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Abstract 
Understanding of the mechanics of “wave exposure” has been restricted by an inability to predict 

the maximal force encountered by particular wave-swept organisms on a time scale of months to 
years. In this study we attempt to remedy this situation by using the statistics of extremes to 
examine the hydrodynamic forces encountered by objects at a variety of intertidal sites. At each 
site a time series of wave-induced forces was divided into intervals, and the maximal force en- 
countered in each interval was noted. Each maximum was normalized to the mean of the maxima 
for the series. The cumulative probability of encountering a given normalized force was found to 
be similar among objects and across a wide range of surf conditions and time scales. This observed 
cumulative probability distribution is consistent with that predicted from simple assumptions 
regarding the distribution of nearshore wave heights, the wave-height dependence of near-sub- 
stratum water velocities, and the velocity dependence of hydrodynamic forces. The nature of this 
probability distribution allows one to predict on the basis of a relatively small number of mea- 
surements the maximal force a particular organism is likely to encounter in any given period. This 
information can in turn be used as a tool for exploring the ecological effects of disturbance and 
the evolution of body structure and life-history strategies. 

Disturbance by wave-induced hydrody- 
namic forces can control the distribution 
and abundance of intertidal organisms. For 
example, the frequency with which boulders 
are overturned by waves can determine the 
course of succession on these rocky sub- 
strata (Sousa 1979a,b). The rate of patch 
formation in mussel beds-a rate controlled 
at least in part by the severity of wave action 
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(PaineandLevin 1981;Denny 1987a)-can 
determine the local persistence of various 
algal species (Dayton 197 1; Paine 1979; 
Sousa 1984). Many examples also demon- 
strate that the frequency and severity of 
physical disturbance can determine the di- 
versity of species present at a given site (e.g. 
Connell 1978; Quinn 1979; Witman 1987). 

The ecological implications of distur- 
bance are dependent on the spatial and tem- 
poral patterns of disruption (see Sousa 1984, 
1985). If the average time between distur- 
bances (the return time) is less than the life- 
time of major competitors in the system, 
the consequences of disturbance are differ- 
ent than if the return time is measured in 
many generations. The effects of distur- 
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bance on life-history strategies are primarily 
consequences of the predictability of the 
disturbance or lack thereof (Sousa 1984, 
1985). 

Despite the biological importance of 
wave-induced physical disturbance, its 
physical basis has received little attention 
and is poorly understood. For example, at 
any given site it is not yet possible to predict 
a priori which organisms will be disturbed 
or how often. This inability to predict from 
an underlying mechanism the species-spe- 
cific severity and return time of disturbance 
limits understanding of nearshore biology. 

Two types of information are required to 
understand the mechanism of wave-in- 
duced disturbance. First, we need measure- 
ments of the hydrodynamic force required 
to “disturb” particular organisms. In many 
cases it is taken to be the force necessary to 
break or dislodge the plant or animal (e.g. 
Denny et al. 1985; Denny 1985, 1987ah 
1988), but it could also be defined as the 
force required to prohibit foraging or repro- 
duction. Data regarding strength and tenac- 
ity are available for a few wave-swept or- 
ganisms (limpets: e.g. Branch and Marsh 
1978; Dennyet al. 1985; Denny 1985; mus- 
sels, barnacles, urchins: e.g. Denny et al. 
1985; and corals: e.g. Chamberlain 1978; 
Tunnicliffe 198 1; Vosburgh 1982), and there 
is no apparent practical problem in obtain- 
ing similar data for almost any wave-swept 
organism. 

Second, we need measurements or accu- 
rate predictions of the maximal force ex- 
erted on organisms in a given period. To be 
most useful these measurements or predic- 
tions should refer to a period on the same 
order as the average time from settlement 
to last reproduction for the organism in 
question. In only a few cases have the hy- 
drodynamic forces imposed on organisms 
by the wave-swept environment been di- 
rectly measured (e.g. Koehl 1977; Denny 
1982,1983,1985,1987a; Denny et al. 1985) 
and for only a short period (a few tides at 
most). Practical problems with continu- 
ously measuring forces over periods ap- 
proaching the potential lifetime of a plant 
or animal have proven restrictive. We are 
thus forced to extrapolate from short-term 
data to predict the maximal force that a 

plant or animal would encounter over its 
lifetime. 

To date, these extrapolations have not met 
with much success. For example, Denny et 
al. (1985) noted that the drag and lift forces 
imposed on intertidal organisms are pro- 
portional to the square of the maximal water 
velocity which, for water at the crest of a 
breaking wave, is proportional to wave 
height (Carstens 1968). Therefore a knowl- 
edge of the temporal distribution of the 
heights of breaking waves potentially can be 
used as a basis for estimating maximal hy- 
drodynamic forces. In making such predic- 
tions, Denny et al. (1985) relied on the as- 
sumption that inshore wave heights (and 
consequently the forces that they cause) fol- 
low a Rayleigh distribution. There are, how- 
ever, two problems with this approach. First, 
the correspondence between wave height 
and the square of water velocity holds only 
when the crest of a breaking wave impinges 
directly on the organism in question (Car- 
stens 1968; Denny 1988)-a situation that 
is probably rare. Second, waves near break- 
ing deviate from a Rayleigh distribution of 
heights (Thornton and Guza 1983). These 
problems are reflected in the available data; 
Denny (1985, 1987a) noted that measured 
wave-induced forces exerted on limpets and 
mussels are not Rayleigh distributed. 

Here we propose an alternative method 
for predicting maximal wave-induced forces. 
This method is based on the statistics of the 
extreme values encountered in a series of 
relatively short intervals and thereby avoids 
the necessity of knowing the precise under- 
lying distribution of wave heights or water 
velocities. We demonstrate that forces en- 
countered on wave-swept shores show a 
similar distribution of normalized extreme 
values for a variety of objects and over a 
wide range of surfconditions and time scales. 
This common distribution can be used in 
conjunction with simple. short-term force 
measurements to estimate the return time 
of forces of a specified magnitude, thereby 
providing a practical means by which 
species-specific frequencies of disturbance 
can be predicted for a particular site. The 
limitations of the method and its applica- 
tion to questions of disturbance are also dis- 
cussed. 
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Methods Significant symbols. 

The prediction of maximal wave-induced 
forces is based on the statistics of extremes 
as developed by Gumbel(l958). These sta- 
tistics have been used to examine the prob- 
ability of flooding in streams and rivers 
(Gumbel 1958), of extreme wind speeds 
(Thorn 1954), jet engines “flaming out” (Ja- 
cocks and Kneile 1975), ocean wave heights 
(Isaacson and MacKenzie 198 l), and many 
other phenomena (Galambos 1987). To 
demonstrate their utility for studying wave- 
induced disturbance, consider a time series 
of forces from which Nequally long (but not 
necessarily contiguous) intervals, x, are cho- 
sen. The maximal force, F, in each interval 
is noted, and these N forces are ranked in 
ascending order, the smallest maximal force 
having rank 1 (notation defined in list of 
symbols). Ties are assigned a mean rank. 
The task is to determine the form of the 
probability distribution of maximal wave 
forces. 

A Characteristic area, L2 
Cd G Drag and lif? coefficients 
Fv E Maximal and mean maximal force in an 

interval, MLT-* 
52 Normalized maximal force 
F Predicted future F, MLT 2 
h Height of individual wave, L 

i;,ms _ 
Root-mean-square wave height, L 
Normalized wave height 

H, H Maximal and mean maximal wave height, 
L 

H” 

fr 

Normalized maximal wave height 
Rank of F 
No. of waves encountered 

L Likelihood function 
N No. of intervals in a sample time series 
P(q) Probability that a sample is Sq, where 

q is any variable (e.g. force, height) 
R(f9 Reduced variate of F 
Pp., S2R Variance of F and k M2L2T 4 
T Wave period, T 
7’rV-J Return time of F, intervals 
u Water velocity, LT.-’ 

; 
Regression coefficient, MLTm2 
Regression coefficient 

P(F) = Prob[F(x) I 1;1. (1) 
This probability can then be used to cal- 
culate the return time, T, for each force, F: 

c Mode of maximum force, MLT-2 
P Density of water, ML 3 
7 Length of interval, T 
Dimensions arc in terms of mass CM), length (L), and time(T). 

This distribution is often expressed as the 
reduced variate R(F) that transforms the 
distribution into a more linear form 

1 
Tr(F) = 1 - p(F) . 

T, is the number of time intervals, on av- 
erage, needed to observe a wave force 2 F. 

A simple estimate of the probability dis- 
tribution of maximal forces can be obtained 
from the ranked sample values, Fi (where i 
is the rank of the force): 

P(F;) = -& . (3) 

For N > 20 the relationship between F 
and P(F) (the cumulative probability dis- 
tribution) approaches an asymptotic form, 

P(F) = exp - [(ar - @)/(a - /3t)]‘@, (4) 

if the data are independent and identically 
distributed (Jacocks and Kneile 1975; dis- 
cussed below). Here E is the most frequently 
occurring Fi (mode), 01 measures how fast 
P(Fi) rises with the natural logarithm of time, 
and the ratio or//3 estimates the maximal 
force achievable (Jacocks and Kneile 197 5). 

R(F) = -In{ln[l/P(F)]}. (5) 

Estimating the parameters (Y, 0, and c is 
an exercise in nonlinear curve fitting. Sev- 
eral techniques have been used for extreme 
value statistics (Carter and Challenor 1983). 
We use the method of maximum likelihood 
estimation (Jacocks and Kneile 1975; Men- 
denhall et al. 1986) because its estimates 
have the smallest limiting variance and the 
limiting distribution of the estimates is nor- 
mal, enabling computation of variance es- 
timates of the parameters and confidence 
intervals for the predicted wave forces. The 
technique selects those values of the param- 
eters that maximize the probability of ob- 
taining the observed set of data. This prob- 
ability is defined by the likelihood function 
(L), which is the joint probability density 
function, i.e. the product of the N (=total 
number of time intervals) individual prob- 
ability density functions, dP(F)ldF, for the 
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observed sample data. The maximum like- 
lihood estimates of 1y, /3, and c are those that 
maximize the likelihood function. 

(a - /3FJ”‘@-“(cx -- /3+“0. (6) 

Parameter estimates are obtained iterative- 
ly with a quasi,-Newton algorithm (Wilkin- 
son 1986). 

A confidence interval for a predicted fu- 
ture force (F) is derived from the variance 
of (F - I;), where Fis the observed maximal 
force. Since the prediction and the obser- 
vation are independent, the variance of the 
difference is estimated from the sum of the 
two variances, s2F and s2p. The latter can be 
calculat.ed from the asymptotic variance- 
covariance matrix of the parameter esti- 
mates (Jacocks and Kneile 1975) which is 
comma~nly provided in many statistical 
packages with nonlinear curve-fitting mod- 
ules (e.g. Wilkinson 1986). 

(7) 

The equation for F is derived from the in- 
verse oif Eq. 4: 

F(R) = cd/3 - (a/p - c)exp[-(PR)] (8) 
where .R is the reduced variate (Eq. 5). 

The quantity s2F is given by Gumbel 
(1958). 

S2F = (cd/3 - c)‘[Iy 1 + 26) 
-F2(l +mli (9) 

where I’ is the gamma function (Abramo- 
witz and Stegun 1964); 95% C.I. are F k 
t(0.975; df = n - 3)(sg + sF). The utility of 
these confidence intervals for estimates out- 
side the range of measured wave forces is 
obviously constrained because they are ex- 
trapolations. The predictions are only rea- 
sonable if the underlying model continues 
to hold. 

The maximal force imposed on an organ- 
ism in a given period depends on its size 
and shape, the topograrlhy of the shore, and 
the surf conditions. To compare the distri- 
bution of maximal forces among different 
organisms, sites, and measurement periods, 
we normalize the force data. Each maximal 
force F is divided by the mean of all max- 
imal forces encountered during the time se- 
ries, F, 

F,, = F/F. (10) 
The calculations outlined above (Eq. l-4) 
are then carried out with the normalized 
maxima, F,,. Jndependent probability dis- 
tributions of extreme wave forces are com- 
pared by a two-sided, k-sample Smirnov 
test (Conover 197 1). 

Time series of wave-induced hydrody- 
namic forces imposed on limpets, barna- 
cles, spheres, and hemispheres were ob- 
tained at intertidal sites in Washington, 
California, and Hawaii. In each case the ex- 
perimental site was located shoreward of the 
break point of ambient waves (even at high 
tide), so that sites were subjected solely to 
broken waves. 

The device of Denny (1983) was used to 
record the maximal force exerted on spheres 
(1.25-cm diam) during the course of each 
high tide over a series of tides at four rocky 
sites on Tatoosh Island, Washington 
(124”44’W, 48O24’N; Denny 1985). The in- 
terval size for these series is - 12 h. The 
directional force transducers of Denny 
(1982) were used to continuously monitor 
the force exerted on cast plastic replicas of 
a barnacle (Semibalanus cariosus) and a 
limpet [Lottia pelta, previously known as 
Collisella pelta (Lindberg 19.86)] at an ex- 
posed rocky site on Tatoosh Island (Denny 
1985; Denny et al. 1985). The maximum 
directional components of force occuring in 
each lo-min interval through the course of 
a high tide were noted. 
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A modified version of the force trans- 
ducer of Denny (1982) was used to contin- 
uously measure the Force exerted on a small 
sphere (O.&cm diam) at two midintertidal 
rocky sites on the shore adjacent to Hopkins 
Marine Station, Pacific Grove, California 
(12 1”57’W, 36”37’N). The maximal direc- 
tional components of force occurring in each 
400-s interval during a period of - 2 h span- 
ning high tide were measured on two oc- 
casions. In addition, the heights of the tur- 
bulent bores (broken waves) causing these 
hydrodynamic forces were measured with a 
bottom-mounted pressure transducer (Sen- 
sym 1604A) located adjacent to the force 
transducer. Force transducers similar to 
those of Denny (1982) were used to measure 
the drag forces exerted on small hemi- 
spheres (half a table-tennis ball) at a low 
rocky intertidal site on the Makapu’u Pen- 
insula (Oahu, Hawaii, 157”39’E, 2 lo1 9’N) 
(Gallien 1986). The maximal shoreward- 
seaward force occurring in each 500-s in- 
terval was noted. 

The response time of the transducers used 
in this study is quite short [25 ms for the 
maximum force recorder (Denny 1983), 8 
ms for the other force transducers (Denny 
1982)], allowing accurate measurement of 
even short-duration forces. No “impact 
forces” were noted during these measure- 
ments (see Denny 1985). 

Results 
Although there is some variability among 

the eight data sets, the cumulative distri- 
butions of maximal wave forces (Fig. 1) are 
surprisingly similar and statistically indis- 
tinguishable (k-sample Smirnov test, P > 
0.1). The largest normalized force is usually 
-2, and the most common normalized 
maximal force (i.e. E) is usually -0.8. Given 
the consistency of the force distributions, 
the data are pooled (i.e. all normalized force 
measurements, F,, are combined into a sin- 
gle data set) to provide an aggregate estimate 
(the solid line in Fig. 1): QI = 0.414 (SE 0.076), 
@ = 0.056 (SE 0.076) IZ = 0.810 (SE 0.030). 
Thus, 

P(F,J = exp{--[(0.414 - O.O56F,)/ 
0.369]‘7.g}. (11) 

This estimate of P(F,J allows us to calculate 
the manner in which normalized maximal 

0 0.4 0.8 1.2 I.6 e.0 2.4 2.8 

Normallrsd Maxlmum Fores 

Fig. 1. Cumulative probability distributions of 
normalized maximal wave forces for the eight data sets 
used in this study (dashed lines). The heavy solid line 
is the best-fit to the pooled data (Eq. 11). Samples sizes 
for the individual data sets ranged from 23 to 37 in- 
tervals. The two-sided, k-sample Smirnov test statistic 
is 0.24 (P > 0.10). 

force is related to the reduced variate (Fig. 
2A) or return time (Fig. 2B). 

Discussion 
The similarity in form of P(F,) measured 

over such a wide variety of sites, organisms, 
surf conditions, and time scales raises major 
questions. The first is why the probability 
distributions of these maximal wave forces 
are so similar. Because this statistical ap- 
proach deals only with extreme values, a 
direct, mechanistic explanation for the lack 
of variation in P(F,J is not possible on the 
basis of these data alone. Different under- 
lying distributions of water velocity and 
wave height could potentially have the same 
asymptotic distribution of extremes; there- 
fore, different fluid-dynamic mechanisms 
could yield the same apparent result. It is 
reasonable to ask, however, whether our re- 
sults are consistent with current theories re- 
garding the nearshore flow regime, or, al- 
ternatively, whether some novel mechanism 
is required. 

To this end we predict in turn: the dis- 
tribution of maximal inshore wave heights, 
the maximal water velocities caused by these 
waves, and the maximal hydrodynamic 
forces caused by these velocities. In the fol- 
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Fig. 2. The maximum likelihood estimate of nor- 
malized maximum force as a function of (A) the re- 
duced variate and (B) the return time. The thin lines 
are 95% C.L. on the best estimate. 

lowing discussion we use h to designate the 
height of an individual wave and N to des- 
ignate the maximal height in an interval of 
length T. 

Although the heights of breaking waves 
are not Rayleigh distributed, their heights 
after breaking closely conform to a Rayleigh 
distribution (Thornton and Guza 1983). 
Thus, the probability, P(h), that a broken 
wave chosen at random is less than height 
h is 

P(h) = 1 - exp[ -(h/h,,)2] (12) 

where h,,,, is the root-mean-square wave 
height during the period of observation 
(Longuet-Higgins 1952). 

To be consistent with the manner in which 
we earlier normalized force (Eq. lo), we di- 
vide each wave height by the mean maximal 
wave Iheight, I?, of the total period of ob- 
servation to give a normalized height, h,. 
The probability that a wave chosen at ran- 
dom is 5 h, is 

P(h.,) = I - exp{ - [(h/fi)Z(%%1.,,)2]t 
= 1 - exp{-[(hn)2(,~/h,,,)2]}. (13) 

Longuet-Higgins (1952) has shown that 
in an interval of length. 7, where 7 is much 
greater than the average wave period, T, 

Thus 

(fi/hrm,)* x ln(7/7). (14) 

JYhn) = 1 - ew{ - Kh,J21n(dr)]} 
= 1 - (T/7)@. (15) 

The probability that a given h, is of maxi- 
mal normalized height, Igo, in an interval 
of length T is equal to the probability that 
all J waves in the interval have height <h,. 
Thus P(H, = h,) = [I’@,#. Expressing J 
as T/T we see that P&r,) is 

P(H,J = [ 1 - (T/7)ffn2]T”‘. (16) 

This probability can be used in Eq. 2 to 
calculate the return time or in Eq. 5 to cal- 
culate the reduced variate (Fig. 3). The order 
statistics for the extreme heights of broken 
waves measured at Hopkins Marine Station 
correspond approximately to those predict- 
ed for the Rayleigh dis#tribution (Fig. 3). 

Knowledge of the maximal wave height 
allows us to estimate the maximal velocity 
at the substratum. As a simple, first ap- 
proximation we use linear wave theory, 
which predicts that the maximal water ve- 
locity encountered by an organism is di- 
rectly proportional to wave height (Sarp- 
kaya and Isaacson 198’ 1). 

In turn, the major hydrodynamic forces 
exerted on wave-swept organisms are pro- 
portional to the square of water velocity: 

drag = 1/2,pu2C& 
lift = V2pu2Cgi (17) 

where p is the density of seawater, u the 
water velocity reIative to the organism, and 
A a characteristic area of the organism. C, 
(the drag coefficient) and C, (the lift coeffi- 
cient) depend primarily on the shape of the 
object, although they can have a secondary 
dependence on velocity. Any velocity de- 
pendence of Cd or C, may affect the rela- 
tionship between force and velocity, but the 
effect is typically slight for wave-swept. or- 
ganisms (Denny 1988). 

Wave-swept organisms are also subjected 
to a third hydrodynamic force, the accel- 
eration reaction. As a result, a component 
of the overall force is proportional to the 
water’s acceleration rather than its velocity 
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Fig. 3. The reduced variate as a function of nor- Fig. 4. The probability distribution for the maxi- 
malized maximal wave height for two sets of mea- mal hydrodynamic force predicted from observed wave 
surements (A, B) made at Hopkins Marine Station. heights and linear wave theory (circles, solid line) com- 
Dotted lines are the 95% CL. on the estimated height pared to that for observed maximal wave forces (dotted 
distribution. The observed distribution of maximal confidence intervals). A, B. The two sets of empirical 
wave heights is similar to that predicted on the as- observations. 
sumption that wave heights show Rayleigh distribu- 
tion. In calculating the curve for the Rayleigh distri- 
bution we have used r = 500 s and T = 10 s-values 
representative of the interval lengths used and wave diction seems valid. The order statistics for 
periods observed in our empirical measurements. F,, calculated from wave heights measured 

at Hopkins Marine Station closely resemble 
the regression of pooled force data (Fig. 4). 

This comparison should not be construed 
(Denny et al. 1985; Denny 1988). Because as a rigorous test of a mechanistic model 
wave-swept organisms are typically small predicting maximal wave-induced hydro- 
(usually <O.OOl m3), however, the accel- dynamic forces. It is possible that other 
eration reaction is small relative to lift and models for the distribution of wave heights 
drag (Denny 1988). As a first approxima- and water velocities could lead to the same 
tion, then, it can be assumed that the overall distribution of extreme forces. Any rigorous 
hydrodynamic force exerted on a wave- test to discriminate among models will in- 
swept organism is proportional to the square volve much more extensive monitoring than 
of water velocity. Therefore, given our as- that carried out in the course of this study. 
sumption that water velocity is proportion- The correspondence between the forces ob- 
al to wave height, maximal wave forces served and the predictions made from sim- 
should be proportional to the square of ple assumptions about broken waves offers, 
maximal wave heights. however, an explanation for the consistency 

If this prediction is realized in nature, the of the existing force distributions (Fig. 1) 
normalized maximal force predicted from based on standard theories. 
linear wave theory, FE (=H*/@), should Another major issue is how this statistical 
have the same probability distribution as approach can be used to examine distur- 
the observed forces, F,. Indeed, this pre- bance. Before mechanistic predictions of 

Maximal wave forces 
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disturbance can be made, two sets of mea- 
surements must be assembled. A represen- 
tative “disturbing force” (e.g. a mean break- 
ing force and the standard deviation about 
this mean) must be measured for the indi- 
viduals present at the site (Denny 1988). In 
addition, the maximal force exerted on a 
representative individual of the species must 
be measured in each of a representative se- 
ries of intervals (Jones and Demetropoulos 
1968; Denny 1982, 1983, 1988). Once these 
data are available, the statistical analysis 
outlined above can be used in either of two 
approaclhes to examine the probability of 
disturbance for a particular species at a par- 
ticular site. 

The first approach is a straightforward ap- 
plication of the statistics of extremes. The 
expected maxirnal force is predicted from 
the probability distribution of maximal 
forces--P(E’*). Confidence in the predic- 
tions increases with an increase in the num- 
ber of intervals,, and reliable estimates often 
require measurements from a large number. 
Petrauskas and Aagaard (197 l), on the basis 
ofmeasurements of ocean wave heights from 
the Pacific coast of North America, found 
that uncertainty levels decreased signifi- 
cantly with increases in sample size up to 
50. They found relative insensitivity to 
sample size thereafter. 

The sampling effort required to predict 
maximal force with confidence can be de- 
creased substantially if the similarity in form 
of P(F,,) apparent in Fig. 1 is accepted as a 
universal trait of wave-swept shores. In this 
second approach, the probability distribu- 
tion of Fig. 2R provides an estimate of the 
asymptotic shape of P(F,,), and we need only 
obtain a reliable estimate of the mean max- 
imal force at a site to convert the scale of 
the abscissa of Fig. 2B from normalized to 
absolute force. The measurement interval 
chosen is used to convert the ordinate from 
a normalized time scale (return time has the 
units of intervals) to one o’f absolute time. 

Witlh data in hand from either of these 
approaches, the likelihood of disturbance as 
a function of time can be estimated. The 
return time with which a particular disturb- 
ing fo:rce is exceeded can be predicted and 
subsequently compared, for example, with 
the time to first reproduction or to the av- 

erage lifetime, given other sources of mor- 
tality. The predicted return times can also 
be compared among sites, providing a 
quantitative basis for comparing the rela- 
tive importance of physical disturbance 
along environmental gradients. This mea- 
sure of disturbance has the added benefit of 
being readily tied to demographic parame- 
ters such as survivorship. The confidence 
intervals about the return time estimates, 
together with the confidence intervals for 
the mean maximal disturbing force, provide 
a rough estimate of the range of return times 
expected for a given force at a particular 
site. 

We illustrate the use o-fextreme order sta- 
tistics by estimating the impact of wave 
forces on the survivorship of one species of 
limpet, L. pelta. The example is presented 
primarily as a demonstration of the meth- 
odology, rather than as an earnest predic- 
tion. For simplicity, consider a standard in- 
dividual. In this case the choice of a standard 
is dictated by the need for an available data 
base. Consequently, we have chosen the in- 
dividual limpet used by Denny (1985) and 
Denny et al. (1985) in their measurements 
of wave forces conducted on Tatoosh Is- 
land, Washington. The aperture area of the 
shell of the standard limpet is 4.19 X 
10 -4 m2. Denny (1989) measured the ability 
of L. pelta to resist drag (a shearing force) 
and lift (a tensile force). These forces are 
normalized to the size of the limpet by ex- 
pressing them as tenacity, defined as the 
force required to dislodge the limpet divid- 
ed by the aperture area of the shell. The 
mean shear tenacity is 1.67 x lo5 Pa (SD 
= 0.60 x 10f Pa, n = 19), and the mean 
tensile tenacity is 1.12 x 105 Pa (SD = 0.43 
x lo5 Pa, M = 16). 

A mean tensile force of 46.9 newtons (N) 
would be required to dislodge a “standard” 
stationary limpet chosen at random from a 
population of such limpets, with a standard 
deviation of 18.0 N. Similarly, a mean shear 
force of 70.0 N would be required to dis- 
lodge a stationary limpet, with a standard 
deviation of 25.1 N. 

These tenacity values would likely be 
lower if a limpet were crawling, e.g. while 
foraging. Miller (1974) found that the te- 
nacity of L. pelta wh,en moving was only 
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Fig. 5. Tenacity distributions for moving and sta- 
tionary limpets. 

36% of that when stationary. Her measure- 
ments were made with limpets adhering to 
an acrylic plastic substratum and the mean 
tenacities under these conditions are con- 
siderably lower than those measured here 
in the field. However, if we assume that the 
ratio of moving tenacity to stationary te- 
nacity is the same for limpets adhering to 
rock as for those adhering to plastic and that 
moving limpets have the same C.V. as 
stationary limpets, an estimate of the te- 
nacity of L. pelta while moving in the field 
can be calculated. The resulting tensile and 
shear forces required to dislodge the animal 
while it forages are: mean tensile dislodg- 
ment force (moving) = 16.9 N, SD 6.5 N, 
mean shear dislodgment force (moving) = 
25.2 N, SD 9.1 N. From these values, we 
can estimate for a given force the proportion 
of a population dislodged or, equivalently, 
the probability that a random individual 
would be dislodged (Fig. 5). Because this 
calculation is based on untested assump- 
tions (Gaussian distribution of tenacities, 
constant C.V. for both stationary and mov- 
ing limpets), it should be treated with cau- 
tion and viewed as an educated guess of the 
real probability of dislodgment. 

Here we use as a standard sea condition 
the high tide of 19-20 November 1980 on 
Tatoosh Island. This period was used by 
Denny, ( 198 5) in a case study of wave forces 
on L. pelta. The surf conditions at this time 
were characterized by a combination of seas 
and swell with a period of 6-8 s. Breakers 
were visually estimated at 2-4 m high. Drag 
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Fig. 6. The probability that a limpet will be dis- 
lodged as a function of time. The dashed lines indicate 
the probability of dislodgment should drag or lift be 
decreased by 10% or, equivalently, should tenacity be 
increased by 10%. 

forces at a rocky site shoreward of the wave’s 
break point were recorded for - 6 h, and the 
record was divided into contiguous 1 0-min 
intervals. The maximal force was then not- 
ed for each interval and these maxima were 
averaged over all intervals. The mean of the 
maximal drag forces exerted on the stan- 
dard limpet during this high tide was 1.80 
N. Measurements made by Denny (1989) 
indicate that for L. pelta lift force is 1.75 
times the drag force. Hence, the mean max- 
imal lift force is - 3.15 N. These mean max- 
imal forces are used to convert the nor- 
malized maximal force of Fig. 2B to absolute 
force and thereby estimate the return time 
for a given force acting on the limpet. 

Combining these data, we estimate the 
probability that the standard moving limpet 
will encounter a force sufficient to dislodge 
it in a given time (Fig. 6). The limpet is 
much more likely to be dislodged by a lift 
force than by a drag force, but the proba- 
bility of dislodgment for either is relatively 
low (a maximum of about 6% in a year). 
The probabilities of dislodgment for sta- 
tionary limpets (which are more tenacious) 
would be even lower and are probably neg- 
ligible. Their calculation is unwarranted be- 
cause the accuracy of such estimates would 
rely on the distribution of tenacities to re- 
main strictly normal even at very low prob- 
abilities-an assumption which probably 
stretches the analysis beyond its valid lim- 
its. 

These calculations assume that the sea 
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Fig. 7. Probability that the offshore significant wave 
height (PI,,,) will exceed a certain value. The curve is 
the average of five probability distributions reported 
by the Coastal Data Information Program for Gray’s 
Harbor, Ocean Park, and Long Beach, Washington 
(1984-1986). 

conditions accounting for the mean maxi- 
mal force measured on Tatoosh on 19-20 
November 1980 would be present contin- 
uously. In fact, the waves present during this 
period are considerably higher than those 
typical of the Washington shore. The height 
of breaking waves on 19-20 November 1980 
was estimated visually at 2-4 m, suggesting 
that the significant breaking wave height was 
- 3 m (U.S. Army Corps ofEngineers 1984). 
If we assume that these waves have an av- 
erage period of 7 s and break at a water 
depth equal to the wave height, simple 
shoaling theory predicts that the offshore 
(unshoaled) wave height corresponding to a 
3-m breaking height is -2.8 m (U.S. Army 
Corps of Engineers 1984). 

The probability of encountering such off- 
shore wave conditions can be estimated from 
information provided by the Coastal Data 
Information Program for various sites on 
the Washington coast (Fig. 7). Waves of the 
height observed at Tatoosh Island on 19- 
20 November 1980 are present < 10% of 
the time, and the actual probability of dis- 
lodgment will therefore be lower than cal- 
culated here. In plotting Fig. 6, we have also 
implicitly assumed that limpets move con- 
tinuously, which is clearly false. Although 
this species does move to forage while the 

Return Tins 

Fig. 8. The data from Fig. 6 replotted to show the 
magnitude of the change in probability of dislodgment 
as a function of time when either lift or drag is de- 
creased by 10%. 

tide is in, as with other limpets, they are 
likely to stop when surf conditions are se- 
vere (Wright 1978; Judg;e 1988). As a con- 
sequence, these estimates of the probability 
of dislodgment probably are high. Because 
of such complications, these particular es- 
timates should be used cautiously. They are 
presented primarily as a demonstration of 
the method by which the statistics of ex- 
tremes could be used in a biological context. 

This type of analysis can be applied to a 
variety of questions. For example, what se- 
lective advantage would a limpet accrue 
from a morphological change that reduced 
its drag or lift or increased its tenacity? If 
we assume either that drag and lift were 
reduced by 10% or that mean tenacity was 
increased by 10% (the istandard deviation 
of tenacity being held c’onstant), the prob- 
ability of dislodgment is decreased (dashed 
lines in Fig. 6). Changes in morphology 
leading to a reduction in lift have a greater 
efFect on survivorship (and are therefore 
substantially more susceptible to selection) 
than do those leading to a comparable re- 
duction in drag (Fig. 8). Similarly, an in- 
crease in tensile tenacity has a larger effect 
on survivorship than does an equivalent rel- 
ative increase in shear tenacity. Such dif- 
ferences may be especially important for 
morphological changes that impose trade- 
offs. For example, small advantages due to 
decreased lift forces could easily offset large 
increases in drag forces. 

These data can also be used to quantify 
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the “safety factors” associated with limpet 
tenacity. Here the safety factor is defined as 
the ratio of the force that an average limpet 
can resist to the maximal force that the or- 
ganism will likely encounter in a specified 
period. If the average limpet is assumed to 
live between 1 and 10 yr, the safety factor 
for lift on a stationary limpet is about 6 
while that for drag is about 10 (Fig. 9A). At 
shorter times, the factors of safety are con- 
siderably higher. 

These factors of safety are higher than 
most of those estimated for other animals 
(Alexander 198 l), where values range from 
1.2 to 8, but are generally in the range of 
1.5-4. Alexander noted that high values for 
the factor of safety are to be expected when 
the cost of failure is high and when the coef- 
ficient of variation in strength (here, tenac- 
ity) is high. The cost of failure in limpets is 
likely to be death and is therefore extremely 
high. The C.V. in tenacity measured by 
Denny (1989) is 0.36 for shear tenacity and 
0.38 for tensile tenacity. These values 
are higher than those reported by Alexander 
(198 1) for other animal systems, where the 
coeficients of variation are typically 0. l- 
0.3. It is probable that the high C.V. in lim- 
pets is due at least in part to an unavoidable 
variation in the strength of the substratum. 
In light of the high cost of failure and the 
large uncertainty in tenacity, the high safety 
factors calculated for stationary limpets may 
not be surprising. 

A similar set of safety factors can be cal- 
culated for limpets that are moving and 
therefore have a lower tenacity. We assume 
as before that the tenacity while moving is 
36% of that while stationary. For a lifetime 
of l-10 yr, the factor of safety for drag for 
the average moving limpet is -4 and the 
safety factor for lift is -2 (Fig. 9B). As noted 
above, when the surf is rough, limpets often 
stop moving. As a consequence, the safety 
factors calculated here for moving limpets 
are probably lower than those expected in 
the field. 

Caveats 
There are several potential constraints on 

the use of these approaches. The statistics 
of extremes, as used here, assume that the 
data are independent and that the under- 
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Fig. 9. Safety factors for stationary (A) and moving 
(B) limpets. 

lying distribution offorces is stationary. Both 
of these assumptions may be violated for 
wave force data. The first assumption is vi- 
olated if maximal forces from contiguous 
sample intervals are dependent (e.g. due to 
multiple-day storms). The techniques out- 
lined above, however, are reasonable as long 
as the dependence weakens as the time in- 
terval between samples increases (see Gal- 
ambos 1987)-a realistic expectation for 
wave data. The degree of dependence in the 
data can also be reduced by using widely 
separated, rather than contiguous, intervals. 

The second assumption is potentially vi- 
olated by temporal trends in the maximal 
forces (e.g. seasonal trends in storm waves). 
One possible solution is to modify the cu- 
mulative probability distribution (Eq. 4) to 
include a time-varying component (Carter 
and Challenor 198 1; Challenor 1982). Sea- 
sonality in wind and wave height data have 
been approximated by a sine function (Jar- 
dine and Latham 1981) with good results 
(Carter and Challenor 198 1; Challenor 
1982). 
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Fig. 10. A comparison of the probability distri- 
butions for the observed maximal forces and for the 
model data set taken from records of the maximum 
daily significant wave heights measured at the Farallon 
Islands, California. 

Alternatively, the sampling scheme could 
be adjusted to diminish the effect of sea- 
sonality. For instance, Paine and Levin 
(1981) .noted that virtually all patches in 
mussel beds on Tatoosh Island are created 
between October and April. The annual rate 
of disturbance would thus bc estimated ap- 
propriately by measuring the maximum im- 
posed force on days chosen randomly from 
the period October to April. Price (1980) 
has noted that the tenacity of mussels (Myt- 
ilus edulis) varies seasonally, reaching a peak 
in winter. Thus, the above estimates of 
maximal force should be used in conjunc- 
tion wir.h a tenacity distribution measured 
during the same time of year. 

If it is uncertain whether seasonal or other 
trends in maximal forces are present, it is 
necessary to sample a sufficient number of 
intervals to include several of any suspected 
periodicities. Furthermore, the interval size 
should be smaller than the period of the 
major temporal fluctuations if the time vari- 
ance is to be measured and accounted for 
(Carter and Challenor 198 1; Challenor 
1982). The presence of periodicities can be 
ascertained with standard techniques of 
spectral analysis (e.g. Bendat and Piersol 
197 1; Chatfield 1984). Uncertainties re- 
garding periodic trends in maximal force 
can thus lead to a large sampling effort in 
obtaining demonstrably reliable data for use 
in predictions. This problem may not be as 
serious, however, as it first appears. If day- 
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Fig. Il. The standard deviation of the mean max- 
imum as a function of the number of intervals used in 
the estimate. 

to-day, season- to-season, year-to-year, or 
site-to-site variations strongly affect the re- 
lationship between F,, and P(F,J, the curves 
obtained from the various objects, sites, 
seasons, years, and wave conditions used in 
compiling Fig. 1 should not be nearly su- 
perimposable, yet they are. Further, the cor- 
respondence between fimposed hydrody- 
namic force and the square of wave height 
(Fig. 4) raises the possibility that temporal 
trends in wave forces can be estimated from 
information regarding temporal trends in 
wave heights, for which excellent data are 
available. 

There are two potential problems asso: 
ciated with using the re:lationship of Fig. 2 
as a means of minimizing sampling effort. 
First, this approach relics on the universal- 
ity of the relationship of F,, vs. P(F,)-an 
extrapolation that can only be assessed 
through further measurements at different 
sites. The correspondence between ob- 
served force distributions and that predict- 
ed from simple wave theory is, however, 
encouraging. Second, placing the probabil- 
ity distribution P(F,) on an absolute force 
scale relies on knowledge of the mean max- 
imal force encountered at a site, and this 
value is subject to several potential mea- 
surement biases. How many intervals must 
one measure before a “representative” mean 
maximum is obtained? 

Part of this problem can be addressed as 
follows. We use 340 sequential daily esti- 
mates of maximal signilicant offshore wave 
height at the Farallon Islands, California 
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(Coastal Data Information Program), as a 
model data base. It is necessary to use a 
model data base rather than any of our ac- 
tual measurement periods because none of 
the latter contain a sufficient number of in- 
tervals. This particular data base was cho- 
sen because its cumulative probability dis- 
tribution is very similar to the distribution 
of Figs. 1 and 2 (Fig. 10). Furthermore, be- 
cause this time series deals with maximal 
wave heights it is likely to show the same 
sort of temporal variation that would be 
encountered in a long-term measurement of 
wave forces on the California coast. 

Measurement periods of different lengths 
were randomly subsampled from the over- 
all period. Each mean of these maximal 
forces was normalized to the overall mean 
maximum of the entire period (340 inter- 
vals). The standard deviation of these nor- 
malized means was then plotted as a func- 
tion of the number of sample intervals (Fig. 
11). As expected, the more intervals used 
in estimating the mean, the greater the con- 
fidence in the estimate (i.e. the smaller the 
SD of means). 

When each measurement period consists 
of contiguous blocks of intervals, the de- 
crease in the standard deviation of means 
is relatively gradual. In contrast, when sam- 
ple intervals are chosen at random, the de- 
crease in variance is more rapid. This con- 
trast is likely due to trends or periodicities 
in the underlying wave statistics. For ex- 
ample, 20 maximal wave forces measured 
on consecutive days in summer might yield 
a substantially different mean than 20 max- 
ima measured in a similar manner in winter. 
Thus, seasonal or other temporal trends 
could lead to large variation in the esti- 
mated mean maximum among different 
contiguous samples. 

In contrast, 20 maxima measured on ran- 
domly selected days throughout a year would 
provide a better estimate of the yearly mean, 
and thus would not be expected to vary as 
greatly among measurement periods. For 
intervals chosen at random, or contiguous 
intervals in a period with no underlying 
trend, the standard deviation is 5 10% of 
the mean after only 14 intervals. It is useful 
that this number of samples is small. Pe- 
trauskas and Aagaard (197 1) suggest that a 

minimal sample of nearly 50 intervals be 
used to reliably calculate the asymptotic re- 
lationship between H and P(H) for signifi- 
cant wave heights. If a similar number were 
required to calculate the mean maximal 
force, the “universal” curve of Fig. 2 would 
have less practical value; one would instead 
directly calculate the function o_fFvs. T,(fl 
for each case. Since a reliable P can appar- 
ently bc calculated with substantially less 
sampling effort than that required to esti- 
mate the asymptotic distribution, measure- 
ments can be made at many more sites. Be- 
cause these results have been obtained with 
a model data set and constitute extrapola- 
tion, they should be used with caution. It 
will be useful to repeat these calculations on 
an actual time series of wave-induced forces 
once a series of sufficient length is available. 

Long-term, interannual trends in wave 
forces also place limits on the predictive 
accuracy of these techniques, particularly 
extrapolations to return times greatly ex- 
ceeding the cumulative period of measure- 
ment. For example, significant wave heights 
in the northeast Atlantic have apparently 
increased over the past three decades (Car- 
ter and Draper 1988). As a result, predic- 
tions based on measurements within any of 
those years would include a potentially sig- 
nificant but unmeasured source of error. The 
extreme value approach, however, does 
provide a means for predicting the effects 
of such trends in mean maximal forces. Since 
the probability distribution ofextreme forces 
appears independent of the mean maximal 
force, the consequences of changes in the 
mean are easily predicted by “sliding” the 
distribution along an absolute force axis. 
Furthermore, for many biological applica- 
tions where order-of-magnitude estimates 
are sufficiently accurate (e.g does a breaking 
or dislodging force occur on average once a 
year, once a decade, once a century?), only 
large errors in estimating the mean maximal 
force pose any concern. 
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