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Breaking waves on the ocean surface transfer energy and momentum into currents
and turbulence. What is less well understood, however, is the associated total loss of
wave energy and momentum flux. Further, finding a robust and universal diagnostic
parameter that determines the onset of breaking and its strength is still an open
question. Derakhti & Kirby (J. Fluid Mech., vol. 761, 2014, pp. 464–506) have
recently studied bubble entrainment and turbulence modulation by dispersed bubbles
in isolated unsteady breaking waves using large-eddy simulation. In this paper, a
new diagnostic parameter ξ(t) is defined based on that originally proposed by Song
& Banner (J. Phys. Oceanogr., vol. 32, 2002, pp. 2541–2558), and it is shown that
using a threshold value of ξth= 0.05, the new dynamic criteria is capable of detecting
single and multiple breaking events in the considered packets. In addition, the spatial
variation of the total energy and momentum flux in intermediate- and deep-water
unsteady breaking waves generated by dispersive focusing is investigated. The
accuracy of estimating these integral measures based on free surface measurements
and using a characteristic wave group velocity is addressed. It is found that the new
diagnostic parameter just before breaking, ξb, has a strong linear correlation with
the commonly used breaking strength parameter b, suggesting that ξb can be used to
parameterize the averaged breaking-induced dissipation rate and its associated energy
flux loss. It is found that the global wave packet time and length scales based on
the spectrally weighted packet frequency proposed by Tian et al. (J. Fluid Mech.,
vol. 655, 2010, pp. 217–257), are the reasonable estimations of the time and length
scales of the carrier wave in the packet close to the focal/break point. A global wave
steepness, Ss, is defined based on these spectrally weighted scales, and its spatial
variation across the breaking region is examined. It is shown that the corresponding
values of Ss far upstream of breaking, Ss0, have a strong linear correlation with respect
to b for the considered focused wave packets. The linear relation, however, cannot
provide accurate estimations of b in the range b< 5× 10−3. A new scaling law given
by b= 0.3(Ss0− 0.07)5/2, which is consistent with inertial wave dissipation scaling of
Drazen et al. (J. Fluid Mech., vol. 611, 2008, pp. 307–332), is shown to be capable
of providing accurate estimates of b in the full range of breaking intensities, where
the scatter of data in the new formulation is significantly decreased compared with
that proposed by Romero et al. (J. Phys. Oceanogr., vol. 42, 2012, pp. 1421–1444).
Furthermore, we examine nonlinear interactions of different components in a focused
wave packet, noting interactive effect on a characteristic wave group velocity in both
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non-breaking and breaking packets. Phase locking between spectral components is
observed in the breaking region as well, and subsequently illustrated by calculating
the wavelet bispectrum.

Key words: multiphase and particle-laden flows, turbulence modelling, wave breaking

1. Introduction
The breaking of ocean surface gravity waves figures in a number of different

environmental processes including air–sea exchange of heat, momentum and energy,
underwater optics and acoustics, and upper ocean mixing (Melville 1996). During
active breaking, the process may be characterized as a two-phase turbulent flow
with a complex interface, involving a wide range of temporal and spatial scales. For
practical use in large-scale wave modelling, the onset of breaking and subsequent
integral measures of the process, such as total loss of wave energy and momentum
flux, need to be parameterized using available pre-breaking information.

For many decades, considerable attention has been paid to find a robust and
universal methodology to predict the onset of steepness-limited unsteady breaking
waves (Song & Banner 2002; Wu & Nepf 2002; Banner & Peirson 2007; Tian,
Perlin & Choi 2008). There are several important reviews on the topic of wave
breaking (Banner & Peregrine 1993; Melville 1996; Duncan 2001; Kiger & Duncan
2012). Recently, Perlin, Choi & Tian (2013) have reviewed the latest progress on
prediction of geometry, breaking onset and energy dissipation of intermediate- and
deep-water breaking waves. The predictive parameters involved can be categorized
as (i) geometric, (ii) kinematic, and (iii) dynamic criteria. As summarized in Perlin
et al. (2013, § 3), one of the most reliable criteria which can distinguish between
breaking packets from those that do not break is the dynamic criterion proposed by
Song & Banner (2002). They proposed a dimensionless parameter, δ(t), to measure
the growth rate of the local wave energy density, given by

δ(t)= 1
ωc

D〈µ〉
Dt

, µ= Emaxk2

ρ lg
, (1.1)

where ωc= 2πfc is a characteristic angular frequency (e.g. taken as the initial angular
frequency of the centre component of the dispersive packet), D/Dt represents the
total derivative following the wave group, µ is the dimensionless local wave energy
density, Emax is the maximum local wave energy density given in § 3, k is the local
wavenumber, ρ l is the liquid density and g is the gravitational acceleration. Here,
the averaging procedure denoted by 〈 〉 was proposed by Song & Banner (2002) to
remove the large oscillation of µ, involving the determination of the upper and lower
envelopes of µ as described in Song & Banner (2002, appendix B). Song & Banner
(2002) found that this dynamically based mean growth rate of the local energy density
maximum along a wave packet had a common threshold value of [1.4± 0.1] × 10−3

associated with the initiation of breaking. As pointed out by Perlin et al. (2013), the
calculation of the time-averaged local wave energy density 〈µ〉 is non-trivial, and,
thus, the application of the criterion, e.g. in phase-resolving nonlinear wave prediction
models, may be limited. A modified version of (1.1), which removes the required
post-processing procedure in the calculation of 〈µ〉, is defined in § 3 and is tested for
the packets considered here.
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In addition to a selected pre-breaking diagnostic parameter, the accurate estimation
of total loss of wave energy and momentum flux are needed to find a robust
parameterization for the breaking strength, e.g. the averaged breaking-induced wave
energy dissipation rate. During the last three decades, laboratory experiments have
been conducted for the estimation and parameterization of total energy and momentum
flux losses and their rates (Duncan 1983; Rapp & Melville 1990; Banner & Peirson
2007; Drazen, Melville & Lenain 2008; Tian, Perlin & Choi 2010, 2012). The most
up-to-date review may be found in Perlin et al. (2013, § 4). Inherent difficulties
associated with the measurement of an instantaneous velocity field during an active
breaking event make direct estimates of energy and momentum flux in a breaking
region impractical. The common practice is to approximate energy and momentum
flux through surface elevation measurements taken at fixed locations upstream and
downstream of a break point, using a wave theory (usually linear theory) and a
simple control volume analysis to obtain estimates of total fluxes (e.g. see Rapp &
Melville 1990, § 2.4).

Because numerical computations based strictly on inviscid, irrotational flow theory
cannot proceed beyond the onset stage of breaking, a post-breaking flow field
becomes unavailable. As summarized by Perlin et al. (2013, § 6), most two-phase
viscous numerical simulations for steepness-limited breaking waves are limited to the
evolution of a periodic unstable wave train having relatively low Reynolds numbers
(∼104) and short wavelengths (<0.3 m). An exception is noted in recent work by
Derakhti & Kirby (2014a). Examining bubble entrainment and turbulence modulation
by dispersed bubbles in isolated unsteady breaking waves generated by dispersive
focusing (with the same scale as in the previous laboratory experiments), they used an
Eulerian–Eulerian polydisperse two-fluid model to performed large-eddy simulation
(LES), together with a dynamic Smagorinsky sub-grid formulation for turbulence
closure. As opposed to direct numerical simulations, the dissipative scales of the
process as well as liquid–bubble interaction were sub-grid scale and were modelled
using the available closure models, which is an inherent limitation in any LES study.

In this paper, we present direct estimates of total energy and momentum flux
in unforced intermediate- and deep-water unsteady breaking waves generated by
dispersive focusing. Both spilling and plunging breaking packets are considered. The
accuracy of estimating these integral measures based on free surface measurements
and using a characteristic wave group velocity is examined in detail. In addition, we
examine nonlinear interactions of different frequency components in a focused wave
packet as well as interaction effects on a characteristic wave group velocity both in
non-breaking and breaking packets. Phase locking between spectral components is
observed in the breaking region as well, and subsequently illustrated by calculating
the wavelet bispectrum.

Beside dispersive energy focusing, other mechanisms such as modulational
instability (Benjamin & Feir 1967; Melville 1982) and wind forcing (Grare et al.
2013; Schwendeman, Thomson & Gemmrich 2014) can induce wave breaking.
Although some of the available estimates of the non-dimensional breaking strength
parameter, b, in the field (Thomson, Gemmrich & Jessup 2009; Schwendeman et al.
2014) are comparable to those in spillers due to dispersive energy focusing (Drazen
et al. 2008; Tian et al. 2010), most of the field estimations of b (Phillips, Posner
& Hansen 2001; Gemmrich, Banner & Garrett 2008; Gemmrich et al. 2013) tend to
be more consistent with the observed b values in weak spillers due to modulational
instability (Banner & Peirson 2007; Allis 2013). Here, we briefly establish that the
present model is capable of capturing breaking waves due to modulational instability.
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A more detailed evaluation of this class of weak breaking events will appear in a
separate paper.

In § 2, the model set-up and choice of experimental data are explained. Results
for breaking-onset prediction, energy and momentum flux are presented in §§ 3–5,
respectively. Conclusions are given in § 6.

2. Model set-up and choice of experimental conditions
A detailed description of the polydisperse two-fluid model used here as well as

boundary conditions may be found in Derakhti & Kirby (2014a, § 2). Here, the
incident wave boundary condition and model set-up are discussed briefly.

All model simulations are performed with the model initialized with quiescent
conditions. An incident wave packet is then generated at the model upstream
boundary. The input wave packet was composed of N sinusoidal components of
steepness aiki, i = 1, . . . , N where ai and ki are the amplitude and wavenumber of
the ith frequency component. Based on linear superposition and by imposing that the
maximum η occurs at xb and tb, the total surface displacement at the incident wave
boundary x= 0 is given by

η(0, t)=
N∑

i=1

ai cos[2πfi(t− tb)+ kixb], (2.1)

where fi is the frequency of the ith component, and xb and tb are the predefined,
linear theory estimates of location and time of breaking, respectively (e.g. see Rapp &
Melville 1990, § 2.3). The discrete frequencies fi were uniformly spaced over the band
1f = fN − f1 with a central frequency defined by fc= 1/2( fN + f1). Different theoretical
global steepness, S =∑N

i=1 aiki, and bandwidth, 1f /fc, lead to spilling or plunging
breaking, where increasing S and/or decreasing 1f /fc increases the breaking intensity
(see Drazen et al. (2008) for more details). Free surface displacements and velocities
for each component are calculated using linear theory and then superimposed at x= 0.

The input packet parameters as well as mesh resolutions and domain sizes for cases
considered here are summarized in table 1. The convergence study may be found in
Derakhti & Kirby (2014b). The model parameters for a polydisperse bubble phase are
chosen as summarized in Derakhti & Kirby (2014a, table 4).

For non-breaking cases, tb and xb are used as the reference for the time and x
direction respectively. For breaking packets, the references for time and x direction are
tob and xob, respectively. For plunging breakers, tob and xob are the time and location
at which the falling jet hits the undisturbed forward face of the wave. For spilling
breakers, on the other hand, tob and xob are the time and location at which a vertical
tangent develops near the wave crest. Normalized horizontal position and time can
then be written as

x∗ = x− xob

Ls0
, t∗ = t− tob

Ts0
, (2.2a,b)

where Ls0 and Ts0 are the characteristic length and time scales of the carrier wave
in the packet far upstream of the focal/break point, and are calculated based on the
spectrally weighted frequency of the wave packet fs given by

fs =
∑

fi|Fi|21fi
∑
|Fi|21fi

, (2.3)

where, Fi and fi are the discrete Fourier transform and the frequency of the ith
component of the wave train, respectively. 1fi is the frequency difference between
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Case no. S fc 1f /fc tb xb N Mesh resolution Domain size Exp.
(s−1) (s) (m) (m)

RN 0.150 0.88 0.73 20.5 8.5 32 G2,G3 (22.0, 0.8) (i)
RI 0.256 0.88 0.73 20.5 8.5 32 G2,G3 (22.0, 0.8) (i)
RS1 0.278 0.88 0.73 20.5 8.5 32 G2,G3 (22.0, 0.8) (i)
RP1 0.352 0.88 0.73 20.5 8.5 32 G2,G3 (22.0, 0.8) (i)
RP1(3-D) 0.352 0.88 0.73 20.5 8.5 32 G1 (17.0, 0.77, 0.63) (i)
RP2 0.388 0.88 0.73 20.5 8.5 32 G2,G3 (22.0, 0.8) (i)
DI 0.30 0.88 0.75 20.5 8.8 32 G2,G3 (22.0, 0.86) (ii)
DS1 0.32 0.88 0.75 20.5 8.8 32 G2,G3 (22.0, 0.86) (ii)
DP1 0.42 0.88 0.75 20.5 8.8 32 G2,G3 (22.0, 0.86) (ii)
DP2 0.46 0.88 0.75 20.5 8.8 32 G2,G3 (22.0, 0.86) (ii)
TN 0.256 1.7 0.824 25.0 7.0 128 G3,G4 (16.0, 0.8) (iii)
TP1 0.410 1.7 0.824 25.0 7.0 128 G3,G4 (16.0, 0.8) (iii)
TP2 0.576 1.7 0.824 25.0 7.0 128 G3,G4 (16.0, 0.8) (iii)
TP3 0.742 1.7 0.824 25.0 7.0 128 G3,G4 (16.0, 0.8) (iii)

TABLE 1. Input parameters for the 2-D and 3-D simulated cases. (i) Rapp & Melville
(1990), d = 0.6 m, d/Lc = 0.3 intermediate depth, constant-amplitude packets; (ii) Drazen
et al. (2008), d = 0.6 m, d/Lc = 0.3 intermediate depth, constant-steepness packets; (iii)
Tian et al. (2012), d = 0.62 m, d/Lc = 1.1 deep water, constant-steepness packets. Here,
d is the still water depth, Lc is the wavelength of the centre frequency component of the
incident packet fc, S is the theoretical linear global wave steepness, 1f is the packet band
width, xb and tb are the predefined, linear theory estimates of location and time of breaking,
respectively and N is the number of different wave components in the packet. In constant-
steepness packets, each wave component has a different amplitude, ai = S/(kiN) such that
component steepness aiki is constant with respect to i. In constant-amplitude packets, on
the other hand, all the components have the same amplitude, ai = a. Rapp & Melville
(1990) defined the global steepness of a constant-amplitude packet as S = kc

∑N
i=1 ai =

kcNa and, thus, a = S/(kcN). Different mesh grid densities are: G1 = (1x = 21.5,
1y= 7.0,1z= 7.0) mm, G2= (1x= 18.3,1z= 5.0) mm, G3= (1x= 10.0,1z= 5.0) mm,
and G4= (1x= 5.0, 1z= 5.0) mm.

components, which is constant here. The characteristic wavelength Ls and period Ts,
hereafter called spectrally weighted wavelength and period, are calculated based on
fs and using the linear dispersion relation. Tian et al. (2010) found that this choice
of the characteristic wave parameters provided the best data collapse for their wave
packets. We also found that the corresponding length and time scales of the carrier
wave in the packet close to the focal/break point are predicted more accurately by this
choice of the characteristic parameters compared with those of the centre frequency
of the wave packet, especially for our deep-water packets. For constant-amplitude
packets we have fs0 ≈ fc, and thus Ls0 ≈ Lc and Ts0 ≈ Tc, where subscript c indicates
the centre frequency component of the wave packet.

3. Prediction of the onset of wave breaking
Avoiding the post-processing procedure in (1.1), we define the normalized growth

rate of the time-dependent µ= Emaxk2/ρ lg as

ξ(t)= 1
ωs0

Dµ
Dt
, (3.1)
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FIGURE 1. Definitions of the local wave parameters. k and a are the local wavenumber
and amplitude respectively. The wave propagates from the left to the right.

where ωs0 = 2πfs0 is the pre-breaking characteristic wave angular frequency, and k is
the local wavenumber calculated based on two consecutive zero-crossings adjacent to
the breaking crest (see figure 1) as suggested by Tian et al. (2008). Here, Emax is the
time-dependent, non-horizontally averaged local maximum of the ensemble-averaged
depth-integrated total energy density E(t, x) along the wave group given by

E(t, x)=
〈∫ η

−d

1
2
ρu2

i dz
〉
+
〈∫ η

−d
ρgz dz

〉
+ 1

2
ρ lgd2 = Ek + Ep, (3.2)

where i = 1, 2, 3 refers to the x, y and z directions respectively; ρ = αρ l is the
mixture density, and α is liquid volume fraction; d is the still water depth, z is
the vertical distance to the still water level (positive upward), Ek is the ensemble-
averaged depth-integrated kinetic energy density and Ep is the ensemble-averaged
depth-integrated potential energy density. Hereafter, 〈·〉 indicates ensemble averaging
and is approximated by spanwise averaging as in Derakhti & Kirby (2014a, § 2.8).
No spatial averaging is employed in the 2-D simulations.

Figure 2 shows that, in all the intermediate- and deep-water breaking packets
considered here, the corresponding values of ξ before breaking, say −0.5< t∗, exceed
an approximate threshold value of ξth = 0.05. In the incipient breaking packets RI
and DI, it is seen that ξmax ∼ 0.05, also supporting the selection of ξth = 0.05 as a
maximum normalized growth rate of the local wave energy density maximum for the
non-breaking packets. The exceedance of the threshold value ξth = 0.05 at t∗ ≈−1.5
for the deep-water packet with multiple plungers TP3 is because of the preceding
weaker breaking wave in the packet before the main breaker at t∗ = 0, observed both
in the simulation and the corresponding measurement by Tian et al. (2012). Thus, the
criterion is capable of detecting multiple breaking events in a wave group. Figure 2
also shows that µ> 0.2 at which ξ > ξth in all breaking packets except the deep-water
weak plunging breaker TP1. For the intermediate-depth plunging breaking case RP1,
comparing the results of the 2-D and the 3-D simulations, shown in (b) with thin
and thick solid lines respectively, we may conclude that the 2-D simulation captures
the evolution of ξ fairly accurately.

The evaluation of Emax needs the spatio-temporal variation of both the free surface
and velocity field. Although the free surface locations are easy to measure, the velocity
field may not be available especially in in-situ measurements. Thus, the estimation
of Emax based only on the free surface information is of potential interest. Figure 3
shows that the location of Emax switches between the crest maxima and trough maxima
before and after the focal/break point both in the intermediate- and deep-water packets.
However, it is always on the crest maxima close to the focal/break point, say −1<
t∗<0, at which ξ goes beyond the threshold value of 0.05. As S increases, the location
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FIGURE 2. (Colour online) Temporal variations of (a,c,e) the normalized local energy
density maximum, µ, and (b,d, f ) its normalized growth rate, ξ , for different breaking
and non-breaking packets. (a,b) Intermediate-depth incipient breaking RI (– – –), spilling
breaker RS1 (— · —), plunging breaker RP1 (——); (c,d) intermediate-depth incipient
breaking DI (· · · · · ·), spilling breaker DS1 (– – –), plunging breaker DP1 (— · —),
plunging breaker DP2 (——); and (e, f ) deep-water non-breaking packet TN (· · · · · ·),
weak plunging breaker TP1 (– – –), plunging breaker TP2 (— · —), plunging breaker TP3
(——). Horizontal lines show µ= 0.2 and ξ = 0.05. Thick lines in (a,b) are the results
for RP1(3-D).

of Emax occurs at the crest maxima more frequently. In addition, increasing S results
in decreasing the Ep/E ratio at the crest maxima and in increasing the Ep/E ratio at
trough maxima; a similar trend can be seen in Tian et al. (2008, figure 11). Thus,
we may estimate Emax≈ Ecm

p /λ before the break point, where Ecm
p = (ρ lgz2

max)/2 is the
local potential energy density at the crest maxima and λ = Ep/Emax, shown by thick
solid lines in figure 3, varies from ≈0.6 for t∗<−1 down to ≈0.5 at breaking-onset.
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FIGURE 3. Temporal variations of the ratio of the potential energy density to the total
energy density for (a) RI, (c) RS1, (e) RP1, (b) TN, (d) TP2, ( f ) TP3; at the locations
of Emax ( ), crest maxima (– – –), and trough maxima (— · —).

4. Fractional and total losses of energy flux

The ensemble- and time-averaged depth-integrated horizontal energy flux of a 2-D
wave packet per unit crest length over the time t= t1→ t2, FE, can be written as

FE(x)= 1
t2 − t1

∫ t2

t1

〈∫ η

−d

[
1
2
ρu2

i + p+ ρgz
]

u dz
〉

dt, (4.1)

where ( ) hereafter refers to ensemble and time averaging, p is the pressure, and the
rest of variables were defined in the text below (3.2). For simplicity, hereafter the term
‘averaged’ is used to represent ensemble- and time averaging and depth-integration. We
choose t1= 0 and t2= 40.0 s to cover the entire signal. For breaking packets, although
(4.1) represents the averaged horizontal wave energy flux before and far downstream
of the break point (x∗ < 0 and x∗ > 1), the breaking-induced current and turbulent
motions contribute partially to the averaged energy flux for 0 < x∗ < 1.0. Our main
interest is estimating the total loss of wave energy flux after the breaking region, and
thus such a decomposition close to the break point has not been applied.

The spatial variations of FE are shown in figure 4 (solid lines) for different packets.
Most of the energy flux loss occurs within one wavelength downstream of the break
point, 0< x∗< 1, while the rate of loss is larger close to the break point. The apparent
loss before x∗=0 in (d) is due to a weaker preceding breaking event in the packet. For
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FIGURE 4. (Colour online) Normalized exact FE/FE
1 (——) and approximated

(FE/FE
1 )apx1 ≈ η2/η2

1 (– – –) averaged horizontal energy flux for intermediate-depth
(a) incipient breaking, RI; (b) spilling breaker, RS1; (c) plunging breaker, RP1; and (d)

plunging breaker, RP2. Circles are the measured η2/η2
1 adopted from Rapp & Melville

(1990) figure 11(b). Thick lines are the results for RP1(3-D).

breaking packets, the contribution of the kinetic energy flux, FE
k =

∫ η
−d [(ρu2

i )/2]u dz,

to FE is negligibly small far from the break point, less than 3 % of the total flux, but
reaches up to 0.15FE close to the break point, as shown in figure 5. Consistent with
the linear theory prediction, the contribution of FE

k to FE is negligibly small for the
non-breaking packet RN, shown in (a).

Under the linear potential flow assumption, it is known that the averaged wave
horizontal energy flux and energy density can be related using a group velocity based
on the linear dispersion relation. Thus, we define an energy transport velocity for our
nonlinear and breaking packets as

CE = FE/E, (4.2)

where FE and E= Ep + Ek are the exact averaged energy flux and density calculated
from the simulation results using (4.1) and (3.2), respectively. Strictly speaking, the
strong nonlinearity as well as breaking-induced current and turbulent motions, which
do not have a dispersion relation, make the linear potential flow assumption invalid,
and thus this definition of CE is different from the theoretical definition of a linear
wave group velocity, e.g. Cg= ∂ω/∂k in the breaking region. Far from the break point,
however, CE 'Cg.

The estimation of potential energy is challenging in regions where a multi-valued
surface and/or large bubble void fraction exist. In other words, (ρ lgη2)/2 is only
an approximate measure of the exact averaged potential energy density given by



562 M. Derakhti and J. T. Kirby

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0
–2 –1 0 1 2 3 4 –2 –1 0 1 2 3 4

(a) (b)

(c) (d)

FIGURE 5. (Colour online) Normalized averaged energy flux due to dynamic pressure,

FE
p /FE (——), and kinetic energy FE

k /FE (– – –) for intermediate depth (a) non-breaking
packet RN; (b) incipient breaking, RI; (c) spilling breaker, RS1; and (d) plunging breaker,

RP1. Thick lines are the results for RP1(3-D). Here, FE
p =

∫ η
−d [p+ ρgz]u dz and FE

k =∫ η
−d [(ρu2

i )/2]u dz.

Ep =
∫ η
−d ρgz dz + (ρ lgd2)/2 in the regions of jet formation and subsequent splashes,

which are limited in the range −0.2 < x∗ < 0.5 in our breaking packets. Consistent
with experimental studies, we use the (ρ lgη2)/2 estimation for Ep only in our
approximate formulas. Our methodology to define the free surface location in the
regions with a multi-valued surface together with the comparison between Ep and
(ρ lgη2)/2 are presented in appendix A. In conclusion, (ρ lgη2)/2 is a fairly accurate
estimation for Ep except for −0.2< x∗ < 0.5.

The total loss of the averaged horizontal wave energy flux in the breaking region
can be obtained as 1FE = FE

1 − FE
2 , where the subscripts 1 and 2 refer to upstream

and downstream of the break point respectively. By assuming that the averaged energy
density is equal to twice the averaged potential energy density and using (4.2), we
obtain

1FE ≈ ρ lgCE1

(
η2

1 −
CE2

CE1
η2

2

)
, (4.3)

where either the linear group velocity of the centre frequency component, Cgc, or a
spectrally weighted group velocity of the wave packet have been previously proposed
as an estimation for the characteristic group velocity. Drazen et al. (2008) defined a
spectrally weighted group velocity, Cgs, as

Cgs =
∑

Cgi|Fi|21fi
∑
|Fi|21fi

, (4.4)
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FIGURE 6. Temporal variations of surface elevation for (a) intermediate-depth plunger
RP1 and (b) deep-water plunder TP2 at different spatial locations. Different lines show
dx∗/dt∗=C, where C=CE, energy transport velocity (——), C=Cgs, spectrally weighted
group velocity (– – –), and C = Cgc, group velocity of the centre frequency of the wave
packet (— · —). Circles show the crest maximum at each spatial location. For clarity, the
surface elevation is exaggerated by a factor of 4.

where Cgi is the linear group velocity of the ith component of the wave train, and the
rest of variables were defined in (2.3). They showed that their wave trains propagated
at a speed close to this characteristic group velocity. Figure 6 also demonstrates that
both CE and Cgs are reasonable estimators of the travel speed of the wave groups,
while Cgc significantly underestimates wave group travel speed (see also Tian et al.
2010, figure 4). In a number of previous experimental studies (Rapp & Melville
1990; Wu & Nepf 2002; Banner & Peirson 2007; Tian et al. 2010, 2012), it has
been assumed that CE2 = CE1. Thus, the total loss of the averaged horizontal wave
energy flux and its associated fractional loss may be approximated as

(1FE)apx1 ≈ ρ lgCgs11η2, (1FE/FE
1 )apx1 ≈1η2/η2

1. (4.5a,b)

Figure 4 shows FE/FE
1 and (FE/FE

1 )apx1≈ η2/η2
1 for the intermediate-depth incipient

breaking RI, spilling breaker RS1 and plunging breakers, RP1 and RP2. First, 2-D
simulations give fairly reasonable results in terms of the averaged horizontal energy
flux and potential energy density variations compared with the corresponding 3-D
simulation shown in (c) as well as the measurement shown in (d), and also provide
fairly accurate results compared with the surface measurements by Tian et al. (2012)
for deep-water packets (not shown). The apparent undulations in η2 do not exist in FE.
Because of these undulations, a spatially averaged value of η2 over about two meters
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FIGURE 7. (Colour online) Normalized averaged kinetic energy density, E∗k , (——); and
potential energy density, E∗p , (– – –) for intermediate depth (a) non-breaking packet RN;
(b) incipient breaking, RI; (c) spilling breaker, RS1; and (d) plunging breaker, RP1. Thick
lines are the results for RP1(3-D). The results are normalized by a reference value of
ρ lgk2

s0S−2
s0 , where Ss0 and ks0 are defined in § 4.3.

is used upstream and downstream of the break point to apply (4.5). As summarized in
table 2, using (4.5) overestimates the fractional and total loss of the horizontal energy
flux by approximately 35–70 % for our breaking packets.

Three main assumptions are involved in (4.5): (i) E ≈ ρ lgη2 is a valid estimation,
(ii) using Cgs is a sufficient estimate of CE, and (iii) the change of a selected group
velocity through the breaking region may be ignored. As shown in figures 7 and 17,
the first assumption is fairly accurate far from the break point (x∗<−0.5 and x∗> 2).
The other two assumptions will be discussed in the following section.

4.1. Characteristic wave group velocity
Figure 8 shows the spatial variation of CE (solid lines) and Cgs (dashed lines),
calculated using (4.2) and (4.4), for the intermediate-depth non-breaking packet
RN, incipient breaking RI, as well as breaking packets RS1 and RP1. Cgs is easily
computed based on measured free surface time series, while estimating CE requires
instantaneous velocity and pressure measurement over the entire depth. For all the
breaking and non-breaking packets, there is a local increase of CE as the packets
approach the focal/break point, where local peaks become relatively smaller as S
decreases. Far downstream of the focal/break point, CE is equal to its value at the
upstream of the focal point for the non-breaking packet RN and the incipient breaking
RI. For breaking packets, on the other hand, there is an apparent increase after the
break point, due to noticeable breaking-induced dissipation of higher-frequency
components of the packet. This increase of CE after the breaking region becomes
relatively larger as the breaker intensity increases. Tian et al. (2010) also observed a
jump about a 5–10 % increase in Cgs after wave breaking for their breaking packets.
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FIGURE 8. (Colour online) Energy transport velocity, CE, (——) and spectrally weighted
group velocity, Cgs (– – –) for intermediate depth (a) non-breaking packet RN; (b) incipient
breaking, RI; (c) spilling breaker, RS1; and (d) plunging breaker, RP1. Thick lines are the
results for RP1(3-D).

On the other hand, this jump is not reported by Drazen et al. (2008), who argued that
their spectrally weighted group velocity remains unchanged within their experimental
accuracy. Figure 8 shows that Cgs is a good choice for an energy transport velocity,
because it predicts fairly comparable estimates of CE before and after the breaking
region.

Thus, ignoring the change of a selected wave group velocity after the breaking
region leads to the overprediction of 1FE (table 2). We can rewrite (4.3) based on
Cgs as

1FE ≈ ρ lgCgs1(α1η
2
1 − α2β η

2
2), (4.6)

where α1,2 = (CE/Cgs)1,2 and β = Cgs2/Cgs1, with β > 1.0 can be obtained for each
specific breaker using free surface measurements. Table 2 summarizes the computed
values of α1, α2 and β for the different breaking packets. By choosing α2 = 1.0, we
get

(1FE)apx2 ≈ ρ lgCgs1(α1η
2
1 − β η2

2). (4.7)

where α1 = Max(1.0, 0.13(Ss0 − 0.2) + 1.0), obtained based on linear curve fitting.
Here, Ss0 is the spectrally weighted global steepness of the packet far upstream of
breaking as defined in § 4.3. The estimated total horizontal wave energy flux losses
using (4.7) are also given in table 2. In contrast to (1FE)apx1, which has at least 35 %
error, (1FE)apx2 is more accurate, with errors of less than 5 %.

4.2. Nonlinear wave–wave interaction before the focal/break point
Although Cgs captures the main features of CE, there is a permanent lag between the
local peaks of Cgs and CE. In addition, Cgs predicts slightly smaller values compared
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FIGURE 9. Normalized energy transport velocity C∗E= (CE−Cgs1)/Cgs1 (——), normalized
wave asymmetry near the dominant component of the packet As∗=0.25As/|As|max (· · · · · ·),
and normalized spectrally weighted frequency f ∗s = ( fs − fs1)/fs1 (– – –) for intermediate
depth (a) non-breaking packet RN; (b) incipient breaking, RI; (c) spilling breaker, RS1;
and (d) plunging breaker, RP1.

with CE especially before the break point, consistent with the observation of envelope
propagation shown in figure 6 and by Tian et al. (2010, figure 4). Tian et al. (2010)
found that a nonlinear correction to the linear group velocity, used to calculate Cgs,
had negligibly small effects and argued that this difference should be explained by
nonlinear interaction between different wave components rather than the nonlinear
correction to the linear group velocity of each wave component.

Figure 9 shows that there is an interesting correlation between these local peaks of
CE before the focal/break points (solid lines) and the wave asymmetry of the dominant
wave in the packet As(x) =

∫ tmax

tzu
η3 dt − ∫ tzd

tmax
η3 dt (dotted lines); in which negative

asymmetry, indicating waves which are pitched forward, is associated with the increase
of CE and vice versa. Here, tzu and tzd are the associated time of two consecutive
zero-crossing η= 0 before and after the crest maxima at tmax. The negative asymmetry
can explain the observed energy transfer to the higher-frequency components, and the
increase of the spectrally weighted frequency of the packet fs (dashed lines). Since
the higher-frequency components have relatively smaller linear group velocities, one
may expect the decrease of CE as fs increases, as predicted by Cgs shown in figure 8
(dashed lines). Surprisingly, CE considerably increases as fs increases close to the
focal/break points, which is completely an opposite trend compared with that predicted
using the linear theory.

In the following we use the continuous wavelet transform to study the spatio-
temporal structure and relative phasing of different wave components in the packet.
We particularly aim to explain the considerable increase of CE before the break
point x∗ < 0 as well as the noticeable undulation of CE in the incipient breaking
case RI, as shown in figures 8 and 9 (solid lines). Because there is negligibly small
breaking-induced dissipation in RI and in x∗ < 0 for breaking packets, this increase
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of CE can only be explained through the nonlinear interaction of different wave
components of the packet.

The continuous wavelet transform W〈η〉 of a discrete sequence of the free surface
time series at certain location, 〈η(t)〉, is defined as the convolution of 〈η(t)〉 with a
scaled and translated version of a mother wavelet φ,

W〈η〉(s, t)= 1√
s

∫ ∞

−∞
〈η(τ)〉φ?

(
τ − t

s

)
dτ , (4.8)

where t is time, s= (θ f )−1 is the scale factor, θ = 4π/(ω0 +
√

2+ω2
0) is a constant,

τ is the translation factor,
√

s is for energy normalization across different scales
and ? denotes the complex conjugate. The wavelet kernel adopted here is the Morlet
wavelet φ(t) = eiω0te−(t2/2) (Farge 1992), where ω0 is the non-dimensional central
frequency of the analysing wavelet. The wavelet transform is computed in Fourier
space to obtain an arbitrary number and distribution of scales.

The modulus of the wavelet transforms of the weakly nonlinear non-breaking packet,
RN, and the plunging breaker, RP1, are shown in figure 10. Except the cross-section
at x∗ = 0, all the x locations shown for RP1 are outside of the region in which
the surface is multi-valued. In RN, the results follow the linear theory prediction in
which all the frequencies in the packet arrive at the predefined focal point, xb, at
the predefined time, tb. In addition, energy at each frequency component propagates
with its corresponding linear group velocity before and after the focal point, leading
to symmetry of the results about x∗ = 0. In RP1, however, as the packet approaches
the break point, nonlinear effects lead to faster propagation of the energy, generating
a permanent lead in arrival time relative to the linear prediction. In addition, a phase
locking can be seen which starts from near the break point up to x∗≈ 2, and nearly all
of the frequencies propagate together with the speed close to the linear group velocity
of the low-frequency components of the packet.

Strictly speaking, phase locking occurs if two frequencies, say f1, f2, are simultane-
ously present in the signal along with their sum frequency, f3= f1+ f2, with Θ3=Θ1+
Θ2+ const., where Θi is a corresponding phase of fi. This phase locking process in the
breaking region is further demonstrated by looking at the first higher-order spectrum,
or bispectrum, of the wavelet transform near the peak frequency of the wave packet.
The bispectrum is defined as

B〈η〉(s1, s2, t)=W〈η〉(s1, t)W〈η〉(s2, t)W∗〈η〉(s3, t), (4.9)

with 1/s1 + 1/s2 = 1/s3 corresponding to addition of frequencies. This analysis tool
was first introduced by Van Milligen, Hidalgo & Sanchez (1995) in an integrated
form with respect to time,

∫
T B〈η〉(s1, s2, τ ) dτ , which was shown to measure the

amount of phase locking in the interval T between wavelet components of scale
lengths s1, s2 and s3 or equivalently of frequencies f1, f2 and f3. We set s1 = s2, then
s3= s1/2 or f1= f2= f3/2. Here, s1 is the corresponding scale for a frequency near the
peak frequency of the signal. Note that the bispectrum is a complex number, and its
phase represents ΘB〈η〉 = Θ1 + Θ2 − Θ3. In a decoupled linear system, ΘB〈η〉 changes
continuously between −π to π. In the case of phase locking, however, it becomes
constant or nearly so over the interval in which phase locking is occurring. Figure 11
shows ΘB〈η〉 corresponding to the centre frequency for RN and RP1 at two different
x locations. In RP1, phase locking starts upstream of the break point, and lasts for
more than two wave periods in the breaking region. In RN, on the other hand, there



Breaking-onset, energy and momentum flux in unsteady focused wave packets 569

–10 –5 0 5 10
0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

–10 –5 0 5 10

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

(k) (l)

(m) (n)

FIGURE 10. (Colour online) Modulus of the wavelet transform of the non-breaking packet
RN (a,c,e,g,i,k,m); and plunging breaker RP1 (b,d, f,h,j,l,n). Contours show |W〈η〉|, in the
range 0.025–0.5 with intervals of 0.025. Horizontal dotted lines show the frequency band
boundaries of the input packet; shows the arrival time of the different frequencies
based on the linear group velocity; shows the arrival time of the wavelet amplitude
maximum for the different frequencies. x∗ = 3.2 (a,b); 1.6 (c,d); 0.8 (e, f ); 0 (g,h); −0.8
(i,j); −1.6 (k,l); 3.2 (m,n).

is not such a strong phase locking and ΘB〈η〉 continuously changes between −π to π.
The existence of phase locking near the centre frequency in RP1 supports the results
from the wavelet analysis in a more quantitative sense.

In conclusion, the phase locking of the higher-frequency components to the lower-
frequency components (e.g. as shown for RP1 figures 10 and 11), which have greater
linear group velocities, leads to a considerable increase of CE before the focal/break



570 M. Derakhti and J. T. Kirby

–6 –4 –2 0 2 4 6

–3.14

–1.57

0

1.57

3.14

–6 –4 –2 0 2 4 6

(b)(a)

FIGURE 11. Phase angle ΘB〈η〉 of the free surface bispectrum B〈η〉(s1, s1, t)), for the non-
breaking packet RN (– – –); and plunging breaker RP1 (——) at (a) x∗ = −0.3; and (b)
x∗ = 1.3. Here, s1 = (θ f1)

−1, f1 = fc is the centre frequency, and θ = 4π/(ω0 +
√

2+ω2
0)

is a constant.

points in the packets considered here, up to ≈30 % increase compared with its values
upstream of the break point.

4.3. Parameterization of the averaged breaking-induced wave energy dissipation rate
Based on scaling arguments, Duncan (1983) showed that the wave energy dissipation
rate per unit length of breaking crest, ε, can be written in the form

ε = bρ lg−1c5
b, (4.10)

where b is a breaking strength parameter, and cb is the phase speed of the breaking
wave. Hereafter, the subscript b refers to the breaking-onset instant at which a vertical
tangent develops near the wave crest (t∗b=−0.2–0). As described by Derakhti & Kirby
(2014a, § 4.3), the dissipation rate during active breaking has strong temporal and
spatial variations, and thus using a time-invariant b in any formulation such as (4.10)
may provide an averaged estimate of the energy dissipation rate during active breaking.
The averaged wave energy dissipation rate during active breaking can be approximated
as

ε =

∫

t
1FE

br

τb
, (4.11)

where
∫

t 1FE
br is the total horizontal wave energy flux loss only due to breaking (see

appendix B), τb = αtTb is a time scale related to the active breaking period and is of
the order of the breaking wave period Tb, αt is a constant in the range 0.5–1.0. To
estimate Tb and cb, we first estimate the local wavenumber, kb, as defined in figure 1.
Then, the linear dispersion relation is used to estimate the breaking wave phase speed
and period as cb = (g/kb tanh kbd)1/2 and Tb = 2π/kbcb. We found cb/cs0 = 0.85–0.90
in our breaking packets. Because no particular choice of αt gives the actual time-
averaged breaking-induced dissipation rate, we set αt = 0.75 for all cases which is
consistent with Drazen et al. (2008, figure 10). Rearranging (4.10) and using (4.11),
the breaking strength parameter is written as

b=
g
∫

t
1FE

br

ρ lc5
bτb

. (4.12)
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Case no. Ss0 Ss0/S kbab

∫

t
1FE

br kb Tb cb ξb b

(J m−1) (rad m−1) (s) (m s−1)

RS1 0.34 1.22 0.36 5.1 4.3 0.97 1.50 0.09 9.1× 10−3

RP1 0.46 1.34 0.44 16.3 4.8 0.92 1.42 0.20 40.0× 10−3

RP2 0.53 1.37 0.39 18.7 4.4 0.96 1.49 0.14 34.7× 10−3

DS1 0.33 1.03 0.36 7.4 3.5 1.09 1.65 0.11 7.3× 10−3

DP1 0.47 1.12 0.42 30.5 3.8 1.04 1.60 0.20 37.3× 10−3

DP2 0.54 1.17 0.45 48.6 3.8 1.04 1.59 0.25 60.0× 10−3

TP1 0.33 0.81 0.32 0.17 12.6 0.57 0.88 0.07 6.8× 10−3

TP2 0.48 0.83 0.41 1.18 10.5 0.62 0.97 0.16 29.3× 10−3

TP3 0.63 0.85 0.45 2.60 9.7 0.64 1.00 0.15 52.0× 10−3

TABLE 3. Summary of the breaking parameters. Ss0 is the spectrally weighted global
steepness of the wave packet far upstream of breaking given by (4.13), S is the theoretical
linear global steepness of a wave packet defined in § 2, k and a are the local wavenumber
and amplitude as defined in figure 1,

∫
t 1FE

br is the total loss of the total horizontal
energy flux due to breaking, Tb and cb are the breaking wave period and phase speed
respectively, and are calculated based on kb and using linear dispersion relation, ξ is the
local dynamic parameter defined in § 3 and b is the breaking strength parameter given by
(4.12). Subscript b refers to the breaking-onset instant at which a vertical tangent develops
near the wave crest, where t∗b =−0.2–0.

All the breaking parameters for the focused wave packets are summarized in
table 3. For a packet with multiple breaking events, e.g. RP2 and TP3, the given
parameters are associated with the strongest breaker of that packet. Figure 12 shows
the variation of b with respect to the local wave steepness at breaking onset
kbab, and to the diagnostic parameter ξb for different breaking packets. The solid
circles are the corresponding results for the breaking waves due to modulational
instability; their input parameters are given in appendix C. These local parameters
can be fairly accurately estimated in phase-resolving nonlinear wave models, such
as pseudo-spectral wave models (West et al. 1987; Goullet & Choi 2011; Tian et al.
2012). For our focused wave packets, b linearly decreases as kbab decreases, where
kbab ≈ 0.32 at incipient breaking. This trend does not exist for the spilling breakers
due to modulational instability, indicating kbab is not a reliable criterion neither for
breaking-onset prediction or parameterization of b. Large values of local steepness,
say kbab > 0.4, have been also observed by Allis (2013) for their very weak spillers
due to modulational instability. In addition, several experimental studies (Wu & Nepf
2002; Allis 2013) showed that local geometric parameters are sensitive to the degree
of directionality.

The diagnostic dynamic parameter ξb, on the other hand, increases systematically
from 0.048 in the weakest spiller due to modulational instability up to 0.25 in the
strongest plunger due to dispersive focusing. A linear correlation between b and ξb

exists as shown in figure 12(b), given by

b= 0.3(ξb − 0.05). (4.13)

The threshold value of 0.05 is consistent with the corresponding ξb values for our
incipient breaking packets. Banner & Peirson (2007) also observed an approximately
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FIGURE 12. Variations of the breaking strength parameter b with respect to (a) the
local wave steepness at breaking onset kbab, and (b) the dynamic diagnostic parameter
ξb for (open circles) the unsteady dispersive focused breaking packets and (solid circle)
the modulated unstable breaking packets; their input parameters are given in appendix C.
Dashed lines are linear fits through the results of the simulated focused packets.

linear relationship between their diagnostic parameter just prior to wave breaking, δb,
and b as shown in their figure 8(b).

The parameterization of b based on a characteristic spectrally based global steepness
of a wave packet is also of an interest, especially for use in wave-averaged models
where ξb cannot be evaluated. Following Tian et al. (2010), we define the spectrally
weighted global steepness of a packet as

Ss = ks

∑
an, (4.14)

where, ks = 2π/Ls is the spectrally weighted wavenumber and an is the Fourier
amplitude of the nth component of the wave train. Here, we only consider Fourier
components in which 0.25fs0 < fn < 4.0fs0. Figure 13 shows the spatial variation of
Ss for different non-breaking and breaking packets. Figure 13 shows that Ss has a
relatively constant value far upstream of the focal/break point, say x∗ <−3, hereafter
referred to as Ss0. We note that Ss0 can be easily calculated in wave-averaged models
based on wave energy spectra. It is seen that Ss0 for all the dispersive focused breaking
packets is greater than Ss0 = 0.31 for the incipient breaking packets RI and DI (not
shown). In addition, Ss increases as the packet approaches the break point, consistent
with the observations of Tian et al. (2010). Interestingly, the corresponding values of
Ss after the breaking region seems to reach below the threshold value of (Ss0)th= 0.31
for all the dispersive focused breaking packets. This universal post-breaking value
of Ss could be used as a test for any selected model for the parameterization of the
breaking-induced wave energy dissipation in broad-banded deep-water packets.

Available estimates of b in the previous laboratory experiments range over three
order of magnitude from O(10−4) for gently spillers (Banner & Peirson 2007; Allis
2013) up to O(10−1) for strong plungers (Melville 1994; Drazen et al. 2008; Tian
et al. 2010), see for example Romero et al. (2012, figure 1). Figure 14 shows the
variation of b versus the theoretical linear slope of a wave packet S defined in § 2
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FIGURE 13. Spatial variations of the spectrally weighted global steepness Ss for (a)
intermediate-depth nonlinear packet RN (· · · · · ·), incipient breaking RI (– – –), spilling
breaker RS1 (— · —), plunging breaker RP1 (——); and (b) deep-water nonlinear packet
TN (· · · · · ·), weak plunging breaker TP1 (— · —), plunging breaker TP2 (– – –), plunging
breaker TP3 (——).
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FIGURE 14. Variations of the breaking strength parameter b with respect to (a) the
theoretical linear slope of a wave packet S=∑ knan; and (b) the initial spectrally weighted
global steepness Ss0 = ks0

∑
an for the considered focused wave packets (open circles),

the simulated spillers due to modulational instability (solid circle) and the weak spilling
breaking waves in a wide tank adopted from Allis (2013, table 8.1) (pluses). The dashed
and dotted lines in (a) are given by (4.15) and b=0.16 (Ss0−0.28). The dashed line in (b)
was given by Romero, Melville & Kleiss (2012). In Allis (2013) the values of S=Σaiki
have not been calculated. We assume S= Ss0 for their cases.



574 M. Derakhti and J. T. Kirby

as well as Ss0 for the considered focused wave packets (open circles), the simulated
spillers due to modulational instability (solid circle) and the weak spilling breaking
waves in a wide tank by Allis (2013) (pluses). Here, the recent laboratory results of
Allis (2013) are used instead of those from Banner & Peirson (2007), because the
characteristic global steepness of the wave packets in Allis (2013) were calculated far
upstream of the first break, consistent with our calculation of Ss0. Note that Banner &
Peirson (2007) calculated the characteristic global steepness just before the first break
in order to exclude the viscous background losses, which were O(101) higher than
that in Allis (2013).

For our focused wave packets, b > 6 × 10−3, figure 14(a) shows that b ∼ Ss0,
consistent with the results in Tian et al. (2010, figure 10(a)) and the scaling law
from Derakhti & Kirby (2014a, equation (4.16)). However, a linear correlation does
not exist for the weaker breaking packets in which b< 5× 10−3. Drazen et al. (2008)
used an inertial scaling argument indicating that wave energy dissipation depends on
a local wave slope to the 5/2 power. Subsequently, Romero et al. (2012) showed
that, within the scatter of the experimental data, a relation b= 0.4(S− 0.08)5/2 fit the
considered laboratory data in the range 8 × 10−5 < b < 9 × 10−2. Figure 14 shows
that using the initial spectrally weighted global steepness Ss0 instead of S results in
a significant decrease of the scatter of the data. As shown in figure 14(a), the new
polynomial fit based on inertial scaling is given by

b= 0.3 (Ss0 − 0.07)5/2, (4.15)

where (4.15) gives reasonable estimates of b over the full range of different unsteady
uni-directional breaking waves. As shown in figure 13, the location at which Ss0 is
evaluated needs to be far upstream of the break point, say x∗ < −3, to remove the
spatial dependency in Ss0.

Other relevant physics, such as the effects of the degree of directionality and wind
forcing, need to be investigated to apply (4.15) in a real sea state.

5. Fractional and total losses of momentum flux
The averaged horizontal momentum flux of a 2-D wave packet per unit crest length

over the time t= t1→ t2, FM can be written as

FM(x)= 1
t2 − t1

∫ t2

t1

〈∫ η

−d
[(ρu)u+ p] dz

〉
dt. (5.1)

By subtracting the static pressure contribution from (5.1), the total excess horizontal
momentum flux, also called the radiation stress, can be defined as

S= FM − 1
2ρ

lg(d+ η)2 = I + Sp, (5.2)

where I= (1/t2 − t1)
∫ t2

t1
〈∫ η−d [(ρu)u] dz〉 dt represents both the averaged wave horizontal

momentum flux and the turbulent Reynolds stress. For a pure wave field, however,
I ≈ Iapx = ρ lgη2n to the second order, where here we define n as the ratio of the
characteristic group velocity over the characteristic phase speed of the packet, given
by

n=Cgs/cs, (5.3)
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FIGURE 15. (Colour online) Normalized horizontal momentum flux by waves and

turbulence, I∗, (——); mean pressure field, S∗p, (– – –); I∗apx (— · —); and (S∗p)apx
(· · · · · ·)

for intermediate depth (a) non-breaking packet RN; (b) incipient breaking RI; (c) spilling
breaker RS1; and (d) plunging breaker RP1. Thick lines are the results for RP1(3-D). The
results are normalized by a reference value of ρ lgk2

s0S−2
s0 .

where the cs is the spectrally weighted phase speed. Figure 15 shows that Iapx

accurately predicts I before and after the breaking region. Thus, the total loss of the
wave horizontal momentum flux can be written as

1I ≈1Iapx = ρ lgn1(η
2
1 − γ η2

2), (5.4)

where γ = n2/n1. The corresponding γ values for the different cases are summarized
in table 2. In addition, Sp = (1/t2 − t1)

∫ t2
t1
〈∫ η−d [p] dz〉 dt − (ρ lg(d + η)2)/2 represents

the averaged horizontal momentum flux due to the mean pressure field. For a pure
wave field, Sp ≈ (Sp)apx = ρ lgη2(n− 1/2) to the second order. Direct estimates of Sp

(dashed lines) and its corresponding approximate measure (Sp)apx (dotted lines) for
non-breaking RN, incipient breaking RI, spilling RS1 and plunging RP1 packets are
shown in figure 15. The results show that Sp has relatively small change after the
breaking region; thus we may assume 1S ≈ 1I. The loss of wave radiation stress
is balanced by the increase of η after the break point. In intermediate-depth packets
the fractional loss of the time-averaged horizontal momentum flux is overpredicted
by approximately 11–63 % by ignoring the change of n after the breaking region, or
choosing γ = 1 in (5.4) (see table 2). In deep-water cases, instead, the fractional loss
of the time-averaged potential energy density is close to that of the time-averaged

momentum flux, 1I/I1 ≈1η2/η2
1.

6. Conclusions
A continuum polydisperse two-fluid model described in Derakhti & Kirby (2014a)

was used to study the breaking-onset prediction as well as the spatial variations of
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total energy and momentum flux in laboratory-scale intermediate- and deep-water
unsteady breaking waves generated by dispersive focusing. We should remark that all
the following conclusions may not be directly applicable to other types of breaking
waves such as steepness-limited breaking waves due modulational instability. Also,
the absolute values may need to be tested for a wider range of breaking scales. Here,
we briefly establish that the present model is capable of capturing breaking waves due
to modulational instability. A more detailed evaluation of this class of weak breaking
events will appear in a separate paper. The main conclusions are summarized as
follows.

(1) Breaking-onset prediction: Avoiding the post-processing procedure in the
dimensionless parameter originally proposed by Song & Banner (2002) given by
(1.1), we defined a new diagnostic parameter, ξ(t), as the normalized growth rate
of the time-dependent local energy density maxima along the wave packet given by
ξ(t)=ω−1

s0 Dµ/Dt, where µ=Emaxk2/ρ lg. The threshold value of ξth= 0.05 was found
as the maximum value of ξ for the non-breaking and incipient breaking packets.
It was shown that, the new dynamic criterion is capable of detecting a single or
multiple breaking events in a packet. Noting different length scales, depth regime
and packet types (see table 1) of the considered cases, the dynamic criterion with
the threshold value of ξth = 0.05 seems to be universal at least for steepness-limited
unsteady breaking waves generated by dispersive focusing.

(2) Fractional and total losses of horizontal wave energy flux: It was shown
that the widely used formulas 1η2/η2

1 and (1FE)apx1 ≈ ρ lgCgs11η2 overpredict
both fractional and total losses of horizontal wave energy flux by approximately
35–70 % for our breaking packets, due to the neglect of the increase of the
characteristic group velocity after the breaking region. A new simple formulation
was proposed to improve the prediction of the averaged horizontal wave energy flux

as (1FE)apx2 ≈ ρ lgCgs1(α1η
2
1 − β η2

2), in which α1 = Max(1.0, 0.13(Ss0 − 0.2) + 1.0),
obtained based on linear curve fitting. Here, β = Cgs2/Cgs1 can be obtained based
on free surface measurements upstream and downstream of the break point. The β
varied between 1.05 for weak spilling breakers to 1.2 for strong plunging breakers in
the simulated cases.

(3) Characteristic wave group velocity: The energy transport velocity, defined
as CE = FE/E, was compared with the spectrally weighted linear group velocity
Cgs, defined by Drazen et al. (2008). In general, Cgs is an appropriate choice for a
characteristic group velocity, because (i) it is an easily computable quantity using
only free surface time series, and (ii) it provides fairly accurate estimates of CE
before and after the breaking region. However, we showed that the local peaks of
Cgs and CE were 180◦ out of phase near the focal/break points. In addition, Cgs
predicts smaller values compared with CE, especially before the break point. A
strong correlation between a local increase of CE and the asymmetry of the dominant
wave in the packet was observed in both non-breaking and breaking packets, where
negative asymmetry (wave pitched forward) led to increase of the spectrally weighted
frequency, fs, of the packet, and led to a noticeable increase of CE. This increase
of CE cannot be captured using linear wave theory. For example, as fs increases,
Cgs decreases which is completely an opposite trend compared with that observed
in the results for CE. It was shown that the phase locking of the higher-frequency
components to the lower-frequency components which have greater linear group
velocities led to the considerable increase of CE before the focal/break points, up
to ≈30 % increase of CE compared with its values upstream of the break point.
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Far downstream of the focal point, CE returned to its value upstream of the focal
point for non-breaking packets. For breaking packets, however, there is a significant
increase of CE after the break point, due to noticeable breaking-induced dissipation of
higher-frequency components within the wave packet. This increase became relatively
larger as the breaker intensity increased.

(4) Parametrization of the breaking strength parameter b: As summarized by
Romero et al. (2012), the available estimates of b ranges from O(10−4) for gently
spillers up to O(10−1) for strong plungers. In most of the previous experiments,
1FE was approximated using (1FE)apx1 ≈ ρ lgCgs11η2. As we explained, using

(1FE)apx2 ≈ ρ lgCgs1(α1η
2
1 − β η2

2) the estimation of 1FE and the associated b is
improved compared with that predicted using (1FE)apx1 ≈ ρ lgCgs11η2. In addition,
we found that the initial spectrally weighted global steepness, Ss0, is a preferable
parameter compared with the theoretical linear global steepness S = ∑N

i=1 aiki for
our dispersive focused packets. The new diagnostic parameter at the breaking-onset,
ξb, was shown to have a strong linear dependence with respect to b given by
b=0.3(ξb−0.05). Note that in the present work, the estimated b ranges from 3×10−4

up to 0.06. Although ξb cannot be evaluated in wave-averaged wave models, it can
be easily used in wave-resolving nonlinear wave models. A strong linear dependence
was also found between b and Ss0 for the considered focused wave packets, while a
large scatter was found between b and S. The linear relation, however, cannot provide
accurate estimations of b in the range b < 5 × 10−3. A new scaling law given by
b = 0.3(Ss0 − 0.07)5/2, which is consistent with inertial wave dissipation scaling of
Drazen et al. (2008), is shown to be capable of providing accurate estimates of b in
the full range of breaking intensities, 10−5 < b < 10−1, where the scatter of data in
the new formulation significantly decreases compared with that proposed by Romero
et al. (2012).

(5) Fractional and total losses of total momentum flux: Momentum flux due to the
mean pressure Sp was shown to have relatively small change after the breaking region,
and, thus, 1S≈1I. We showed that total wave momentum flux, I, could be accurately
estimated as Iapx = ρgη2n upstream and far downstream of the break point, where
we defined n=Cgs/cs. In intermediate-depth breaking packets, total fractional loss of
horizontal momentum flux was approximately 11–63 % overpredicted by ignoring the
change of n after the breaking region, or choosing γ = n2/n1 = 1 in (5.4). In deep-
water cases, on the other hand, the fractional loss of the averaged potential energy
density was close to that of the averaged horizontal wave momentum flux.
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Appendix A. Free surface definition close to the break point
The free surface location η(x, t) defined as the top air–water interface location if

αl > 0.5 is satisfied in the three adjacent computational cells below that interfacial
cell. By doing this we avoid the small splashes and low void fraction regions to
be considered as a free surface. Figure 16 shows snapshots of the spatial variations
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FIGURE 16. (Colour online) Snapshots of the spatial variations of the air–water interface
(——) and the calculated η(t, x) ( ) for the intermediate-depth plunging breaker DP1.
The resolution density is G3 = (1x = 10.0, 1z = 5.0) mm. (a) t∗ = −0.06, (b) 0.06,
(c) 0.17, (d) 0.28, (e) 0.39, ( f ) 0.50, (g) 0.61.
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FIGURE 17. (Colour online) Spatial variations of the normalized exact, 2Ep/ρ
lg, (——)

and approximated, η2, ( ) time-averaged potential energy density for the intermediate-
depth plunging breaker DP1. The resolution density is G3 = (1x = 10.0, 1z = 5.0) mm.
Vertical dashed lines show x∗ =−0.2 and x∗ = 0.5.

of the air–water interface and its associated calculated η(x, t) (black lines) for
the intermediate-depth plunging breaking case DP1. Figure 17 shows that the
approximated time-averaged potential energy density, (ρ lgη2)/2, based on our choice
of the free surface location, has more pronounce oscillations during the jet formation
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FIGURE 18. (Colour online) Calculation of the total loss of the horizontal wave energy
flux due to breaking and non-breaking processes. The reference value is the total
horizontal wave energy flux far upstream of the break point,

∫
t FE

1 .

between −0.2< x∗< 0 compared with the exact values Ep. For x∗<−0.2 and 0.5< x∗,
the difference between Ep and (ρ lgη2)/2 are negligibly small.

Appendix B. Estimation of wave energy dissipation due to breaking and non-
breaking processes

The total loss of the horizontal wave energy flux
∫

t 1FE given by (4.3) includes
both non-breaking, e.g. viscous dissipation due to boundaries and inside the water
body, and breaking processes. In any model simulation, numerical dissipation always
contributes to some of the energy loss in the system. Here, we consider the numerical
dissipation as a non-breaking dissipation. To estimate the total non-breaking wave
energy dissipation, we fit a line to

∫
t FE upstream of the break point, we observed

that this line also represents a linear fit to
∫

t FE downstream of the break point. Then,

we assume that
∫

t 1FE
nb(x∗→ x∗ + 1) which is the slope of the fitted line is constant

over the whole numerical domain, including the breaking region. Thus the total non-
breaking loss of the horizontal wave energy flux between x1 and x2 can be estimated
as ∫

t
1FE

nb(x
∗
1→ x∗2)= (x∗2 − x∗1)

∫

t
1FE

nb(x
∗→ x∗ + 1), (B 1)

and thus
∫

t 1FE
br=

∫
t 1FE− ∫t 1FE

nb. The values of
∫

t 1FE
br for the considered focused

wave packets are given in table 3. The ratio of
∫

t 1FE
nb(x∗→ x∗ + 1)/

∫
t 1FE

br ranges
from ≈ 0.01 up to 0.04 in our focused plunging and spilling breaking wave packets.
In most of the considered cases, the decrease of the mesh resolution results in the
increase of

∫
t1FE

br and thus the increase of the breaking strength parameter b. Table 4
summarizes the estimated b using different mesh resolution for our focused breaking
wave packets.

Appendix C. Input parameters for the breaking wave due to modulational
instability

For the generation of wave packets due to modulational instability, wave packets
composed of a carrier wave and one- or two side-band perturbation components are
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Case no. Mesh resolution b Mesh resolution b

RS1 G3 9.1× 10−3 G2 13.1× 10−3

RP1 G3 40.0× 10−3 G2 41.0× 10−3

RP2 G3 34.7× 10−3 G2 35.0× 10−3

DS1 G3 7.3× 10−3 G2 8.8× 10−3

DP1 G3 37.3× 10−3 G2 36.6× 10−3

DP2 G3 60.0× 10−3 G2 60.2× 10−3

TP1 G4 6.8× 10−3 G3 9.1× 10−3

TP2 G4 29.3× 10−3 G3 31.4× 10−3

TP3 G4 52.0× 10−3 G3 51.0× 10−3

TABLE 4. Variation of the breaking strength parameter b given by (4.12) with respect to
different grid densities for simulated focused packets. Different meth grid densities are:
G2 = (1x = 18.3, 1z = 5.0) mm, G3 = (1x = 10.0, 1z = 5.0) mm, and G4 = (1x =
5.0, 1z= 5.0) mm.

Case no. a0k0 1ω/ω0 a1/a0

S1 0.107 0.0954 0.3
S2 0.119 0.0954 0.3
S3 0.121 0.100 0.3

TABLE 5. Input parameters for the simulated breaking packets due to modulational
instability. Here, k0 = 8.23 m−1 and d= 0.55 m is the still water depth.

produced. Here, we follow the set-up of the bimodal initial spectrum, case II, wave
packets in Allis (2013), which is similar to case II in Banner & Peirson (2007). The
surface displacement at the incident boundary x= 0 is given by

η(0, t)= a0 cos(ω0t)+ a1 cos
(
ω1t− π

18

)
, (C 1)

where ω0 = 8.985 s−1, ω1 = ω0 +1ω. Table 5 gives the rest of input parameters for
the three simulated cases. The 2-D numerical domain of (50.0, 0.64) m is discretized
by a uniform grid of 1x= 7.8 mm and 1z= 4 mm.
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