Fig. 6. Downwind tilt spectra for various wind speeds and model predictions for the same speeds. Speeds in meters 
per second are noted to the left of the spectral estimates. The to-8 power law for to > tocr is shown for comparison. 
Curves for alternate wind speeds are shown in bold for clarity. 
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of a single, constant value of the drag coefficient. In addition, 
the low-frequency color of the tilt spectra in Figure 6 is in 
reasonable agreement with the model, thus justifying the 
assumption regarding the power law of the pressure spec- 
trum. Small changes in the assumed power law do not 
appreciably affect the results. 

We may now compare our model results with the obser- 
vations of Squire [1986] and Crocker and Wadhams [1988]. 
The measurements in both of these cases were made with 

strain meters. The spectra in Figure 4 of Squire show similar 
behavior to those in our Figure 6, with an approximately 
white spectrum at low wind speeds and an increasingly 
prominent spectral peak at higher wind speeds. In his paper, 
Squire reported a critical speed of 15.2 m s -! using a 
dynamic measurement technique. Since no characteristic 
speed was quoted, we used the ice parameters given and 
calculated a critical frequency of 0.72 s -• a critical speed of 
13.2 m s -• and a characteristic speed of 8.0 m s -• Given , 

the difference in these values of the critical speeds, the 
calculated characteristic speed may be slightly low, but this 
does not materially affect the comparison. Comparing spec- 
tral slopes is difficult because of the differences in the 
measurements. However, since tilts are a first spatial deriv- 
ative of the vertical displacement while strain involves a 
second derivative, we may expect an additional factor of k 
for each term within the brackets in (14) for an equivalent 
strain expression. For the flexural rigidity term, shown to be 
dominant at high frequencies, this results in an expected 
roll-off of to -•ø for strain spectra. This is in good agreement 
with the spectra shown by Squire. The rate of increase in 
spectral level with wind speed observed by Squire is also in 
general agreement with our results. 

The range of ice strengths observed by Crocker and 
Wadhams allow us to calculate a critical speed range of 13 to 
19 m s -• and a characteristic speed range of 8 to 14 m s-1. 
The figures given by Crocker and Wadhams indicate a 
change in ice response at wind speeds below the lowest 
calculated critical speed but at or above the lowest charac- 
teristic speed, in agreement with our model. However, their 
observed rate of spectral increase with increasing wind 
speed is much lower than would be expected from our model 
and is also much lower than the corresponding rate of 
increase observed by Squire. We also note that while the 
location of the peak frequency observed by Crocker and 
Wadhams is about as we would expect, the behavior of the 
spectral peakedness, which declines with increasing wind 
speed above the characteristic speed, is at variance with 
both our observations and those of Squire. The cause of 
these differences is not evident from the available informa- 

tion. While the ice studied by Crocker and Wadhams was 
thicker than that of either Squire or this study, this is not 
expected to cause these discrepancies. 

5. CONCLUSIONS 

We have observed two regimes of ice response to wind- 
induced pressure fluctuations below the critical speed. Nei- 
ther of these regimes shows ice motions to be the result of 
propagating waves. At low wind speeds the response is 
hydrostatic for low frequencies and flexural for high frequen- 
cies, with the cutoff frequency determined by the wind 
velocity and the characteristic length of the ice. The tilt 
spectrum is white below the cutoff frequency, and the tilt 

variance rises at a moderate rate with wind speed (U3). 
When the wind velocity rises to a level at which this cutoff 
frequency is equal to the critical frequency, the ice response 
becomes more complicated. The variance of the ice response 
rises rapidly with wind speed (U TM), the spectrum is sharply 
peaked near the critical frequency, and it exhibits a rapid 
(•o -8) high-frequency roll-off. A theory has been presented 
which accounts for these features through the local forcing 
of the ice sheet by a turbulent atmospheric boundary layer, 
without the generation of propagating waves in the ice sheet. 
Unfortunately, in this experiment, the wind speed did not 
exceed the critical speed, so this interesting situation has not 
been explored. In such a case, plate resonance and propa- 
gating wave modes would have to be included in the model. 

While these observations were made on a freshwater lake, 
we must suspect that the same type of mechanism operates 
on sea ice. Refrozen leads or seasonal ice in fjords, with thin 
and relatively homogeneous ice, should be expected to 
behave in a manner very similar to the lake ice. Since the 
flexural rigidity increases as a cube of the thickness, multi- 
year floes are likely to have a sufficiently large critical speed 
as to never be subject to the U TM behavior. However, since 
the ice of a refrozen lead is typically well joined to that of the 
neighboring multiyear floe, the energy from disturbances 
generated over thin ice is expected to propagate some 
distance into the floe as waves of the same frequency, 
although the wavenumber would change to conform to the 
local dispersion relation for flexural-gravity waves. Regard- 
less of the response of the thick ice, atmospheric forcing 
should be expected to contribute significantly to the motions 
of the thinner ice in this frequency band during periods of 
high wind, and it should produce a noticeable effect in the 
motion spectrum as noted by Hunkins [1962] and others. 
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