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Solving the problem of resonant short-crested waves is very challenging because the appearance of
small divisors causes the classical perturbation methods to fail. From a numerical point of view, the
case of resonant gravity short-crested waves has been studied, but as far as we know, there are very
few results in the case of resonant capillary-gravity short-crested waves. In fact, to the best of our
knowledge, the most related study which has been made is the one of Craig and Nicholls �SIAM J.
Math. Anal. 32, 323 �2000�� who gave existence theorems for the case where the surface tension is
supposed not to be too small. There is a need for such an investigation, and the work considered
herein therefore provides a calculation technique and presents new results on resonant short-crested
gravity-capillary waves. We overcome the technical problems associated with small divisors by
using a method derived from Whitham’s variational formulation of the classical problem of
short-crested waves. Whitham’s method is not modified in essence, but computations are carried out
and organized to obtain a method that has been applied to series of cases demonstrating the
robustness and flexibility of the approach. In particular, numerical solutions corresponding to
three-dimensional Wilton ripples have been obtained. Moreover, these waves are also obtained for
long wave configurations. This method is able to handle the case of small or zero surface tension,
including the resonant cases, and works well very near the limiting two-dimensional cases. © 2009
American Institute of Physics. �DOI: 10.1063/1.3155513�

I. INTRODUCTION

Resonant surface capillary-gravity waves, in general,
have been focused in several studies following the pioneer-
ing work of Wilton1 who proposed a fifth-order solution,
using a Stokes-type perturbation expansion to the problem of
two-dimensional, symmetrical, and periodic wave. The ex-
pansion was found to fail for values of the dimensionless
capillary number � �=K2T /�g� equal to the reciprocals of an
integer. Here g is the body acceleration, K is the wave num-
ber, and T and � are, respectively, the surface tension and the
density of the fluid. These failures lead to computational dif-
ficulties which will pose interesting challenges. Various ap-
proaches have been derived to overcome these difficulties
and which revealed that multiple solutions usually exist. The
most celebrated of these are the ripples found by Wilton1 at
�=1 /2: one is capillarylike, that is to say, the wave speed
decreases as the amplitude increases and the other is gravi-
tylike with a speed that increases as the amplitude increases.

In three dimensions, the problem is less extensively
studied and the theory of wave solutions is still incomplete.
Due to the complexity of the equations of the general prob-
lem, most of the studies were restricted to special cases. The
short-crested waves are one of the simplest classes of three-
dimensional waves and are therefore among the most com-
monly studied. The question of the existence of capillary-
gravity short-crested waves was considered by Reeder and
Shinbrot2 who produced a proof only for sufficiently small
amplitudes. Even in this case, there are situations where this
proof cannot be applied. Effectively, there is a set of values

of the relevant parameters for which it was not possible to
get a solution. Furthermore, a problem of small divisors
arises if there is no surface tension and, in this case, they
conjectured that all solutions are unstable, even when they
exist. This failure has been discussed by Roberts3 who attrib-
uted the problem of small divisors to the phenomenon of
harmonic resonance. He computed gravity short-crested
waves in deep water generated by the reflection of a two-
dimensional wave train arriving at a vertical seawall at some
angle of incidence � �Fig. 1�. Using perturbation theory with
the assumption that the velocity, the shape, and the velocity
potential of the wave all depend analytically on a small pa-
rameter, he obtained a 27th-order solution and made a de-
tailed investigation in which he derived the main properties.
He showed how these waves are subject to the phenomenon
of harmonic resonance at critical values of the incident wave
angle that were shown to generate zero denominators in the
perturbation solution coefficients. Therefore, the perturbation
series will have everywhere zero radius of convergence.
Near these critical angles, the radius of convergence is very
small due to the division by a number which is nearly zero,
causing the coefficients at higher orders in the perturbation
series to increase rapidly. Furthermore, he found that for the
most cases, the resonances appear at high orders, and thus
they should be dissipated through viscous damping. Roberts
and Peregrine,4 who considered the limit as both incident and
reflected waves are almost parallel, found that harmonic
resonances are due to the multiplelike structure of the solu-
tions. The properties of gravity short-crested waves in water
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of finite depth have been discussed in Marchant and Roberts5

and, also, they found that harmonic resonance occurs for a
set of values of the incident wave angle at a given depth. In
the case of traveling waves without surface tension, the prob-
lem of small divisors makes the convergence of the solutions
problematic. Such a situation calls into question the validity
of the standard perturbation method. This requires the devel-
opment of techniques other than perturbation theory to solve
the problem. There has been recent progress on this problem
by Iooss and Plotnikov6 who gave, in a 119-page paper, an
existence proof for waves having diamond patterns using a
version of the Nash–Moser scheme. A numerical study of the
stability problem associated with the harmonic resonances
phenomenon has also been performed by Ioualalen and
Kharif,7 Ioualalen and Okamura,8 and Ioualalen et al.9 They
showed that instabilities are weak and occur as sporadic
bubbles of instability

The small divisor problems become less difficult when
we consider capillary-gravity three-dimensional waves in-
stead of pure gravity three-dimensional waves. A rigorous
proof of such waves was obtained by Craig and Nicholls10

who have shown a connection between resonant interactions
between Fourier modes and the multiplicity of solutions to
the nonlinear problem. They used a surface formulation of
Zakharov coupled with the Lyapunov–Schmidt procedure
from bifurcation theory. The bifurcation points are deter-
mined by the solutions �c ,K� of the dispersion relation:
�T�c ,K�= �g+T K2��K�tanh�h�K��− �c ·K�2=0. For a fixed
wave vector K1��� �the conjugate to the lattice � of the
spatial periods�, the equation �T�c ,K1�=0 determines two
parallel lines of solutions, consisting of a particular solution
pair �c0 and all parameters c��R2 such that �c��c0��K1.
Given any two independent wave vectors K1 ,K2���, it is
always possible to find a phase velocity vector c such that
�T�c ,K1�=0 and �T�c ,K2�=0. It may be that the relation
�T�c ,Kj�=0 is satisfied by other wave numbers
K3 ,K4 , . . . ,Kp, as well as for K1 and K2 although this situ-
ation is not generic. These situations correspond to cases of
bifurcation points of higher multiplicity, which are cases of
resonance. This phenomenon is potentially stronger without
surface tension. The analysis made by Craig and Nicholls10

permitted “finite” resonance �p��� for T	0, while for

T=0 they may encounter p=� or, equally badly, �T�Kj ,c�

1 for infinitely many Kj. Despite the fact that the problem
becomes less difficult, there are very few results in the case
where surface tension is taken into account. We mention, in
particular, Kimmoun11 and Bridges et al.12 who computed
from a formal point of view small amplitude gravity capil-
lary short-crested waves. Despite that a natural analog of the
Wilton ripple should be expected in three dimensions and
that should generate new types of solutions, this phenom-
enon has not been yet analyzed to our knowledge. The im-
portance of developing an analysis valid in three dimensions
was highlighted by Reeder and Shinbrot.13 Using the linear
solution of the problem they have shown that, for Bond num-
bers �=1 /�� near 2, bifurcation and ripple phenomena occur
just as in two dimensions.

The averaged Lagrangian method of Whitham has been
used by Marchant and Roberts14,15 to formulate the problem
of short-crested waves arising from the nonlinear interaction
between incident and reflected wavetrains in two cases. In
one case, the incident wavetrain forms a circular caustic
where the wave field considered varies in the radial direction
but has no angular variation. In the second case, the reflec-
tion occurs from a wedge of arbitrary angle and the wave
field considered varies in the angular direction but has no
radial variation.

In this article we use the averaged Lagrangian method of
Whitham to the formulation of the classical problem of
short-crested waves in the presence of gravity with and with-
out surface tension. This formulation is applied in Sec. II to
yield a set of nonlinear algebraic equations which is solved
by Newton’s method. The numerical procedure is described
in Sec. III. Numerical solutions corresponding to three-
dimensional Wilton ripples are presented in Sec. IV. The case
of zero surface tension is considered in Sec. V, in particular,
by computing the solutions corresponding to the strongest
resonance �2, 6�. The behavior of the method very near the
limiting two-dimensional cases, the progressive stokes wave
and the standing wave, is analyzed in Sec. VI. The case of
small surface tension is handled in Sec. VII.

II. DERIVATION OF THE EQUATIONS

A. Preliminaries

This paper deals with short-crested water wave field
which results from the nonlinear interaction of two periodic
wavetrains of equal amplitude and frequency and nonzero
angle of interaction. We consider the special case which oc-
curs when a wavetrain of wavelength � is obliquely incident
on a vertical wall and is perfectly reflected �Fig. 1�. The
resulting wavetrain is three dimensional and propagates with
constant speed c along the wall. At any point, the wave mo-
tion is still periodic in time as well as being periodic in the
direction of propagation and in the transverse direction. A
Cartesian coordinate system R�o ,x ,y ,z� is adopted with the
x- and y-axes located on the still-water plane and the z-axis
pointing vertically upward. The wave is assumed to propa-
gate in the x-direction without change of shape. We assume

FIG. 1. Scheme of the reflection of a plane wave onto vertical wall.
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that the flow is irrotational and the fluid is perfect, of unit
density and subject to the forces of gravity and surface
tension.

Let the wavelength in the x-direction be �x=� /sin � and
the wavelength in the y-direction be �y =� /cos �. All the
variables and the equations will be written in dimensionless
form in which K−1=� /2� and �gK�−1/2 will be the length and
time of reference. It is computationally convenient to use the
frame of reference R��O ,X ,Y ,Z�, where

�X

Y

Z
� = �px − t

qy

z
� , �1�

and in which the short-crested wave is steady with period 2�
in X and Y. Here  is the nondimensional frequency and p
and q are the nondimensional X and Y direction wavenum-
bers, respectively, defined by

p = sin � and q = cos � . �2�

For simplicity, only deep water is considered for which
the nondimensional Lagrangian as proposed by Crapper16 is

L = �
−�

� 	− 
��

�X
+

1

2
��� ��2
dZ +

1

2
�2

+ ���1 + ��� ��2 − 1� , �3�

where � is the nondimensional velocity potential,
Z=��X ,Y� is the equation of the free surface, and

�� = �p
�

�X
,q

�

�Y
,

�

�Z
 .

We seek expressions for ��X ,Y ,Z� and ��X ,Y� that are
doubly periodic functions of the transformed horizontal co-
ordinates. A general representation is

��X,Y,Z� = �
m=1

�

�
n=0

�

bmne�mnZ�mn�X,Y� , �4a�

��X,Y� = �
m=0

�

�
n=0

�

�m0�n0amn cos mX cos nY , �4b�

where

�mn�X,Y� = sin mX cos nY �5�

is introduced for notational convenience to calculate the
kinetic energy and

� j0 = 1 − 1
2� j0.

Here � j0 is the Kronecker symbol and

�mn
2 = p2m2 + q2n2. �6�

According to Whitham’s method we define the averaged
Lagrangian over a rectangular period, as proposed by
Crapper,16 to be

L̄ =
1

4�2�
0

2� �
0

2� ��
−�

� 	− 
��

�X
+

1

2
��� ��2
dZ +

1

2
�2

+ ���1 + ��� ��2 − 1��dXdY . �7�

Substituting expansions �4a� and �4b� into �7�, the averaged

Lagrangian L̄ is obtained as a function of the unknown co-

efficients amn and bmn. The explicit calculation of L̄ is given
in Appendix A where the averaged Lagrangian is expressed
in the following way:

L̄ =
1

32 �
m=1

�

�
n=0

�

�
k=1

�

�
l=0

�
bmnbkl

�mn + �kl
��mnkl�t��mnkl�

+
�

4
�R00 − 4� +

1

8 �
m=0

�

�
n=0

�

�m0�n0amn
2

−
1

4
�

m=0

�

�
n=0

�

m
bmn

�mn
�mn

mn. �8�

The quantities �mn
mn, R00��mnkl�, and ��mnkl� are defined in

Appendix A. Since L̄ is independent of time, the variational
equations to be solved are, according to Whitham’s theory,

�L̄

�ars
= 0, �9a�

�L̄

�brs
= 0. �9b�

Applying Eqs. �9a� and �9b� to the averaged Lagrangian �8�
yields the following set of nonlinear algebraic equations:

1

32 �
m=1

�

�
n=0

�

�
k=1

�

�
l=0

�
bmnbkl

�mn + �kl
��̄rs

mnkl�t��mnkl� +
1

4
�r0�s0ars

+
�

16 �
m=0

�

�
n=0

�

amn�T̄mnrs�t��mnrs�

−


16
�r0�s0�

m=0

�

�
n=0

�

mbmn�̄mnrs = 0, �10a�

1

16 �
m=1

�

�
n=0

�
bmn

�mn + �rs
��mnrs�t��mnrs� −



4

r

�rs
�rs

rs = 0,

�10b�

where the quantities �̄mnrs, �T̄mnrs�, and ��mnrs� are defined in

Appendix B, while ��̄rs
mnkl� stands for the tensor

��̄rs
mnkl� =

�

�ars
��mnkl� .
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III. NUMERICAL PROCEDURE

The series in Eqs. �4a� and �4b� are truncated at N and
the order N is chosen for truncating the other expansions and
the series in Eqs. �10a� and �10b�. The resulting system may
be written as

1

32 �
m=1

N

�
n=0

N

�
k=1

N

�
l=0

N
bmnbkl

�mn + �kl
��̄rs

mnkl�t��mnkl� +
1

4
�r0�s0ars

+
�

16 �
m=1

N

�
n=0

N

amn�T̄mnrs�t��mnrs�

−


16
�r0�s0�

m=1

N

�
n=0

N

mbmn�̄mnrs = 0, �11a�

1

16 �
m=1

N

�
n=0

N
bmn

�mn + �rs
��mnrs�t��mnrs� −



4

r

�rs
�rs

rs = 0,

r,s = 0,1,2,3, . . . ,N . �11b�

The above equations are to be solved for the unknowns amn,
bmn, and  by fixing the values of � and the steepness which
is defined as

� = ��0,0� − ���,0� = �
m=0

N

�
n=0

N

a2m+1,2n+1. �12�

Note that a00=0, the mean surface level being at Z=0 and,
owing to the triangular symmetry of a short-crested wave,

amm = bmn = 0 when m + n is odd.

The number of unknowns is then

Ñ = N2 + 3
2N if N is even,

Ñ = N2 + 3
2N − 1

2 if N is odd.

The system of Eqs. �11a�, �11b�, and �12� is solved by
Newton’s method with the angle � and the steepness � re-
garded as parameters. In order to determine the increments of
the coefficients in Newton’s method, it is necessary to calcu-
late the Jacobian matrix from the following equations:

�2L̄

�buv � brs
=

1

16

1

�uv + �rs
��uvrs�t��uvrs� , �13�

�2L̄

�auv � brs
=

1

16 �
m=1

N

�
n=0

N
bmn

�mn + �rs
��̄uv

mnrs�t��mnrs�

−


16
r�u0�v0�̄rsuv

rs , �14�

�2L

�auv � ars
=

1

32 �
m=1

N

�
n=0

N

�
k=1

N

�
l=0

N
bmnbkl

�mn + �kl
��� rsuv

mnkl�t��mnkl�

+
1

4
�r0�s0�ru�sv +

�

16
�T̄uvrs�t��uvrs�

+
�

16 �
m=1

�

�
n=0

�

amn��T� uv
mnrs�t���mnrs�

−


16
�r0�s0�u0�v0�

m=1

N

�
n=0

N

mbmn�� mnrsuv
mn , �15�

where

��� rsuv
mnkl� =

�2

�ars � auv
��mnkl� ,

�T� uv
mnrs� =

�

�auv
�T̄mnrs� .

The Fourier coefficients introduced for the purposes of
the present method are computed using the fast Fourier trans-
form �FFT� algorithm. The computational domain is rectan-
gular, periodic in both directions, and discretized with con-
stant steps �X=�Y =2� /M. M and N may be chosen with a
weak constraint, i.e., M 	2N, in order to avoid the aliasing
phenomenon.

In addition to the computational efficiency of the FFT
algorithm, one can improve the method in order to reduce
substantially the amount of calculations. To do so, we have
chosen to compute the coefficients �rs

klmn defined by the rela-
tion �A6� by using

�rs
klmn =

1

4�
i=0

�

�
j=0

�

�i0� j0�ij
mn

���i−r,j−s
kl + �i−r,j+s

kl + �i+r,j−s
kl + �i+r,j+s

kl � �16�

instead of applying the FFT to the function e��mn+�kl���X,Y�.
This expression is obtained by computing the product
e�mn��X,Y�e�kl��X,Y�. Doing so saves a considerable amount of
system memory and shortens the calculation time. One can
also note that

�rs
klmn = �rs

mnkl,

and therefore the computations can be reduced by nearly
half.

The initial estimates for the Newton iteration are given
for small amplitudes by the approximations obtained by
Ioualalen17 for gravity waves and the ones of Kimmoun
et al.18 for gravity-capillary waves.

IV. THREE-DIMENSIONAL WILTON RIPPLES

Kimmoun11 performed a sixth-order solution to the prob-
lem of short-crested gravity-capillary waves in finite depth
by using the classical perturbation method which assumes
that some parameter � appearing in the equations is small.
The solutions are then expanded as
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��X,Y� = �
R

�R�R�X,Y�;

�17�
�R�X,Y� = �

j,k
aR,jk cos jX cos kY ,

��X,Y� = �
R

�R�R�X,Y�;

�18�
�R�X,Y� = �

j,k
bR,jk sin jX cos kY cosh � jk�Z + h� ,

where the subscript R indicates the order of the solution. He
substituted these forms into the free surface boundary
conditions which are then combined to give the following
equation:

��p2�R,ZXX + q2�R,ZYY� − �0
2�R,XX − �R,Z = rhs, �19�

with �0
2= �1+��tanh�h� and h the depth. The right-hand side

of Eq. �19� can contain terms of the form
sin jX cos kY cosh � jk�Z+h� which are solutions of the asso-
ciated homogeneous equation. These cases correspond to
harmonic resonances and mean that the fundamental,
sin X cos Y cosh�Z+h�, excites the harmonic which propa-
gates at the same phase speed. They occur if the parameters
of the wave satisfy the relation

�1 + �� j,k
2 �� j,k tanh�� j,kh� − �0

2j2 = 0. �20�

In the parameter space this corresponds to the forbidden set
introduced by Reeder and Shinbrot2 and for which it is not
possible to get a unique solution to the problem of short-
crested capillary-gravity waves. In the case of deep water,
Eq. �20� becomes

�1 + �� j,k
2 �� j,k − �1 + ��j2 = 0. �21�

This is a generalization to short-crested waves of the relation
giving the sets of parameters corresponding to Wilton
ripples. We use our method to provide numerical evidence to
the existence of this kind of three-dimensional solutions.
Therefore, it is natural first to consider the resonances for
which j=k because � will be equal to 1 /k as in the two-

dimensional case. For instance, for j=k=2, that is to say,
�=1 /2, we obtain two types of solutions just as in two di-
mensions. Figures 2 and 3 show the shapes of these short-
crested waves obtained with �=� /4. For small values of the
wave steepness, the computations yield a wave of type 2 for
�=1 /2. Wave of type 1 can be calculated from a solution
computed with �=0.54 varying progressively � from 0.54 to
1/2 by step not exceeding few percents of the fixed value.
Let us focus attention on the lines of intersection of the free
surfaces plotted in Figs. 2 and 3 with the planes X=2� or
Y =0 �remind that the patterns are 2�-periodic in the both
directions�. Observe that these lines have the same shapes as
the profiles of the two kinds of two-dimensional solutions
found by Wilton and shown in Fig. 4. Furthermore, similar
curves correspond to waves of the same type: the type 1 is
capillarylike, that is to say, the wave speed decreases as the
amplitude increases and the other is gravitylike with a speed
that increases as the amplitude increases. This feature,
known for two-dimensional Wilton ripples, is also observed
for the three-dimensional corresponding cases as shown in
Fig. 5. The case �=0.54 is added to make comparisons with
results of a neighboring nonresonant configuration. Now, the
above mentioned similar characteristic features allow to
come to the conclusion that the waves in Figs. 3 and 4 are
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FIG. 2. Three-dimensional Wilton ripples of the type 1 for �=0.1 and
�=� /4.
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FIG. 3. Three-dimensional Wilton ripples of the type 2 for �=0.1 and
�=� /4.
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FIG. 4. The two profiles of two-dimensional Wilton ripples.
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the three-dimensional analog of Wilton ripples. These similar
features were also confirmed in the case corresponding to
�=1 /3 �j=k=3 in Eq. �21��. Plots of three-dimensional
cases have been compared to those of their corresponding
two-dimensional forms and, once again, the resemblance be-
tween the corresponding curves was remarkably close
�Debiane19�.

The more general case corresponding to j�k in the re-
lation �21� has been also considered. The resulting configu-
ration gives rise to resonant solutions in which the basic
element of symmetry is a rectangle of half-a-wavelength
sides. Compared with the classical diamond pattern, it has
lost the symmetry with respect to the diagonal of this rect-
angle. This feature is emphasized in Fig. 6 which shows a
profile corresponding to a �4, 2� resonance.

V. SHORT-CRESTED GRAVITY WAVES

In contrast to the case that the surface tension is an in-
cluded physical effect, the problem of pure short-crested
gravity waves exhibits a strong phenomenon of small divi-
sors which has implications for theoretical results of the
problem. This problem dating from the work of Roberts3 has
received a lot of attention but it was found to be a tricky task.

Small divisors cause difficulties in the perturbation theory,
and the convergence of the standard method is questionable
due to the fact that the perturbation series have everywhere a
zero radius of convergence. Roberts, who attributed the prob-
lem of small divisors to the phenomenon of harmonic reso-
nance, has found that there are critical values of � for which
a division by zero occurs in the calculation of some coeffi-
cients at particular orders. The equation which relates these
critical values to the �j ,k�th resonant harmonic is

cos2 �c =
�j4 − j2�
�k2 − j2�

. �22�

However, he found that for most of the cases the resonances
occur at high orders and thus they should be dissipated
through viscous damping. Thus, the truncated expansions at
some order that leave out the resonant terms ought to provide
a correct asymptotic approximation to the solutions of the
problem. Furthermore, Roberts3 used acceleration techniques
such as the Padé approximants or the Shanks transform to
obtain numerical convergence for finite amplitude waves.
Recently, Ioualalen et al.9 computed fully nonlinear short-
crested waves using both a high-order perturbation expan-
sion and a numerical method developed by Okamura.20 In
particular, the �2,6� resonance has been explored by taking �
equal to 53°, a value which is close to the critical angle
�c=52.2388. . . ° given by Eq. �22� for the resonance �2,6�. A
detailed study of the properties of the solutions in a region
about a singularity �a pole computed for � indicates that the
problem admits multiple solutions: two branches matching
each other through a turning point and one single branch. To
check the accuracy of the present method, it is necessary to
compare our results with those obtained by Ioualalen et al. A
comparison between computed values of the phase velocity
is presented in Table I. A good agreement is obtained for
amplitudes up to and past the singularity. This method did
not present singular behavior for critical angles given by Eq.
�22�, in particular, for the lowest order resonance �2,6� which
seems to be one of the strongest. The corresponding solu-
tions can be computed easily by either using appropriate ini-
tial conditions or by performing a bifurcation analysis. When
the fourth-order approximations of Ioualalen17 are used as
initial estimate for Newton iterations, we obtain, at higher
orders, the well-known symmetric diamond solution �Fig. 7�.
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FIG. 5. Variation of wave speed with steepness for three-dimensional
Wilton ripples and a nonresonant wave.
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FIG. 6. Graph in perspective of short-crested capillary-gravity waves for
�=0.1 and �=� /4: case of �4,2� resonance.

TABLE I. Comparison between computed values of the phase velocity with
the present method and those given by Ioualalen et al. �Ref. 9� and Cornier
�Ref. 23�. The numbers between brackets indicate the orders of truncation.

� Present method

Perturbation method
�with use of the Shanks

transform� Numerical method

0.05 1.00044957 �5� 1.000 449 57 �5� 1.000 449 57 �5�
0.10 1.00180027 �7� 1.001 800 27 �9� 1.001 800 27 �5�
0.15 1.00405789 �8� 1.004 057 89�13� 1.004 057 89 �9�
0.195 1.00688445�13� 1.006 884 46�29� 1.006 884 45�13�
0.20 1.00723844�13� 1.007 238 44�25� 1.007 238 44�13�
0.25 1.01134021�13� 1.011 340 21�25� 1.011 340 21�13�
0.30 1.01639055�22� 1.016 390 55�25� 1.016 390 55�13�
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It seems that the latter, in which the harmonic �1,1� is domi-
nant, can be regarded as a nonresonant case.

To solve the problem of three-dimensional gravity
waves, Craig and Nicholls21 have adopted a bifurcation theo-
retic approach in which they seek solutions near the quies-
cent state ��=�=0 and any velocity c�. They showed that
the question of that traveling waves is a bifurcation problem
with typical form of bifurcation branches which are two-
dimensional surfaces as mentioned above in Sec. I. Never-
theless, the classical numerical continuation methods pose a
difficulty and they suggest to map out portions of a bifurca-
tion surface in �essentially� geodesic polar coordinates, or
else to choose to follow certain distinguished curves in the
bifurcation surfaces under consideration, using the more
standard continuation method for bifurcation curves. To ob-
tain the resonant solutions, we chose to adopt also a bifurca-
tion approach, by using the parameter

Q = ��0,0� . �23�

This parameter appears to be more convenient than c because
of its monotonic behavior. Fortunately, bifurcations occur
about the trivial solution �� ,� ,c�= �0,0 ,c� where the solu-
tion branches are close enough to avoid the use of numerical
continuation methods. Two types of �2,6� resonant waves
have been obtained. The first is regular �uniform� and have
wavelengths �x=2� /2 in the X-direction and �y =2� /6 in
the Y-direction. This is because the coefficient a26 is the
dominant coefficient in the solution set �amn�. The corre-
sponding profile which is shown in Fig. 8 is similar to the
one represented in Fig. 7 but the wavelengths are different.
Figure 9 shows the profile of the second type of �2,6� reso-
nant waves. The main feature to notice is that the wave is
irregular with �2�6� crests of different heights in both hori-
zontal directions. In this case, the coefficient a26 is of the
same order as the coefficient a11 of the fundamental mode.

The method can be easily extended to the case where the
indexes have a mixed parity. This is not in the present frame-
work because of the fact that the triangular symmetry of cws
excludes all mixed parity modes in the waves. However, sev-
eral results have been obtained for these cases via our

method, and we give in Fig. 10, as an example, a mixed-type
solution where the wave is of type 1 in one component di-
rection and type 2 in the other.

VI. THE TWO-DIMENSIONAL LIMITING CASES

The first two-dimensional limit is the standing wave and
corresponds to angle �=0°, i.e., incident and reflected waves
propagate in opposite directions. The other limit is the pro-
gressive Stokes wave for �=� /2, i.e., the two waves propa-
gate in the same direction. Both of these limits have features
of interest, but very little work has been done near the two-
dimensional limits of short-crested waves. Roberts and
Peregrine4 have considered the limit as both incident and
reflected waves are almost parallel. They found that har-
monic resonances are due to the multilike structure of the
solutions. Okamura20 showed how short-crested waves
match standing waves in deep water for �→0°. It is found
that the short-crested wave cannot be continued analytically
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FIG. 7. Graph in perspective of nonresonant short-crested gravity waves for
�=0.35 and �=�c given by the relation �22� for j=2 and k=6.
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into the standing wave because of harmonic resonances. This
work has been extended in Okamura et al.22 to the case of
standing waves on finite depth. In addition, the properties of
the solutions have been discussed and a study on the super-
harmonic instabilities �resonant interactions� of short-crested
waves was performed in the vicinity of the standing wave
limit.

In the present study, we examine the behavior of short-
crested waves very near their both two-dimensional limits, in
the presence of harmonic resonance.

In a first case we took angle �=10−4 and we computed
easily solutions past the order of truncation 22 in the vicinity
of the standing wave limit. At that angle, the wave is subject
to �2, 4� and �3, 9� multiple harmonic resonances. This is in
accordance with expectations since, following the resonance
condition �22�, when k= j2 we find �=0 for all j; these har-
monic resonances correspond to that occur in standing grav-
ity waves. In Fig. 11 we report the branches of solutions b24

and b39 as a function of b11. The dominant feature is that
each coefficient is represented by two branches, �1� and �2�,
matching each other through a turning point �TP�. Similar
branches have been obtained for the case of finite depth by

Okamura et al.22 for the resonant harmonic modes b35 and
b6,20 in the case of a nondimensional depth d=0.62 and
�=10−3. In contrast to the finite depth case, the resonant
harmonic modes b24 and b39 can also be significant on branch
�1� and the cross effects of b35 and b6,20 branch solutions is
not observed in our case.

In the second case, we consider the other limit which
corresponds to the progressive Stokes wave for �=� /2. Two
types of gravity waves have been obtained. Figures 12 and
13 show the shapes of these waves in the �x ,y ,z�-space. It
may be useful to note that, in our numerical computations, �
is the double precision value calculated by the computer with
arccos ��1.0� and which is obtained to machine precision.
Hence, this configuration corresponds to the closest to the
two-dimensional progressive wave limit. Figure 12 repre-
sents the profile of the first type which is similar to those of
the long-crested waves obtained to fourth-order accuracy by
Roberts and Peregrine.4 However, our profile exhibits ripples
which have been examined to determine if they are not
merely due to numerical error. The ripples do not disappear
with an increase in the order of truncation up to the 25th
order, even for very small values of steepness. Further tests
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FIG. 10. Graph in perspective of a mixed type wave for �=0.1: the wave is
of type 1 in one component direction and type 2 in the other.
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have been performed by keeping only the coefficients amn

and bmn with m�20 and n�60, since these coefficients are
smaller than the machine precision when m is greater than
20. Once again, the ripples are apparent in the wave profile.
Wave of this type can be calculated by varying progressively
� from a sufficiently small value to �=� /2. In this case, the
most significant coefficients are b11, b13, and b1,11 and the
dominant mode is b11. When the computations are performed
using directly the value �=� /2, we obtain waves of the type
represented in Fig. 13. These solutions are subject to mul-
tiple harmonic resonances where, in agreement with the reso-
nance condition �22�, many �1, n� harmonic coefficients are
the most significant and where dominant mode is b15. Figure
14 represents the variation of the resonant coefficients b11,
b13, and b15 with steepness for �=� /2.

Motivated by the efficiency of this method, we have ex-
amined the case of Wilton ripples for �=� /2. The obtained
profile is shown in Fig. 15. It looks like gravity long-crested
wave but it exhibits, in the direction of propagation, the char-
acteristic shape of Wilton ripples of type 2.

VII. THE CASE OF SMALL SURFACE TENSION

Another case which is difficult to handle is the one of
small surface tension which is the case in many usual situa-
tions. Our method works well also for this case. As an ex-
ample, Fig. 16 shows the shape of the nonregular short-
crested waves obtained with �=6�10−6 and �=0.4626. The
comparison between Figs. 16 and 9 reveals that the two pro-
files are very similar.

VIII. CONCLUSION

Whitham’s variational method has been applied success-
fully to the problem of resonant short-crested waves in which
the appearance of small divisors causes the classical pertur-
bation methods to fail. The problem was reduced to a system
of nonlinear algebraic equations which was solved using
Newton’s method. It was shown that the method allows the
computation of three-dimensional Wilton ripples and the
resonant short-crested gravity waves. In particular, the
method works well very near the limiting two-dimensional
cases, the progressive stokes wave and the standing wave,
and for the case of small surface tension.

APPENDIX A: CALCULATION OF THE AVERAGED
LAGRANGIAN

This appendix describes details of the calculation of the

averaged Lagrangian L̄.

1. The kinetic energy

In the averaged Lagrangian function �7� given in the
body of the paper, the contribution of the kinetic energy is

KE =
1

8�2�
0

2� �
0

2� �
−�

�

��� ��2dZdXdY . �A1�

Substituting expansion �4a� into Eq. �A1�, and integrating
with respect to Z, the result can be written as
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FIG. 14. Variation of the resonant coefficients b11, b13, and b15 with steep-
ness for �=� /2.

0
1
2

3
4

5
6

-0,20
-0,15
-0,10
-0,05

0,00

0,05

0,0

0,4

0,8
1,2

1,6

z

yx1
0-
15

x

FIG. 15. Graph in perspective of Wilton ripples on long-crested wave ob-
tained for �=0.05, �=0.5, and �=� /2. The y-coordinate is scaled with a
factor of 10−15.

0
1
2
3
4
5
6

-0,2

-0,1

0,0

0,1

0
1

2
3

4
5
6

Z

X

X
FIG. 16. Graph in perspective of nonregular resonant short-crested gravity
wave for �=0.046 26, �=6�10−6, and �=52.303°.

062106-9 Calculation of resonant short-crested waves in deep water Phys. Fluids 21, 062106 �2009�

Downloaded 07 Jul 2009 to 147.94.56.153. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



KE =
1

8�2 �
m=1

�

�
n=0

�

�
k=1

�

�
l=0

�
bmnbkl

�mn + �kl

��
0

2� �
0

2�

dXdY�e��mn+�kl���X,Y�

���� �mn�� �kl + �mn�kl�
mn�kl�� . �A2�

By noting that

�mn�kl = 1
4 �cos�k − m�X cos�l − n�Y − cos�k + m�

�X cos�l − n�Y + cos�k − m�X cos�l + n�

�Y − cos�k + m�X cos�l + n�Y� , �A3�

�� �mn�� �kl = 1
4 p2mk�cos�k − m�X cos�l − n�Y + cos�k + m�X cos�l − n�Y + cos�k − m�X cos�l + n�Y + cos�k + m�

�X cos�l + n�Y� + 1
4q2nl�cos�k − m�X cos�l − n�Y − cos�k + m�X cos�l − n�Y − cos�k − m�X cos�l + n�

�Y + cos�k + m�X cos�l + n�Y� , �A4�

we rewrite the kinetic energy as

KE =
1

32�2 �
m=1

�

�
n=0

�

�
k=1

�

�
l=0

�
bmnbkl

�mn + �kl
�

0

2� �
0

2�

e��mn+�kl���X,Y��cos�k − m�X cos�l − n�Y�p2mk + q2nl + �mn�kl�

+ cos�k − m�X cos�l + n�Y�p2mk − q2nl + �mn�kl� + cos�k + m�X cos�l − n�Y�p2mk − q2nl − �mn�kl�

+ cos�k + m�X cos�l + n�Y�p2mk + q2nl − �mn�kl��dXdY . �A5�

It is helpful to use the following Fourier expansion:

e��mn+�kl���X,Y� = �
u=0

�

�
v=0

�

�u0�v0�uv
mnkl cos uX cos vY �A6�

where the coefficients �uv
mnkl can be easily computed by using

the relation �16� given in the body of the paper. In doing so,
it is straightforward to obtain the result of Eq. �A5� under the
form

KE =
1

32 �
m=1

�

�
n=0

�

�
k=1

�

�
l=0

�
bmnbkl

�mn + �kl

���k−m,l−n
mnkl �p2mk + q2nl + �mn�kl�

+ �k+m,l−n
mnkl �p2mk − q2nl − �mn�kl�

+ �k−m,l+n
mnkl �p2mk − q2nl + �mn�kl�

+ �k+m,l+n
mnkl �p2mk + q2nl − �mn�kl�� , �A7�

which can be expressed in a compact form by

KE =
1

32 �
m=1

�

�
n=0

�

�
k=1

�

�
l=0

�
bmnbkl

�mn + �kl
��mnkl�t��mnkl� , �A8�

where ��mnkl� and ��mnkl� are column matrices given by

��mnkl� = �
p2mk + q2nl + �mn�kl

p2mk − q2nl + �mn�kl

p2mk − q2nl − �mn�kl

p2mk + q2nl − �mn�kl

� , �A9�

��mnkl� = �
�k−m,l−n

mnkl

�k−m,l+n
mnkl

�k+m,l−n
mnkl

�k+m,l+n
mnkl

� . �A10�

2. The potential energy

In the right-hand side of Eq. �7�, the averaged potential

energy V̄g due to gravity only is defined as

V̄g =
1

4�2�
0

2� �
0

2� 	1

2
�2
dXdY =

1

8 �
m=0

�

�
n=0

�

�m0�n0amn
2 .

�A11�

On the other hand, for the term of the averaged capillary
energy defined by

V̄� =
�

4�2�
0

2� �
0

2� 	�1 + p2� ��

�X
2

+ q2� ��

�Y
2

− 1

�dXdY , �A12�

we introduce the following Fourier expansion:
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�1 + p2� ��

�X
2

+ q2� ��

�Y
2

= �
m=0

�

�
n=0

�

�m0�n0Rmn

�cos mX cos nY �A13�

that enables us to compute easily the integral, and one gets

V̄� =
�

4
�R00 − 4� , �A14�

R00 is computed using the FFT algorithm.

3. The averaged temporal rate of variation
of the velocity potential

The remaining term represents the temporal rate of
variation of the potential which reads

�̄t =
1

4�2�
0

2� �
0

2� �
−�

�

− �XdZdXdY . �A15�

Using the expansion �4a� and after integration with respect to
Z, one obtains

�̄t = −


4�2 �
m=1

�

�
n=0

�

m
bmn

�mn

��
0

2� �
0

2�

e�mn� cos mX cos nYdXdY . �A16�

The integral of the right-hand side suggests to use the coef-
ficients of Fourier’s expansion of the function

e�mn��X,Y� = �
i=0

�

�
j=0

�

�i0� j0�ij
mn cos iX cos jY , �A17�

where

�ij
mn =

1

�2�
0

2� �
0

2�

e�mn� cos iX cos jYdXdY . �A18�

In doing so, the integral result is easily found as

�̄t = −
1

4
�

m=0

�

�
n=0

�

m
bmn

�mn
�mn

mn. �A19�

Using expressions �A8�, �A11�, �A14�, and �A19�, the aver-
aged Lagrangian function �7� is obtained as a function of the
coefficients and can be written in the form

L̄ =
1

32 �
m=1

�

�
n=0

�

�
k=1

�

�
l=0

�
bmnbkl

�mn + �kl
��mnkl�t��mnkl�

+
�

4
�R00 − 4� +

1

8 �
m=0

�

�
n=0

�

�m0�n0amn
2

−
1

4
�

m=0

�

�
n=0

�

m
bmn

�mn
�mn

mn. �A20�

APPENDIX B: EXPRESSIONS OF SOME DERIVATIVES

This appendix gives expressions of some derivatives not
reported in the body of the paper. They are useful to calculate
the Jacobian matrix which is necessary to determine the in-
crements of the coefficients in Newton’s method. For more
details see Debiane.19

��ij
mn

�ars
=

�r0�s0�mn

4
�̄ijrs

mn , �B1�

with

�̄mnrs = �r−m,s−n
mn + �r−m,s+n

mn + �r+m,s−n
mn + �r+m,s+n

mn ,

�B2�
�2�ij

mn

�ars � auv
=

�mn

4
�r0�s0�u0�v0�� ijrsuv

mn ,

with

�� ijrsuv
mn =

1

�r−u,0�s−v,0

��ij
mn

�ar−u,s−v
+

1

�r−u,0�s+v,0

��ij
mn

�ar−u,s+v

+
1

�r+u,0�s−v,0

��ij
mn

�ar+u,s−v
+

1

�r+u,0�s+v,0

��ij
mn

�ar+u,s+v
,

�B3�

�R00

�ars
=

1

4 �
m=0

�

�
n=0

�

amn�T̄mnrs�t��mnrs� , �B4�

where ��mnrs� and �T̄mnrs� are column matrices given by

��mnrs� = �
�n0�s0p2mr + �m0�r0q2ns

�n0�s0p2mr − �m0�r0q2ns

− �n0�s0p2mr + �m0�r0q2ns

− �n0�s0p2mr − �m0�r0q2ns
� , �B5�

�T̄mnrs� = �
Tr−m,s−n

Tr−m,s+n

Tr+m,s−n

Tr+m,s+n

� . �B6�

Tmn being Fourier coefficients defined by

1

�1 + ��̄� ��2

= �
m=0

�

�
n=0

�

�m0�n0Tmn cos mX cos nY , �B7�

�Tij

�auv
= −

1

16 �
m=0

�

�
n=0

�

amn��mnuv
ij �t��mnuv� , �B8�

where ��mnuv
ij � is a column matrix given by
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��rsuv
ij � = �

P�u−m�+i,�v−n�+j + P�u−m�+i,�v−n�−j + P�u−m�−i,�v−n�+j + P�u−m�−i,�v−n�−j

P�u−m�+i,v+n+j + P�u−m�+i,v+n−j + P�u−m�−i,v+n+j + P�u−m�−i,v+n−j

Pu+m+i,�v−n�+j + Pu+m+i,�v−n�−j + Pu+m−i,�v−n�+j + Pu+m−i,�v−n�−j

Pu+m+i,v+n+j + Pu+m+i,v+n−j + Pu+m−i,v+n+j + Pu+m−i,v+n−j

� . �B9�

Pkl are Fourier coefficients defined by

1

�1 + ��̄� ��2�3/2
= �

k=0

�

�
n=0

�

�k0�l0Pkl cos kX cos lY . �B10�
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